Forked.
Fork of mbed-dev by
targets/TARGET_NORDIC/TARGET_NRF5/us_ticker.c
- Committer:
- Dollyparton
- Date:
- 2017-12-19
- Revision:
- 174:ed647f63e28d
- Parent:
- 169:e3b6fe271b81
File content as of revision 174:ed647f63e28d:
/* * Copyright (c) 2013 Nordic Semiconductor ASA * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic Semiconductor ASA * integrated circuit in a product or a software update for such product, must reproduce * the above copyright notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its contributors may be * used to endorse or promote products derived from this software without specific prior * written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary or object form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "us_ticker_api.h" #include "common_rtc.h" #include "app_util.h" #include "nrf_drv_common.h" #include "lp_ticker_api.h" #include "mbed_critical.h" #if defined(NRF52_ERRATA_20) #include "softdevice_handler.h" #endif //------------------------------------------------------------------------------ // Common stuff used also by lp_ticker and rtc_api (see "common_rtc.h"). // #include "app_util_platform.h" bool m_common_rtc_enabled = false; uint32_t volatile m_common_rtc_overflows = 0; __STATIC_INLINE void rtc_ovf_event_check(void) { if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_OVERFLOW)) { nrf_rtc_event_clear(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_OVERFLOW); // Don't disable this event. It shall occur periodically. ++m_common_rtc_overflows; } } #if defined(TARGET_MCU_NRF51822) void common_rtc_irq_handler(void) #else void COMMON_RTC_IRQ_HANDLER(void) #endif { rtc_ovf_event_check(); if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, US_TICKER_EVENT)) { us_ticker_irq_handler(); } #if DEVICE_LOWPOWERTIMER if (nrf_rtc_event_pending(COMMON_RTC_INSTANCE, LP_TICKER_EVENT)) { lp_ticker_irq_handler(); } #endif } // Function for fix errata 20: RTC Register values are invalid __STATIC_INLINE void errata_20(void) { #if defined(NRF52_ERRATA_20) if (!softdevice_handler_is_enabled()) { NRF_CLOCK->EVENTS_LFCLKSTARTED = 0; NRF_CLOCK->TASKS_LFCLKSTART = 1; while (NRF_CLOCK->EVENTS_LFCLKSTARTED == 0) { } } NRF_RTC1->TASKS_STOP = 0; #endif } void RTC1_IRQHandler(void); void common_rtc_init(void) { if (m_common_rtc_enabled) { return; } errata_20(); NVIC_SetVector(RTC1_IRQn, (uint32_t)RTC1_IRQHandler); // RTC is driven by the low frequency (32.768 kHz) clock, a proper request // must be made to have it running. // Currently this clock is started in 'SystemInit' (see "system_nrf51.c" // or "system_nrf52.c", respectively). nrf_rtc_prescaler_set(COMMON_RTC_INSTANCE, 0); nrf_rtc_event_clear(COMMON_RTC_INSTANCE, US_TICKER_EVENT); #if defined(TARGET_MCU_NRF51822) nrf_rtc_event_clear(COMMON_RTC_INSTANCE, OS_TICK_EVENT); #endif #if DEVICE_LOWPOWERTIMER nrf_rtc_event_clear(COMMON_RTC_INSTANCE, LP_TICKER_EVENT); #endif nrf_rtc_event_clear(COMMON_RTC_INSTANCE, NRF_RTC_EVENT_OVERFLOW); // Interrupts on all related events are enabled permanently. Particular // events will be enabled or disabled as needed (such approach is more // energy efficient). nrf_rtc_int_enable(COMMON_RTC_INSTANCE, #if DEVICE_LOWPOWERTIMER LP_TICKER_INT_MASK | #endif US_TICKER_INT_MASK | NRF_RTC_INT_OVERFLOW_MASK); // This event is enabled permanently, since overflow indications are needed // continuously. nrf_rtc_event_enable(COMMON_RTC_INSTANCE, NRF_RTC_INT_OVERFLOW_MASK); // All other relevant events are initially disabled. nrf_rtc_event_disable(COMMON_RTC_INSTANCE, #if defined(TARGET_MCU_NRF51822) OS_TICK_INT_MASK | #endif #if DEVICE_LOWPOWERTIMER LP_TICKER_INT_MASK | #endif US_TICKER_INT_MASK); nrf_drv_common_irq_enable(nrf_drv_get_IRQn(COMMON_RTC_INSTANCE), #ifdef NRF51 APP_IRQ_PRIORITY_LOW #elif defined(NRF52) || defined(NRF52840_XXAA) APP_IRQ_PRIORITY_LOWEST #endif ); nrf_rtc_task_trigger(COMMON_RTC_INSTANCE, NRF_RTC_TASK_START); m_common_rtc_enabled = true; } __STATIC_INLINE void rtc_ovf_event_safe_check(void) { core_util_critical_section_enter(); rtc_ovf_event_check(); core_util_critical_section_exit(); } uint32_t common_rtc_32bit_ticks_get(void) { uint32_t ticks; uint32_t prev_overflows; do { prev_overflows = m_common_rtc_overflows; ticks = nrf_rtc_counter_get(COMMON_RTC_INSTANCE); // The counter used for time measurements is less than 32 bit wide, // so its value is complemented with the number of registered overflows // of the counter. ticks += (m_common_rtc_overflows << RTC_COUNTER_BITS); // Check in case that OVF occurred during execution of a RTC handler (apply if call was from RTC handler) // m_common_rtc_overflows might been updated in this call. rtc_ovf_event_safe_check(); // If call was made from a low priority level m_common_rtc_overflows might have been updated in RTC handler. } while (m_common_rtc_overflows != prev_overflows); return ticks; } uint64_t common_rtc_64bit_us_get(void) { uint32_t ticks = common_rtc_32bit_ticks_get(); // [ticks -> microseconds] return ROUNDED_DIV(((uint64_t)ticks) * 1000000, RTC_INPUT_FREQ); } void common_rtc_set_interrupt(uint32_t us_timestamp, uint32_t cc_channel, uint32_t int_mask) { // The internal counter is clocked with a frequency that cannot be easily // multiplied to 1 MHz, therefore besides the translation of values // (microsecond <-> ticks) a special care of overflows handling must be // taken. Here the 32-bit timestamp value is complemented with information // about current the system up time of (ticks + number of overflows of tick // counter on upper bits, converted to microseconds), and such 64-bit value // is then translated to counter ticks. Finally, the lower 24 bits of thus // calculated value is written to the counter compare register to prepare // the interrupt generation. uint64_t current_time64 = common_rtc_64bit_us_get(); // [add upper 32 bits from the current time to the timestamp value] uint64_t timestamp64 = us_timestamp + (current_time64 & ~(uint64_t)0xFFFFFFFF); // [if the original timestamp value happens to be after the 32 bit counter // of microsends overflows, correct the upper 32 bits accordingly] if (us_timestamp < (uint32_t)(current_time64 & 0xFFFFFFFF)) { timestamp64 += ((uint64_t)1 << 32); } // [microseconds -> ticks, always round the result up to avoid too early // interrupt generation] uint32_t compare_value = (uint32_t)CEIL_DIV((timestamp64) * RTC_INPUT_FREQ, 1000000); core_util_critical_section_enter(); // The COMPARE event occurs when the value in compare register is N and // the counter value changes from N-1 to N. Therefore, the minimal safe // difference between the compare value to be set and the current counter // value is 2 ticks. This guarantees that the compare trigger is properly // setup before the compare condition occurs. uint32_t closest_safe_compare = common_rtc_32bit_ticks_get() + 2; if ((int)(compare_value - closest_safe_compare) <= 0) { compare_value = closest_safe_compare; } nrf_rtc_cc_set(COMMON_RTC_INSTANCE, cc_channel, RTC_WRAP(compare_value)); nrf_rtc_event_enable(COMMON_RTC_INSTANCE, int_mask); core_util_critical_section_exit(); } //------------------------------------------------------------------------------ void us_ticker_init(void) { common_rtc_init(); } uint32_t us_ticker_read() { us_ticker_init(); return (uint32_t)common_rtc_64bit_us_get(); } void us_ticker_set_interrupt(timestamp_t timestamp) { common_rtc_set_interrupt(timestamp, US_TICKER_CC_CHANNEL, US_TICKER_INT_MASK); } void us_ticker_disable_interrupt(void) { nrf_rtc_event_disable(COMMON_RTC_INSTANCE, US_TICKER_INT_MASK); } void us_ticker_clear_interrupt(void) { nrf_rtc_event_clear(COMMON_RTC_INSTANCE, US_TICKER_EVENT); } // Since there is no SysTick on NRF51, the RTC1 channel 1 is used as an // alternative source of RTOS ticks. #if defined(TARGET_MCU_NRF51822) #include "mbed_toolchain.h" #define MAX_RTC_COUNTER_VAL ((1uL << RTC_COUNTER_BITS) - 1) /** * The value previously set in the capture compare register of channel 1 */ static uint32_t previous_tick_cc_value = 0; /* The Period of RTC oscillator, unit [1/RTC1_CONFIG_FREQUENCY] */ static uint32_t os_rtc_period; /* Variable for frozen RTC1 counter value. It is used when system timer is disabled. */ static uint32_t frozen_sub_tick = 0; #ifdef MBED_CONF_RTOS_PRESENT #include "rtx_os.h" //import osRtxInfo, SysTick_Handler() static inline void clear_tick_interrupt(); #endif #ifndef RTC1_CONFIG_FREQUENCY #define RTC1_CONFIG_FREQUENCY 32678 // [Hz] #endif void COMMON_RTC_IRQ_HANDLER(void) { if(nrf_rtc_event_pending(COMMON_RTC_INSTANCE, OS_TICK_EVENT)) { #ifdef MBED_CONF_RTOS_PRESENT clear_tick_interrupt(); // Trigger the SysTick_Handler just after exit form RTC Handler. NVIC_SetPendingIRQ(SWI3_IRQn); nrf_gpio_pin_set(11); #endif } else { common_rtc_irq_handler(); } } #ifdef MBED_CONF_RTOS_PRESENT /** * Return the next number of clock cycle needed for the next tick. * @note This function has been carefully optimized for a systick occurring every 1000us. */ static uint32_t get_next_tick_cc_delta() { uint32_t delta = 0; if (osRtxConfig.tick_freq != 1000) { // In RTX, by default SYSTICK is is used. // A tick event is generated every os_trv + 1 clock cycles of the system timer. delta = os_rtc_period; } else { // If the clockrate is set to 1000us then 1000 tick should happen every second. // Unfortunatelly, when clockrate is set to 1000, os_trv is equal to 31. // If (os_trv + 1) is used as the delta value between two ticks, 1000 ticks will be // generated in 32000 clock cycle instead of 32768 clock cycles. // As a result, if a user schedule an OS timer to start in 100s, the timer will start // instead after 97.656s // The code below fix this issue, a clock rate of 1000s will generate 1000 ticks in 32768 // clock cycles. // The strategy is simple, for 1000 ticks: // * 768 ticks will occur 33 clock cycles after the previous tick // * 232 ticks will occur 32 clock cycles after the previous tick // By default every delta is equal to 33. // Every five ticks (20%, 200 delta in one second), the delta is equal to 32 // The remaining (32) deltas equal to 32 are distributed using primes numbers. static uint32_t counter = 0; if ((counter % 5) == 0 || (counter % 31) == 0 || (counter % 139) == 0 || (counter == 503)) { delta = 32; } else { delta = 33; } ++counter; if (counter == 1000) { counter = 0; } } return delta; } static inline void clear_tick_interrupt() { nrf_rtc_event_clear(COMMON_RTC_INSTANCE, OS_TICK_EVENT); nrf_rtc_event_disable(COMMON_RTC_INSTANCE, OS_TICK_INT_MASK); } /** * Indicate if a value is included in a range which can be wrapped. * @param begin start of the range * @param end end of the range * @param val value to check * @return true if the value is included in the range and false otherwise. */ static inline bool is_in_wrapped_range(uint32_t begin, uint32_t end, uint32_t val) { // regular case, begin < end // return true if begin <= val < end if (begin < end) { if (begin <= val && val < end) { return true; } else { return false; } } else { // In this case end < begin because it has wrap around the limits // return false if end < val < begin if (end < val && val < begin) { return false; } else { return true; } } } /** * Register the next tick. */ static void register_next_tick() { previous_tick_cc_value = nrf_rtc_cc_get(COMMON_RTC_INSTANCE, OS_TICK_CC_CHANNEL); uint32_t delta = get_next_tick_cc_delta(); uint32_t new_compare_value = (previous_tick_cc_value + delta) & MAX_RTC_COUNTER_VAL; // Disable irq directly for few cycles, // Validation of the new CC value against the COUNTER, // Setting the new CC value and enabling CC IRQ should be an atomic operation // Otherwise, there is a possibility to set an invalid CC value because // the RTC1 keeps running. // This code is very short 20-38 cycles in the worst case, it shouldn't // disturb softdevice. __disable_irq(); uint32_t current_counter = nrf_rtc_counter_get(COMMON_RTC_INSTANCE); // If an overflow occur, set the next tick in COUNTER + delta clock cycles if (is_in_wrapped_range(previous_tick_cc_value, new_compare_value, current_counter + 1) == false) { new_compare_value = current_counter + delta; } nrf_rtc_cc_set(COMMON_RTC_INSTANCE, OS_TICK_CC_CHANNEL, new_compare_value); // Enable generation of the compare event for the value set above (this // event will trigger the interrupt). nrf_rtc_event_enable(COMMON_RTC_INSTANCE, OS_TICK_INT_MASK); __enable_irq(); } /** * Initialize alternative hardware timer as RTX kernel timer * This function is directly called by RTX. * @note this function shouldn't be called directly. * @return IRQ number of the alternative hardware timer */ int32_t osRtxSysTimerSetup(void) { common_rtc_init(); os_rtc_period = (RTC1_CONFIG_FREQUENCY) / osRtxConfig.tick_freq; return nrf_drv_get_IRQn(COMMON_RTC_INSTANCE); } // Start SysTickt timer emulation void osRtxSysTimerEnable(void) { nrf_rtc_int_enable(COMMON_RTC_INSTANCE, OS_TICK_INT_MASK); uint32_t current_cnt = nrf_rtc_counter_get(COMMON_RTC_INSTANCE); nrf_rtc_cc_set(COMMON_RTC_INSTANCE, OS_TICK_CC_CHANNEL, current_cnt); register_next_tick(); NVIC_SetVector(SWI3_IRQn, (uint32_t)SysTick_Handler); NVIC_SetPriority(SWI3_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Emulated Systick Interrupt */ NVIC_EnableIRQ(SWI3_IRQn); } // Stop SysTickt timer emulation void osRtxSysTimerDisable(void) { nrf_rtc_int_disable(COMMON_RTC_INSTANCE, OS_TICK_INT_MASK); // RTC1 is free runing. osRtxSysTimerGetCount will return proper frozen value // thanks to geting frozen value instead of RTC1 counter value frozen_sub_tick = nrf_rtc_counter_get(COMMON_RTC_INSTANCE); } /** * Acknowledge the tick interrupt. * This function is called by the function OS_Tick_Handler of RTX. * @note this function shouldn't be called directly. */ void osRtxSysTimerAckIRQ(void) { register_next_tick(); } // provide a free running incremental value over the entire 32-bit range uint32_t osRtxSysTimerGetCount(void) { uint32_t current_cnt; uint32_t sub_tick; if (nrf_rtc_int_is_enabled(COMMON_RTC_INSTANCE, OS_TICK_INT_MASK)) { // system timer is enabled current_cnt = nrf_rtc_counter_get(COMMON_RTC_INSTANCE); if (current_cnt >= previous_tick_cc_value) { //0 prev current MAX //|------|---------|------------|----> sub_tick = current_cnt - previous_tick_cc_value; } else { //0 current prev MAX //|------|---------|------------|----> sub_tick = MAX_RTC_COUNTER_VAL - previous_tick_cc_value + current_cnt; } } else { // system timer is disabled sub_tick = frozen_sub_tick; } return (os_rtc_period * osRtxInfo.kernel.tick) + sub_tick; } // Timer Tick frequency uint32_t osRtxSysTimerGetFreq (void) { return RTC1_CONFIG_FREQUENCY; } #endif // #ifdef MBED_CONF_RTOS_PRESENT #endif // defined(TARGET_MCU_NRF51822)