mbed
Fork of mbed-dev by
targets/TARGET_NUVOTON/TARGET_NANO100/spi_api.c
- Committer:
- AnnaBridge
- Date:
- 2017-10-02
- Revision:
- 175:b96e65c34a4d
- Child:
- 177:447f873cad2f
File content as of revision 175:b96e65c34a4d:
/* mbed Microcontroller Library * Copyright (c) 2015-2017 Nuvoton * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "spi_api.h" #if DEVICE_SPI #include "cmsis.h" #include "pinmap.h" #include "PeripheralPins.h" #include "nu_modutil.h" #include "nu_miscutil.h" #include "nu_bitutil.h" #if DEVICE_SPI_ASYNCH #include "dma_api.h" #include "dma.h" #endif #define NU_SPI_FRAME_MIN 8 #define NU_SPI_FRAME_MAX 32 #define NU_SPI_FIFO_DEPTH 8 struct nu_spi_var { spi_t * obj; void (*vec)(void); #if DEVICE_SPI_ASYNCH uint8_t pdma_perp_tx; uint8_t pdma_perp_rx; #endif }; // NOTE: // NANO130: No support for relocating vector table. ISR vector passed into NVIC_SetVector() can only be weak symbol defined in startup_Nano100Series.c. void SPI0_IRQHandler(void); void SPI1_IRQHandler(void); void SPI2_IRQHandler(void); static void spi_irq(spi_t *obj); static struct nu_spi_var spi0_var = { .obj = NULL, .vec = SPI0_IRQHandler, #if DEVICE_SPI_ASYNCH .pdma_perp_tx = PDMA_SPI0_TX, .pdma_perp_rx = PDMA_SPI0_RX #endif }; static struct nu_spi_var spi1_var = { .obj = NULL, .vec = SPI1_IRQHandler, #if DEVICE_SPI_ASYNCH .pdma_perp_tx = PDMA_SPI1_TX, .pdma_perp_rx = PDMA_SPI1_RX #endif }; static struct nu_spi_var spi2_var = { .obj = NULL, .vec = SPI2_IRQHandler, #if DEVICE_SPI_ASYNCH .pdma_perp_tx = PDMA_SPI2_TX, .pdma_perp_rx = PDMA_SPI2_RX #endif }; #if DEVICE_SPI_ASYNCH static void spi_enable_vector_interrupt(spi_t *obj, uint32_t handler, uint8_t enable); static void spi_master_enable_interrupt(spi_t *obj, uint8_t enable, uint32_t mask); static uint32_t spi_master_write_asynch(spi_t *obj, uint32_t tx_limit); static uint32_t spi_master_read_asynch(spi_t *obj); static uint32_t spi_event_check(spi_t *obj); static void spi_enable_event(spi_t *obj, uint32_t event, uint8_t enable); static void spi_buffer_set(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length); static void spi_check_dma_usage(DMAUsage *dma_usage, int *dma_ch_tx, int *dma_ch_rx); static uint8_t spi_get_data_width(spi_t *obj); static int spi_is_tx_complete(spi_t *obj); static int spi_is_rx_complete(spi_t *obj); static int spi_writeable(spi_t * obj); static int spi_readable(spi_t * obj); static void spi_dma_handler_tx(uint32_t id, uint32_t event_dma); static void spi_dma_handler_rx(uint32_t id, uint32_t event_dma); #endif static uint32_t spi_modinit_mask = 0; static const struct nu_modinit_s spi_modinit_tab[] = { {SPI_0, SPI0_MODULE, CLK_CLKSEL2_SPI0_S_HCLK, MODULE_NoMsk, SPI0_RST, SPI0_IRQn, &spi0_var}, {SPI_1, SPI1_MODULE, CLK_CLKSEL2_SPI1_S_HCLK, MODULE_NoMsk, SPI1_RST, SPI1_IRQn, &spi1_var}, {SPI_2, SPI2_MODULE, CLK_CLKSEL2_SPI2_S_HCLK, MODULE_NoMsk, SPI2_RST, SPI2_IRQn, &spi2_var}, {NC, 0, 0, 0, 0, (IRQn_Type) 0, NULL} }; void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) { // Determine which SPI_x the pins are used for uint32_t spi_mosi = pinmap_peripheral(mosi, PinMap_SPI_MOSI); uint32_t spi_miso = pinmap_peripheral(miso, PinMap_SPI_MISO); uint32_t spi_sclk = pinmap_peripheral(sclk, PinMap_SPI_SCLK); uint32_t spi_ssel = pinmap_peripheral(ssel, PinMap_SPI_SSEL); uint32_t spi_data = pinmap_merge(spi_mosi, spi_miso); uint32_t spi_cntl = pinmap_merge(spi_sclk, spi_ssel); // NOTE: // NANO130: Support two-port SPI MOSI/MISO 0/1 if (NU_MODBASE(spi_data) == NU_MODBASE(spi_cntl)) { // NOTE: spi_data has subindex(port) encoded but spi_cntl hasn't. obj->spi.spi = (SPIName) spi_data; } else { obj->spi.spi = (SPIName) NC; } MBED_ASSERT((int)obj->spi.spi != NC); const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT((SPIName) modinit->modname == obj->spi.spi); // Reset this module SYS_ResetModule(modinit->rsetidx); // Select IP clock source CLK_SetModuleClock(modinit->clkidx, modinit->clksrc, modinit->clkdiv); // Enable IP clock CLK_EnableModuleClock(modinit->clkidx); pinmap_pinout(mosi, PinMap_SPI_MOSI); pinmap_pinout(miso, PinMap_SPI_MISO); pinmap_pinout(sclk, PinMap_SPI_SCLK); pinmap_pinout(ssel, PinMap_SPI_SSEL); obj->spi.pin_mosi = mosi; obj->spi.pin_miso = miso; obj->spi.pin_sclk = sclk; obj->spi.pin_ssel = ssel; #if DEVICE_SPI_ASYNCH obj->spi.dma_usage = DMA_USAGE_NEVER; obj->spi.event = 0; obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS; obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS; #endif // Mark this module to be inited. int i = modinit - spi_modinit_tab; spi_modinit_mask |= 1 << i; } void spi_free(spi_t *obj) { #if DEVICE_SPI_ASYNCH if (obj->spi.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) { dma_channel_free(obj->spi.dma_chn_id_tx); obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS; } if (obj->spi.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) { dma_channel_free(obj->spi.dma_chn_id_rx); obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS; } #endif SPI_Close((SPI_T *) NU_MODBASE(obj->spi.spi)); const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT((SPIName) modinit->modname == obj->spi.spi); SPI_DisableInt(((SPI_T *) NU_MODBASE(obj->spi.spi)), (SPI_FIFO_RXOVR_INTEN_MASK | SPI_FIFO_RX_INTEN_MASK | SPI_FIFO_TX_INTEN_MASK)); NVIC_DisableIRQ(modinit->irq_n); // Disable IP clock CLK_DisableModuleClock(modinit->clkidx); // Mark this module to be deinited. int i = modinit - spi_modinit_tab; spi_modinit_mask &= ~(1 << i); } void spi_format(spi_t *obj, int bits, int mode, int slave) { MBED_ASSERT(bits >= NU_SPI_FRAME_MIN && bits <= NU_SPI_FRAME_MAX); SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); // NOTE: All configurations should be ready before enabling SPI peripheral. // NOTE: Re-configuration is allowed only as SPI peripheral is idle. // NOTE: // NANO130, SPI_CTL.GO_BUSY always reads as 1 in slave/FIFO mode. So disable FIFO first. SPI_DisableFIFO(spi_base); while (SPI_IS_BUSY(spi_base)); SPI_Open(spi_base, slave ? SPI_SLAVE : SPI_MASTER, (mode == 0) ? SPI_MODE_0 : (mode == 1) ? SPI_MODE_1 : (mode == 2) ? SPI_MODE_2 : SPI_MODE_3, bits, SPI_GetBusClock(spi_base)); // NOTE: Hardcode to be MSB first. SPI_SET_MSB_FIRST(spi_base); if (! slave) { // Master if (obj->spi.pin_ssel != NC) { // Configure SS as low active. switch (NU_MODSUBINDEX(obj->spi.spi)) { case 0: SPI_EnableAutoSS(spi_base, SPI_SS0, SPI_SS0_ACTIVE_LOW); break; case 1: SPI_EnableAutoSS(spi_base, SPI_SS1, SPI_SS1_ACTIVE_LOW); break; } } else { SPI_DisableAutoSS(spi_base); } } else { // Slave // Configure SS as low active. switch (NU_MODSUBINDEX(obj->spi.spi)) { case 0: spi_base->SSR &= ~SPI_SS0_ACTIVE_HIGH; break; case 1: spi_base->SSR &= ~SPI_SS1_ACTIVE_HIGH; break; } // NOTE: // NANO130: Configure slave select signal to edge-trigger rather than level-trigger spi_base->SSR |= SPI_SSR_SS_LTRIG_Msk; } // NOTE: // NANO130: FIFO mode defaults to disabled. SPI_EnableFIFO(spi_base, NU_SPI_FIFO_DEPTH / 2, NU_SPI_FIFO_DEPTH / 2); } void spi_frequency(spi_t *obj, int hz) { SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); // NANO130, SPI_CTL.GO_BUSY always reads as 1 in slave/FIFO mode. So disable FIFO first. SPI_DisableFIFO(spi_base); while (SPI_IS_BUSY(spi_base)); SPI_SetBusClock((SPI_T *) NU_MODBASE(obj->spi.spi), hz); // NOTE: // NANO130: FIFO mode defaults to disabled. SPI_EnableFIFO(spi_base, NU_SPI_FIFO_DEPTH / 2, NU_SPI_FIFO_DEPTH / 2); } int spi_master_write(spi_t *obj, int value) { SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); // NOTE: Data in receive FIFO can be read out via ICE. // NOTE: // NUC472/M453/M487: SPI_CTL.SPIEN is controlled by software (in FIFO mode). // NANO130: SPI_CTL.GO_BUSY is controlled by hardware in FIFO mode. // Wait for tx buffer empty while(! spi_writeable(obj)); uint32_t TX = (NU_MODSUBINDEX(obj->spi.spi) == 0) ? ((uint32_t) &spi_base->TX0) : ((uint32_t) &spi_base->TX1); M32(TX) = value; // Wait for rx buffer full while (! spi_readable(obj)); uint32_t RX = (NU_MODSUBINDEX(obj->spi.spi) == 0) ? ((uint32_t) &spi_base->RX0) : ((uint32_t) &spi_base->RX1); int value2 = M32(RX); return value2; } int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length, char *rx_buffer, int rx_length, char write_fill) { int total = (tx_length > rx_length) ? tx_length : rx_length; for (int i = 0; i < total; i++) { char out = (i < tx_length) ? tx_buffer[i] : write_fill; char in = spi_master_write(obj, out); if (i < rx_length) { rx_buffer[i] = in; } } return total; } #if DEVICE_SPISLAVE int spi_slave_receive(spi_t *obj) { // NOTE: // NUC472/M453/M487: SPI_CTL.SPIEN is controlled by software (in FIFO mode). // NANO130: SPI_CTL.GO_BUSY is controlled by hardware in FIFO mode. return spi_readable(obj); }; int spi_slave_read(spi_t *obj) { SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); // NOTE: // NUC472/M453/M487: SPI_CTL.SPIEN is controlled by software (in FIFO mode). // NANO130: SPI_CTL.GO_BUSY is controlled by hardware in FIFO mode. // Wait for rx buffer full while (! spi_readable(obj)); uint32_t RX = (NU_MODSUBINDEX(obj->spi.spi) == 0) ? ((uint32_t) &spi_base->RX0) : ((uint32_t) &spi_base->RX1); int value = M32(RX); return value; } void spi_slave_write(spi_t *obj, int value) { SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); // NOTE: // NUC472/M453/M487: SPI_CTL.SPIEN is controlled by software (in FIFO mode). // NANO130: SPI_CTL.GO_BUSY is controlled by hardware in FIFO mode. // Wait for tx buffer empty while(! spi_writeable(obj)); uint32_t TX = (NU_MODSUBINDEX(obj->spi.spi) == 0) ? ((uint32_t) &spi_base->TX0) : ((uint32_t) &spi_base->TX1); M32(TX) = value; } #endif #if DEVICE_SPI_ASYNCH void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint) { SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); SPI_SET_DATA_WIDTH(spi_base, bit_width); obj->spi.dma_usage = hint; spi_check_dma_usage(&obj->spi.dma_usage, &obj->spi.dma_chn_id_tx, &obj->spi.dma_chn_id_rx); uint32_t data_width = spi_get_data_width(obj); // Conditions to go DMA way: // (1) No DMA support for non-8 multiple data width. // (2) tx length >= rx length. Otherwise, as tx DMA is done, no bus activity for remaining rx. if ((data_width % 8) || (tx_length < rx_length)) { obj->spi.dma_usage = DMA_USAGE_NEVER; dma_channel_free(obj->spi.dma_chn_id_tx); obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS; dma_channel_free(obj->spi.dma_chn_id_rx); obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS; } // SPI IRQ is necessary for both interrupt way and DMA way spi_enable_event(obj, event, 1); spi_buffer_set(obj, tx, tx_length, rx, rx_length); // NOTE: // NUC472/M453/M487: SPI_CTL.SPIEN is controlled by software (in FIFO mode). // NANO130: SPI_CTL.GO_BUSY is controlled by hardware in FIFO mode. if (obj->spi.dma_usage == DMA_USAGE_NEVER) { // Interrupt way spi_master_write_asynch(obj, NU_SPI_FIFO_DEPTH / 2); spi_enable_vector_interrupt(obj, handler, 1); spi_master_enable_interrupt(obj, 1, SPI_FIFO_RX_INTEN_MASK | SPI_FIFO_TX_INTEN_MASK); } else { // DMA way const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT((SPIName) modinit->modname == obj->spi.spi); // Configure tx DMA dma_enable(obj->spi.dma_chn_id_tx, 1); // Enable this DMA channel PDMA_SetTransferMode(obj->spi.dma_chn_id_tx, ((struct nu_spi_var *) modinit->var)->pdma_perp_tx, // Peripheral connected to this PDMA 0, // Scatter-gather disabled 0); // Scatter-gather descriptor address PDMA_SetTransferCnt(obj->spi.dma_chn_id_tx, (data_width == 8) ? PDMA_WIDTH_8 : (data_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32, tx_length); PDMA_SetTransferAddr(obj->spi.dma_chn_id_tx, (uint32_t) tx, // NOTE: // NUC472: End of source address // M451: Start of source address // NANO130: Start of destination address PDMA_SAR_INC, // Source address incremental NU_MODSUBINDEX(obj->spi.spi) == 0 ? (uint32_t) &spi_base->TX0 : (uint32_t) &spi_base->TX1, // Destination address PDMA_DAR_FIX); // Destination address fixed PDMA_EnableInt(obj->spi.dma_chn_id_tx, PDMA_IER_TD_IE_Msk); // Interrupt type // Register DMA event handler dma_set_handler(obj->spi.dma_chn_id_tx, (uint32_t) spi_dma_handler_tx, (uint32_t) obj, DMA_EVENT_ALL); // Configure rx DMA dma_enable(obj->spi.dma_chn_id_rx, 1); // Enable this DMA channel PDMA_SetTransferMode(obj->spi.dma_chn_id_rx, ((struct nu_spi_var *) modinit->var)->pdma_perp_rx, // Peripheral connected to this PDMA 0, // Scatter-gather disabled 0); // Scatter-gather descriptor address PDMA_SetTransferCnt(obj->spi.dma_chn_id_rx, (data_width == 8) ? PDMA_WIDTH_8 : (data_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32, rx_length); PDMA_SetTransferAddr(obj->spi.dma_chn_id_rx, NU_MODSUBINDEX(obj->spi.spi) == 0 ? (uint32_t) &spi_base->RX0 : (uint32_t) &spi_base->RX1, // Source address PDMA_SAR_FIX, // Source address fixed (uint32_t) rx, // NOTE: // NUC472: End of destination address // M451: Start of destination address // NANO130: Start of destination address PDMA_DAR_INC); // Destination address incremental PDMA_EnableInt(obj->spi.dma_chn_id_rx, PDMA_IER_TD_IE_Msk); // Interrupt type // Register DMA event handler dma_set_handler(obj->spi.dma_chn_id_rx, (uint32_t) spi_dma_handler_rx, (uint32_t) obj, DMA_EVENT_ALL); // Start tx/rx DMA transfer spi_enable_vector_interrupt(obj, handler, 1); // No TX/RX FIFO threshold interrupt spi_master_enable_interrupt(obj, 0, SPI_FIFO_RX_INTEN_MASK | SPI_FIFO_TX_INTEN_MASK); // NOTE: It is safer to start rx DMA first and then tx DMA. Otherwise, receive FIFO is subject to overflow by tx DMA. SPI_TRIGGER_RX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi))); SPI_TRIGGER_TX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi))); PDMA_Trigger(obj->spi.dma_chn_id_rx); PDMA_Trigger(obj->spi.dma_chn_id_tx); } } /** * Abort an SPI transfer * This is a helper function for event handling. When any of the events listed occurs, the HAL will abort any ongoing * transfers * @param[in] obj The SPI peripheral to stop */ void spi_abort_asynch(spi_t *obj) { SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); if (obj->spi.dma_usage != DMA_USAGE_NEVER) { // Receive FIFO Overrun in case of tx length > rx length on DMA way if (spi_base->STATUS & SPI_STATUS_RX_OVER_RUN_Msk) { spi_base->STATUS = SPI_STATUS_RX_OVER_RUN_Msk; } if (obj->spi.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) { PDMA_DisableInt(obj->spi.dma_chn_id_tx, PDMA_IER_TD_IE_Msk); // NOTE: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. dma_enable(obj->spi.dma_chn_id_tx, 0); } //SPI_DISABLE_TX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi))); spi_base->DMA &= ~SPI_DMA_TX_DMA_EN_Msk; if (obj->spi.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) { PDMA_DisableInt(obj->spi.dma_chn_id_rx, PDMA_IER_TD_IE_Msk); // NOTE: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. dma_enable(obj->spi.dma_chn_id_rx, 0); } //SPI_DISABLE_RX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi))); spi_base->DMA &= ~SPI_DMA_RX_DMA_EN_Msk; } // Necessary for both interrupt way and DMA way spi_enable_vector_interrupt(obj, 0, 0); spi_master_enable_interrupt(obj, 0, SPI_FIFO_RX_INTEN_MASK | SPI_FIFO_TX_INTEN_MASK); // NOTE: SPI H/W may get out of state without the busy check. while (SPI_IS_BUSY(spi_base)); SPI_ClearRxFIFO(spi_base); SPI_ClearTxFIFO(spi_base); } /** * Handle the SPI interrupt * Read frames until the RX FIFO is empty. Write at most as many frames as were read. This way, * it is unlikely that the RX FIFO will overflow. * @param[in] obj The SPI peripheral that generated the interrupt * @return */ uint32_t spi_irq_handler_asynch(spi_t *obj) { // Check for SPI events uint32_t event = spi_event_check(obj); if (event) { spi_abort_asynch(obj); } return (obj->spi.event & event) | ((event & SPI_EVENT_COMPLETE) ? SPI_EVENT_INTERNAL_TRANSFER_COMPLETE : 0); } uint8_t spi_active(spi_t *obj) { SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); return SPI_IS_BUSY(spi_base); } int spi_allow_powerdown(void) { uint32_t modinit_mask = spi_modinit_mask; while (modinit_mask) { int spi_idx = nu_ctz(modinit_mask); const struct nu_modinit_s *modinit = spi_modinit_tab + spi_idx; if (modinit->modname != NC) { SPI_T *spi_base = (SPI_T *) NU_MODBASE(modinit->modname); if (SPI_IS_BUSY(spi_base)) { return 0; } } modinit_mask &= ~(1 << spi_idx); } return 1; } void SPI0_IRQHandler(void) { spi_irq(spi0_var.obj); } void SPI1_IRQHandler(void) { spi_irq(spi1_var.obj); } void SPI2_IRQHandler(void) { spi_irq(spi2_var.obj); } static void spi_irq(spi_t *obj) { if (obj && obj->spi.hdlr_async) { void (*hdlr_async)(void) = (void(*)(void))(obj->spi.hdlr_async); hdlr_async(); } } static int spi_writeable(spi_t * obj) { // Receive FIFO must not be full to avoid receive FIFO overflow on next transmit/receive return (! SPI_GET_TX_FIFO_FULL_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi)))); } static int spi_readable(spi_t * obj) { return ! SPI_GET_RX_FIFO_EMPTY_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi))); } static void spi_enable_event(spi_t *obj, uint32_t event, uint8_t enable) { obj->spi.event &= ~SPI_EVENT_ALL; obj->spi.event |= (event & SPI_EVENT_ALL); if (event & SPI_EVENT_RX_OVERFLOW) { SPI_EnableInt((SPI_T *) NU_MODBASE(obj->spi.spi), SPI_FIFO_RXOVR_INTEN_MASK); } } static void spi_enable_vector_interrupt(spi_t *obj, uint32_t handler, uint8_t enable) { const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT((SPIName) modinit->modname == obj->spi.spi); struct nu_spi_var *var = (struct nu_spi_var *) modinit->var; if (enable) { var->obj = obj; obj->spi.hdlr_async = handler; NVIC_SetVector(modinit->irq_n, (uint32_t) var->vec); NVIC_EnableIRQ(modinit->irq_n); } else { NVIC_DisableIRQ(modinit->irq_n); var->obj = NULL; obj->spi.hdlr_async = handler; } } static void spi_master_enable_interrupt(spi_t *obj, uint8_t enable, uint32_t mask) { SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); // NOTE: // NANO130: SPI_IE_MASK/SPI_STATUS_INTSTS_Msk are for unit transfer IE/EF. Don't get confused. if (enable) { // Enable tx/rx FIFO threshold interrupt SPI_EnableInt(spi_base, mask); } else { SPI_DisableInt(spi_base, mask); } } static uint32_t spi_event_check(spi_t *obj) { SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); uint32_t event = 0; if (obj->spi.dma_usage == DMA_USAGE_NEVER) { uint32_t n_rec = spi_master_read_asynch(obj); spi_master_write_asynch(obj, n_rec); } if (spi_is_tx_complete(obj) && spi_is_rx_complete(obj)) { event |= SPI_EVENT_COMPLETE; } // Receive FIFO Overrun if (spi_base->STATUS & SPI_STATUS_RX_OVER_RUN_Msk) { spi_base->STATUS = SPI_STATUS_RX_OVER_RUN_Msk; // In case of tx length > rx length on DMA way if (obj->spi.dma_usage == DMA_USAGE_NEVER) { event |= SPI_EVENT_RX_OVERFLOW; } } // Receive Time-Out if (spi_base->STATUS & SPI_STATUS_TIME_OUT_STS_Msk) { spi_base->STATUS = SPI_STATUS_TIME_OUT_STS_Msk; } return event; } /** * Send words from the SPI TX buffer until the send limit is reached or the TX FIFO is full * tx_limit is provided to ensure that the number of SPI frames (words) in flight can be managed. * @param[in] obj The SPI object on which to operate * @param[in] tx_limit The maximum number of words to send * @return The number of SPI words that have been transfered */ static uint32_t spi_master_write_asynch(spi_t *obj, uint32_t tx_limit) { uint32_t n_words = 0; uint32_t tx_rmn = obj->tx_buff.length - obj->tx_buff.pos; uint32_t rx_rmn = obj->rx_buff.length - obj->rx_buff.pos; uint32_t max_tx = NU_MAX(tx_rmn, rx_rmn); max_tx = NU_MIN(max_tx, tx_limit); uint8_t data_width = spi_get_data_width(obj); uint8_t bytes_per_word = (data_width + 7) / 8; uint8_t *tx = (uint8_t *)(obj->tx_buff.buffer) + bytes_per_word * obj->tx_buff.pos; SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); uint32_t TX = (NU_MODSUBINDEX(obj->spi.spi) == 0) ? ((uint32_t) &spi_base->TX0) : ((uint32_t) &spi_base->TX1); while ((n_words < max_tx) && spi_writeable(obj)) { if (spi_is_tx_complete(obj)) { // Transmit dummy as transmit buffer is empty M32(TX) = 0; } else { switch (bytes_per_word) { case 4: M32(TX) = nu_get32_le(tx); tx += 4; break; case 2: M32(TX) = nu_get16_le(tx); tx += 2; break; case 1: M32(TX) = *((uint8_t *) tx); tx += 1; break; } obj->tx_buff.pos ++; } n_words ++; } //Return the number of words that have been sent return n_words; } /** * Read SPI words out of the RX FIFO * Continues reading words out of the RX FIFO until the following condition is met: * o There are no more words in the FIFO * OR BOTH OF: * o At least as many words as the TX buffer have been received * o At least as many words as the RX buffer have been received * This way, RX overflows are not generated when the TX buffer size exceeds the RX buffer size * @param[in] obj The SPI object on which to operate * @return Returns the number of words extracted from the RX FIFO */ static uint32_t spi_master_read_asynch(spi_t *obj) { uint32_t n_words = 0; uint32_t tx_rmn = obj->tx_buff.length - obj->tx_buff.pos; uint32_t rx_rmn = obj->rx_buff.length - obj->rx_buff.pos; uint32_t max_rx = NU_MAX(tx_rmn, rx_rmn); uint8_t data_width = spi_get_data_width(obj); uint8_t bytes_per_word = (data_width + 7) / 8; uint8_t *rx = (uint8_t *)(obj->rx_buff.buffer) + bytes_per_word * obj->rx_buff.pos; SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); uint32_t RX = (NU_MODSUBINDEX(obj->spi.spi) == 0) ? ((uint32_t) &spi_base->RX0) : ((uint32_t) &spi_base->RX1); while ((n_words < max_rx) && spi_readable(obj)) { if (spi_is_rx_complete(obj)) { // Disregard as receive buffer is full M32(RX); } else { switch (bytes_per_word) { case 4: { uint32_t val = M32(RX); nu_set32_le(rx, val); rx += 4; break; } case 2: { uint16_t val = M32(RX); nu_set16_le(rx, val); rx += 2; break; } case 1: *rx ++ = M32(RX); break; } obj->rx_buff.pos ++; } n_words ++; } // Return the number of words received return n_words; } static void spi_buffer_set(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length) { obj->tx_buff.buffer = (void *) tx; obj->tx_buff.length = tx_length; obj->tx_buff.pos = 0; obj->tx_buff.width = spi_get_data_width(obj); obj->rx_buff.buffer = rx; obj->rx_buff.length = rx_length; obj->rx_buff.pos = 0; obj->rx_buff.width = spi_get_data_width(obj); } static void spi_check_dma_usage(DMAUsage *dma_usage, int *dma_ch_tx, int *dma_ch_rx) { if (*dma_usage != DMA_USAGE_NEVER) { if (*dma_ch_tx == DMA_ERROR_OUT_OF_CHANNELS) { *dma_ch_tx = dma_channel_allocate(DMA_CAP_NONE); } if (*dma_ch_rx == DMA_ERROR_OUT_OF_CHANNELS) { *dma_ch_rx = dma_channel_allocate(DMA_CAP_NONE); } if (*dma_ch_tx == DMA_ERROR_OUT_OF_CHANNELS || *dma_ch_rx == DMA_ERROR_OUT_OF_CHANNELS) { *dma_usage = DMA_USAGE_NEVER; } } if (*dma_usage == DMA_USAGE_NEVER) { dma_channel_free(*dma_ch_tx); *dma_ch_tx = DMA_ERROR_OUT_OF_CHANNELS; dma_channel_free(*dma_ch_rx); *dma_ch_rx = DMA_ERROR_OUT_OF_CHANNELS; } } static uint8_t spi_get_data_width(spi_t *obj) { SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); uint32_t data_width = ((spi_base->CTL & SPI_CTL_TX_BIT_LEN_Msk) >> SPI_CTL_TX_BIT_LEN_Pos); if (data_width == 0) { data_width = 32; } return data_width; } static int spi_is_tx_complete(spi_t *obj) { return (obj->tx_buff.pos == obj->tx_buff.length); } static int spi_is_rx_complete(spi_t *obj) { return (obj->rx_buff.pos == obj->rx_buff.length); } static void spi_dma_handler_tx(uint32_t id, uint32_t event_dma) { spi_t *obj = (spi_t *) id; // TODO: Pass this error to caller if (event_dma & DMA_EVENT_ABORT) { } // Expect SPI IRQ will catch this transfer done event if (event_dma & DMA_EVENT_TRANSFER_DONE) { obj->tx_buff.pos = obj->tx_buff.length; } // TODO: Pass this error to caller if (event_dma & DMA_EVENT_TIMEOUT) { } const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT((SPIName) modinit->modname == obj->spi.spi); void (*vec)(void) = (void (*)(void)) NVIC_GetVector(modinit->irq_n); vec(); } static void spi_dma_handler_rx(uint32_t id, uint32_t event_dma) { spi_t *obj = (spi_t *) id; // TODO: Pass this error to caller if (event_dma & DMA_EVENT_ABORT) { } // Expect SPI IRQ will catch this transfer done event if (event_dma & DMA_EVENT_TRANSFER_DONE) { obj->rx_buff.pos = obj->rx_buff.length; } // TODO: Pass this error to caller if (event_dma & DMA_EVENT_TIMEOUT) { } const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); MBED_ASSERT(modinit != NULL); MBED_ASSERT((SPIName) modinit->modname == obj->spi.spi); void (*vec)(void) = (void (*)(void)) NVIC_GetVector(modinit->irq_n); vec(); } #endif #endif