Simple USBHost library for STM32F746NG Discovery board. Only either the Fastspeed or the Highspeed port can be used( not both together)
Dependents: DISCO-F746NG_USB_Host
Fork of KL46Z-USBHost by
USBHost/USBHost.cpp
- Committer:
- va009039
- Date:
- 2014-06-23
- Revision:
- 16:981c3104f6c0
- Parent:
- 12:b91fdea8c0a7
- Child:
- 18:61554f238584
File content as of revision 16:981c3104f6c0:
#include "USBHost.h" USBHost* USBHost::inst = NULL; USBHost* USBHost::getHostInst() { if (inst == NULL) { inst = new USBHost(); inst->init(); } return inst; } void USBHost::poll() { if (inst) { inst->task(); } } USBHost::USBHost() { } /* virtual */ bool USBHost::addDevice(USBDeviceConnected* parent, int port, bool lowSpeed) { USBDeviceConnected* dev = new USBDeviceConnected; USBEndpoint* ep = new USBEndpoint(dev); dev->init(0, port, lowSpeed); dev->setAddress(0); dev->setEpCtl(ep); uint8_t desc[18]; wait_ms(100); int rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 1<<8, 0, desc, 8); USB_TEST_ASSERT(rc == USB_TYPE_OK); if (rc != USB_TYPE_OK) { USB_ERR("ADD DEVICE FAILD"); } USB_DBG_HEX(desc, 8); DeviceDescriptor* dev_desc = reinterpret_cast<DeviceDescriptor*>(desc); ep->setSize(dev_desc->bMaxPacketSize); int new_addr = USBDeviceConnected::getNewAddress(); rc = controlWrite(dev, 0x00, SET_ADDRESS, new_addr, 0, NULL, 0); USB_TEST_ASSERT(rc == USB_TYPE_OK); dev->setAddress(new_addr); wait_ms(100); rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 1<<8, 0, desc, sizeof(desc)); USB_TEST_ASSERT(rc == USB_TYPE_OK); USB_DBG_HEX(desc, sizeof(desc)); dev->setVid(dev_desc->idVendor); dev->setPid(dev_desc->idProduct); dev->setClass(dev_desc->bDeviceClass); USB_INFO("parent:%p port:%d speed:%s VID:%04x PID:%04x class:%02x addr:%d", parent, port, (lowSpeed ? "low " : "full"), dev->getVid(), dev->getPid(), dev->getClass(), dev->getAddress()); DeviceLists.push_back(dev); if (dev->getClass() == HUB_CLASS) { const int config = 1; int rc = controlWrite(dev, 0x00, SET_CONFIGURATION, config, 0, NULL, 0); USB_TEST_ASSERT(rc == USB_TYPE_OK); wait_ms(100); Hub(dev); } return true; } // enumerate a device with the control USBEndpoint USB_TYPE USBHost::enumerate(USBDeviceConnected * dev, IUSBEnumerator* pEnumerator) { if (dev->getClass() == HUB_CLASS) { // skip hub class return USB_TYPE_OK; } uint8_t desc[18]; USB_TYPE rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 1<<8, 0, desc, sizeof(desc)); USB_TEST_ASSERT(rc == USB_TYPE_OK); USB_DBG_HEX(desc, sizeof(desc)); if (rc != USB_TYPE_OK) { return rc; } DeviceDescriptor* dev_desc = reinterpret_cast<DeviceDescriptor*>(desc); dev->setClass(dev_desc->bDeviceClass); pEnumerator->setVidPid(dev->getVid(), dev->getPid()); rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 2<<8, 0, desc, 4); USB_TEST_ASSERT(rc == USB_TYPE_OK); USB_DBG_HEX(desc, 4); int TotalLength = desc[2]|desc[3]<<8; uint8_t* buf = new uint8_t[TotalLength]; rc = controlRead(dev, 0x80, GET_DESCRIPTOR, 2<<8, 0, buf, TotalLength); USB_TEST_ASSERT(rc == USB_TYPE_OK); //USB_DBG_HEX(buf, TotalLength); // Parse the configuration descriptor parseConfDescr(dev, buf, TotalLength, pEnumerator); delete[] buf; // only set configuration if not enumerated before if (!dev->isEnumerated()) { USB_DBG("Set configuration 1 on dev: %p", dev); // sixth step: set configuration (only 1 supported) int config = 1; USB_TYPE res = controlWrite(dev, 0x00, SET_CONFIGURATION, config, 0, NULL, 0); if (res != USB_TYPE_OK) { USB_ERR("SET CONF FAILED"); return res; } // Some devices may require this delay wait_ms(100); dev->setEnumerated(); // Now the device is enumerated! USB_DBG("dev %p is enumerated", dev); } return USB_TYPE_OK; } // this method fills the USBDeviceConnected object: class,.... . It also add endpoints found in the descriptor. void USBHost::parseConfDescr(USBDeviceConnected * dev, uint8_t * conf_descr, uint32_t len, IUSBEnumerator* pEnumerator) { uint32_t index = 0; uint32_t len_desc = 0; uint8_t id = 0; USBEndpoint * ep = NULL; uint8_t intf_nb = 0; bool parsing_intf = false; uint8_t current_intf = 0; EndpointDescriptor* ep_desc; while (index < len) { len_desc = conf_descr[index]; id = conf_descr[index+1]; USB_DBG_HEX(conf_descr+index, len_desc); switch (id) { case CONFIGURATION_DESCRIPTOR: USB_DBG("dev: %p has %d intf", dev, conf_descr[4]); dev->setNbIntf(conf_descr[4]); break; case INTERFACE_DESCRIPTOR: if(pEnumerator->parseInterface(conf_descr[index + 2], conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7])) { intf_nb++; current_intf = conf_descr[index + 2]; dev->addInterface(current_intf, conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7]); USB_DBG("ADD INTF %d on device %p: class: %d, subclass: %d, proto: %d", current_intf, dev, conf_descr[index + 5],conf_descr[index + 6],conf_descr[index + 7]); parsing_intf = true; } else { parsing_intf = false; } break; case ENDPOINT_DESCRIPTOR: ep_desc = reinterpret_cast<EndpointDescriptor*>(conf_descr+index); if (parsing_intf && (intf_nb <= MAX_INTF) ) { ENDPOINT_TYPE type = (ENDPOINT_TYPE)(ep_desc->bmAttributes & 0x03); ENDPOINT_DIRECTION dir = (ep_desc->bEndpointAddress & 0x80) ? IN : OUT; if(pEnumerator->useEndpoint(current_intf, type, dir)) { ep = new USBEndpoint(dev); ep->init(type, dir, ep_desc->wMaxPacketSize, ep_desc->bEndpointAddress); USB_DBG("ADD USBEndpoint %p, on interf %d on device %p", ep, current_intf, dev); dev->addEndpoint(current_intf, ep); } } break; case HID_DESCRIPTOR: //lenReportDescr = conf_descr[index + 7] | (conf_descr[index + 8] << 8); break; default: break; } index += len_desc; } } USB_TYPE USBHost::controlRead(USBDeviceConnected* dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) { SETUP_PACKET setup = {requestType, request, value, index}; int result = ControlRead(dev, &setup, buf, len); //USB_DBG2("result=%d %02x", result, LastStatus); return (result >= 0) ? USB_TYPE_OK : USB_TYPE_ERROR; } USB_TYPE USBHost::controlWrite(USBDeviceConnected* dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) { SETUP_PACKET setup = {requestType, request, value, index}; int result = ControlWrite(dev, &setup, buf, len); if (result >= 0) { return USB_TYPE_OK; } USB_DBG("result=%d %02x", result, LastStatus); USB_DBG_HEX(buf, len); return USB_TYPE_ERROR; } USB_TYPE USBHost::bulkRead(USBDeviceConnected* dev, USBEndpoint* ep, uint8_t* buf, uint32_t len, bool blocking) { if (blocking == false) { ep->setBuffer(buf, len); ep_queue.push(ep); return USB_TYPE_PROCESSING; } int result = bulkReadBLOCK(ep, buf, len, -1); if (result >= 0) { return USB_TYPE_OK; } //USB_DBG2("result=%d %02x", result, host->LastStatus); return USB_TYPE_ERROR; } USB_TYPE USBHost::bulkWrite(USBDeviceConnected* dev, USBEndpoint* ep, uint8_t* buf, uint32_t len, bool blocking) { USB_TEST_ASSERT(blocking); int result = bulkWriteNB(ep, buf, len); if (result >= 0) { return USB_TYPE_OK; } USB_DBG2("result=%d %02x", result, LastStatus); return USB_TYPE_ERROR; } USB_TYPE USBHost::interruptRead(USBDeviceConnected* dev, USBEndpoint* ep, uint8_t* buf, uint32_t len, bool blocking) { if (blocking == false) { ep->setBuffer(buf, len); ep_queue.push(ep); return USB_TYPE_PROCESSING; } interruptReadNB(ep, buf, len); return USB_TYPE_OK; } USB_TYPE USBHost::interruptWrite(USBDeviceConnected* dev, USBEndpoint* ep, uint8_t* buf, uint32_t len, bool blocking) { USB_TEST_ASSERT(blocking); interruptWriteNB(ep, buf, len); return USB_TYPE_OK; } USB_TYPE USBHost::isochronousRead(USBDeviceConnected* dev, USBEndpoint* ep, uint8_t* buf, uint32_t len, bool blocking) { if (blocking == false) { ep->setBuffer(buf, len); ep_queue.push(ep); return USB_TYPE_PROCESSING; } isochronousReadNB(ep, buf, len); return USB_TYPE_OK; } int USBHost::ControlRead(USBDeviceConnected* dev, SETUP_PACKET* setup, uint8_t* data, int size) { USB_TEST_ASSERT(dev); USBEndpoint* ep = dev->getEpCtl(); USB_TEST_ASSERT(ep); setAddr(dev->getAddress(), dev->getSpeed()); token_setup(ep, setup, size); // setup stage if (LastStatus != ACK) { USB_DBG("setup %02x", LastStatus); return -1; } int read_len = multi_token_in(ep, data, size); if (read_len < 0) { return -1; } ep->setData01(DATA1); int result = multi_token_out(ep); // status stage if (result < 0) { USB_DBG("status token_out %02x", LastStatus); if (LastStatus == STALL) { ep->setLengthTransferred(read_len); return read_len; } return result; } ep->setLengthTransferred(read_len); return read_len; } int USBHost::ControlWrite(USBDeviceConnected* dev, SETUP_PACKET* setup, uint8_t* data, int size) { USB_TEST_ASSERT(dev); USBEndpoint* ep = dev->getEpCtl(); USB_TEST_ASSERT(ep); setAddr(dev->getAddress(), dev->getSpeed()); token_setup(ep, setup, size); // setup stage if (LastStatus != ACK) { USB_DBG("setup %02x", LastStatus); return -1; } int write_len = 0; if (data != NULL) { write_len = multi_token_out(ep, data, size); if (write_len < 0) { return -1; } } ep->setData01(DATA1); int result = multi_token_in(ep); // status stage if (result < 0) { USB_DBG("result=%d %02x", result, LastStatus); //return result; } ep->setLengthTransferred(write_len); return write_len; } int USBHost::interruptReadNB(USBEndpoint* ep, uint8_t* data, int size) { USB_TEST_ASSERT(ep); USBDeviceConnected* dev = ep->getDevice(); USB_TEST_ASSERT(dev); setAddr(dev->getAddress(), dev->getSpeed()); setEndpoint(); const bool block = false; int read_len = multi_token_in(ep, data, size, block); if (read_len < 0) { return -1; } ep->setLengthTransferred(read_len); return read_len; } int USBHost::interruptWriteNB(USBEndpoint* ep, const uint8_t* data, int size) { USB_TEST_ASSERT(ep); USBDeviceConnected* dev = ep->getDevice(); USB_TEST_ASSERT(dev); setAddr(dev->getAddress(), dev->getSpeed()); setEndpoint(); const bool block = true; int transferred_len = multi_token_out(ep, data, size, block); if (transferred_len < 0) { return -1; } ep->setLengthTransferred(transferred_len); return transferred_len; } int USBHost::bulkReadNB(USBEndpoint* ep, uint8_t* data, int size) { return bulkReadBLOCK(ep, data, size, 0); } int USBHost::bulkReadBLOCK(USBEndpoint* ep, uint8_t* data, int size, int timeout_ms) { USB_TEST_ASSERT(ep); USBDeviceConnected* dev = ep->getDevice(); USB_TEST_ASSERT(dev); setAddr(dev->getAddress()); setEndpoint(); bool block = (timeout_ms != 0); int read_len = multi_token_in(ep, data, size, block); if (read_len < 0) { return -1; } ep->setLengthTransferred(read_len); return read_len; } int USBHost::bulkWriteNB(USBEndpoint* ep, const uint8_t* data, int size) { USB_TEST_ASSERT(ep); USBDeviceConnected* dev = ep->getDevice(); USB_TEST_ASSERT(dev); setAddr(dev->getAddress()); setEndpoint(); int write_len = multi_token_out(ep, data, size); if (write_len < 0) { return -1; } ep->setLengthTransferred(write_len); return write_len; } int USBHost::isochronousReadNB(USBEndpoint* ep, uint8_t* data, int size) { USBDeviceConnected* dev = ep->getDevice(); USB_TEST_ASSERT(dev); setAddr(dev->getAddress()); int result = token_iso_in(ep, data, size); if (result >= 0) { ep->setLengthTransferred(result); } return result; } void USBHost::task() { if (ep_queue.empty()) { return; } USBEndpoint* ep = ep_queue.pop(); USB_TEST_ASSERT(ep); ep->setLengthTransferred(0); switch(ep->getType()) { case INTERRUPT_ENDPOINT: if (ep->getDir() == IN) { interruptReadNB(ep, ep->getBufStart(), ep->getBufSize()); } break; case BULK_ENDPOINT: if (ep->getDir() == IN) { bulkReadNB(ep, ep->getBufStart(), ep->getBufSize()); } break; case ISOCHRONOUS_ENDPOINT: if (ep->getDir() == IN) { isochronousReadNB(ep, ep->getBufStart(), ep->getBufSize()); } break; } ep->call(); }