mbed library sources. With a patch for the can_api
Fork of mbed-dev by
targets/TARGET_WIZNET/TARGET_W7500x/spi_api.c
- Committer:
- DangerousElectrician
- Date:
- 2016-11-14
- Revision:
- 151:91825d030f9b
- Parent:
- 149:156823d33999
File content as of revision 151:91825d030f9b:
/* mbed Microcontroller Library ******************************************************************************* * Copyright (c) 2015 WIZnet Co.,Ltd. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of ARM Limited nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************* */ #include "mbed_assert.h" #include <math.h> #include "spi_api.h" #include "cmsis.h" #include "pinmap.h" #include "mbed_error.h" #include "PeripheralPins.h" static inline int ssp_disable(spi_t *obj); static inline int ssp_enable(spi_t *obj); void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) { // determine the SPI to use SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI); SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO); SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK); SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL); SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso); SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel); obj->spi = (SSP_TypeDef*)pinmap_merge(spi_data, spi_cntl); MBED_ASSERT((int)obj->spi != NC); // enable power and clocking switch ((int)obj->spi) { case SPI_0: CRG->SSPCLK_SSR = CRG_SSPCLK_SSR_MCLK; break; //PLL output clock case SPI_1: CRG->SSPCLK_SSR = CRG_SSPCLK_SSR_MCLK; break; } // set default format and frequency if (ssel == NC) { spi_format(obj, 8, 0, 0); // 8 bits, mode 0, master } else { spi_format(obj, 8, 0, 1); // 8 bits, mode 0, slave } spi_frequency(obj, 1000000); // enable the ssp channel ssp_enable(obj); // pin out the spi pins pinmap_pinout(mosi, PinMap_SPI_MOSI); pinmap_pinout(miso, PinMap_SPI_MISO); pinmap_pinout(sclk, PinMap_SPI_SCLK); if (ssel != NC) { pinmap_pinout(ssel, PinMap_SPI_SSEL); } } void spi_free(spi_t *obj) {} void spi_format(spi_t *obj, int bits, int mode, int slave) { ssp_disable(obj); MBED_ASSERT(((bits >= 4) && (bits <= 16)) && (mode >= 0 && mode <= 3)); int polarity = (mode & 0x2) ? 1 : 0; int phase = (mode & 0x1) ? 1 : 0; // set it up int DSS = bits - 1; // DSS (data select size) int SPO = (polarity) ? 1 : 0; // SPO - clock out polarity int SPH = (phase) ? 1 : 0; // SPH - clock out phase int FRF = 0; // FRF (frame format) = SPI uint32_t tmp = obj->spi->CR0; tmp &= ~(0xFFFF); tmp |= DSS << 0 | FRF << 4 | SPO << 6 | SPH << 7; obj->spi->CR0 = tmp; tmp = obj->spi->CR1; tmp &= ~(0xD); tmp |= 0 << 0 // LBM - loop back mode - off | ((slave) ? 1 : 0) << 2 // MS - master slave mode, 1 = slave | 0 << 3; // SOD - slave output disable - na obj->spi->CR1 = tmp; ssp_enable(obj); } void spi_frequency(spi_t *obj, int hz) { ssp_disable(obj); // setup the spi clock diveder to /1 switch ((int)obj->spi) { case SPI_0: CRG->SSPCLK_PVSR = CRG_SSPCLK_PVSR_DIV1; //1/1 (bypass) break; case SPI_1: CRG->SSPCLK_PVSR = CRG_SSPCLK_PVSR_DIV1; //1/1 (bypass) break; } uint32_t HCLK = SystemCoreClock; int prescaler; for (prescaler = 2; prescaler <= 254; prescaler += 2) { int prescale_hz = HCLK / prescaler; // calculate the divider int divider = floor(((float)prescale_hz / (float)hz) + 0.5f); // check we can support the divider if (divider < 256) { // prescaler obj->spi->CPSR = prescaler; // divider obj->spi->CR0 &= ~(0xFFFF << 8); obj->spi->CR0 |= (divider - 1) << 8; ssp_enable(obj); return; } } error("Couldn't setup requested SPI frequency"); } static inline int ssp_disable(spi_t *obj) { return obj->spi->CR1 &= ~(1 << 1); } static inline int ssp_enable(spi_t *obj) { return obj->spi->CR1 |= (1 << 1); } static inline int ssp_readable(spi_t *obj) { return obj->spi->SR & (1 << 2); } static inline int ssp_writeable(spi_t *obj) { return obj->spi->SR & (1 << 1); } static inline void ssp_write(spi_t *obj, int value) { while (!ssp_writeable(obj)); obj->spi->DR = value; } static inline int ssp_read(spi_t *obj) { while (!ssp_readable(obj)); return obj->spi->DR; } static inline int ssp_busy(spi_t *obj) { return (obj->spi->SR & (1 << 4)) ? (1) : (0); } int spi_master_write(spi_t *obj, int value) { ssp_write(obj, value); return ssp_read(obj); } int spi_slave_receive(spi_t *obj) { return (ssp_readable(obj) && !ssp_busy(obj)) ? (1) : (0); } int spi_slave_read(spi_t *obj) { return obj->spi->DR; } void spi_slave_write(spi_t *obj, int value) { while (ssp_writeable(obj) == 0) ; obj->spi->DR = value; } int spi_busy(spi_t *obj) { return ssp_busy(obj); }