SmartWheels self-driving race car. Designed for NXP Cup. Uses FRDM-KL25Z, area-scan camera, and simple image processing to detect and navigate any NXP spec track.
Dependencies: TSI USBDevice mbed-dev
Fork of SmartWheels by
Hardwares/ArduCAM.cpp
- Committer:
- hazheng
- Date:
- 2017-04-20
- Revision:
- 98:fc92bb37ee17
- Parent:
- 96:ec89c4d1383d
- Child:
- 99:c6665262fd3d
File content as of revision 98:fc92bb37ee17:
#include "ArduCAM.h" //#define SW_DEBUG #include "GlobalVariable.h" #include "SWCommon.h" #include "CamRegBuf.h" #include "ArduUTFT.h" #include <math.h> #define CAM_BLK_CAL_ACTIVE //#define CAM_DISP_DEBUG //#define CAM_DISP_DEBUG_CENTER //#define CAM_DISP_IMG #define IMG_PROC_SIGNAL 0xBB #ifdef __cplusplus extern "C" { #endif const static uint8_t CAM_BLK_CAL_LEFT = ((RESOLUTION_WIDTH / 2) - 1); const static uint8_t CAM_BLK_CAL_RIGHT = ((RESOLUTION_WIDTH / 2) + 1); const static uint8_t TERMINATE_WIDTH = static_cast<uint8_t>(RESOLUTION_WIDTH * 0.28f); static DigitalOut cam_cs(PIN_ACC_CS, 1); static uint8_t temp_mid_pos = RESOLUTION_WIDTH / 2; static uint8_t black_calibrate = 70; static volatile uint8_t centerLine[CAM_ROI_UPPER_LIMIT * 2]; static volatile uint8_t is_encounter_terminate = 0; //static volatile uint8_t is_border_find = BOTH_NOT_FOUND; static volatile uint8_t is_intersection_detected = 0; void cal_black_calibrate(); inline void ardu_cam_spi_write_8(int address, int value) { // take the SS pin low to select the chip: #ifdef SW_DEBUG g_sw_spi_lock.lock(); #endif cam_cs = 0; // send in the address and value via SPI: g_spi_port.write(address | 0x80); g_spi_port.write(value); // take the SS pin high to de-select the chip: cam_cs = 1; #ifdef SW_DEBUG g_sw_spi_lock.unlock(); #endif } inline uint8_t ardu_cam_spi_read_8(int address) { // take the SS pin low to select the chip: #ifdef SW_DEBUG g_sw_spi_lock.lock(); #endif cam_cs = 0; // send in the address and value via SPI: g_spi_port.write(address & 0x7F); uint8_t value = static_cast<uint8_t>(g_spi_port.write(0x00)); // take the SS pin high to de-select the chip: cam_cs = 1; #ifdef SW_DEBUG g_sw_spi_lock.unlock(); #endif return value; } bool ardu_cam_init() { CamRegBuf * camReg = new CamRegBuf(CAM_SCCB_WRITE, CAM_SCCB_READ); camReg->WriteRegSet(ResetProg); wait_ms(10); camReg->WriteRegSet(QVGA); wait_ms(10); #if defined(ARDUCAM_OV2640) camReg->SCCBWrite(0xff, 0x01); #endif delete camReg; camReg = NULL; uint8_t VerNum = ardu_cam_spi_read_8(0x40); VerNum = ardu_cam_spi_read_8(0x40); ardu_cam_spi_write_8(ARDUCHIP_TEST1, ARDUCHIP_TEST_MSG); uint8_t testV = ardu_cam_spi_read_8(ARDUCHIP_TEST1); if(VerNum != ARDUCHIP_VER_NUM || testV != ARDUCHIP_TEST_MSG) { return false; } ardu_cam_spi_write_8(ARDUCHIP_CAP_CTRL, 0x00); cal_black_calibrate(); return true; } void ardu_cam_start_capture() { ardu_cam_spi_write_8(ARDUCHIP_FIFO, FIFO_CLEAR_MASK); ardu_cam_spi_write_8(ARDUCHIP_FIFO, FIFO_START_MASK); } uint32_t ardu_cam_get_fifo_length() { uint32_t len1,len2,len3,length=0; len1 = ardu_cam_spi_read_8(FIFO_SIZE1); len2 = ardu_cam_spi_read_8(FIFO_SIZE2); len3 = ardu_cam_spi_read_8(FIFO_SIZE3) & 0x07; length = ((len3 << 16) | (len2 << 8) | len1) & 0x07ffff; return length; } uint8_t ardu_cam_get_pixel() { uint16_t VH = ardu_cam_spi_read_8(SINGLE_FIFO_READ); uint16_t VL = ardu_cam_spi_read_8(SINGLE_FIFO_READ); //uint16_t VL = ardu_cam_spi_burst_read_16(); VL = (VL & 0x00FF) | ((VH << 8) & 0xFF00); uint8_t ch = ((VL & 0xF800) >> 9);// << 2; float pixel = (static_cast<float>(ch) * 0.21); ch = ((VL & 0x07E0) >> 3);// << 2; pixel += (static_cast<float>(ch) * 0.72); ch = (VL & 0x001F) << 2; pixel += (static_cast<float>(ch) * 0.07); return static_cast<uint8_t>(pixel); } uint8_t ardu_cam_is_capture_finished() { return (ardu_cam_spi_read_8(ARDUCHIP_TRIG) & CAP_DONE_MASK); } void cal_black_calibrate() { ardu_cam_start_capture(); while (!(ardu_cam_spi_read_8(ARDUCHIP_TRIG) & CAP_DONE_MASK)); float temp = 0.0f; static uint16_t pixel = 0x00; for (uint8_t j = 0; j < RESOLUTION_WIDTH; ++j) { pixel = static_cast<uint16_t>(ardu_cam_spi_read_8(SINGLE_FIFO_READ)) << 8; pixel = pixel | ardu_cam_spi_read_8(SINGLE_FIFO_READ); if(CAM_BLK_CAL_LEFT < j && j <= CAM_BLK_CAL_RIGHT) { temp += static_cast<uint8_t>((pixel >> 3) & 0x00FF); } } temp = temp / (CAM_BLK_CAL_RIGHT - CAM_BLK_CAL_LEFT); black_calibrate = temp * 0.7f; } inline void get_img_row_info(const uint8_t display, const uint8_t rowI, uint8_t * left, uint8_t * right, uint8_t* isBorderFound) { *left = 0; *right = RESOLUTION_WIDTH; *isBorderFound = BOTH_NOT_FOUND; uint8_t isRightFound = 0; static uint16_t pixel = 0x0000; static uint8_t pGreen = 0x00; for (uint8_t j = 0; j < RESOLUTION_WIDTH; ++j) { pixel = static_cast<uint16_t>(ardu_cam_spi_read_8(SINGLE_FIFO_READ)) << 8; pixel = pixel | ardu_cam_spi_read_8(SINGLE_FIFO_READ); pGreen = static_cast<uint8_t>((pixel & 0x07E0) >> 3); if((pGreen < black_calibrate)) { if(j < temp_mid_pos) { *isBorderFound = LEFT_FOUND; *left = j; #ifdef CAM_DISP_DEBUG ardu_utft_write_DATA(0xF8, 0x00); #endif } else if(!isRightFound) { *right = j; isRightFound = 1; #ifdef CAM_DISP_DEBUG ardu_utft_write_DATA(0xF8, 0x00); #endif } #ifdef CAM_DISP_DEBUG else { ardu_utft_write_DATA(static_cast<uint8_t>(pixel >> 8), static_cast<uint8_t>(pixel)); } #endif } #ifdef CAM_DISP_DEBUG else { ardu_utft_write_DATA(static_cast<uint8_t>(pixel >> 8), static_cast<uint8_t>(pixel)); } #elif defined(CAM_DISP_IMG) ardu_utft_write_DATA(static_cast<uint8_t>(pixel >> 8), static_cast<uint8_t>(pixel)); #endif } if(*isBorderFound == LEFT_FOUND && isRightFound) { *isBorderFound = BOTH_FOUND; } else if(isRightFound) { *isBorderFound = RIGHT_FOUND; } } volatile const uint8_t* ardu_cam_get_center_array() { return centerLine; } void image_processing() { //while(true) { ardu_cam_start_capture(); while (!(ardu_cam_spi_read_8(ARDUCHIP_TRIG) & CAP_DONE_MASK)); temp_mid_pos = RESOLUTION_WIDTH / 2; //is_border_find = BOTH_NOT_FOUND; #ifdef CAM_BLK_CAL_ACTIVE static float calTemp = 0.0f; calTemp = 0.0f; static uint16_t greenPixel = 0x00; uint8_t isValid = 1; for (uint8_t j = 0; j < RESOLUTION_WIDTH; ++j) { if(CAM_BLK_CAL_LEFT < j && j <= CAM_BLK_CAL_RIGHT) { greenPixel = static_cast<uint16_t>(ardu_cam_spi_read_8(SINGLE_FIFO_READ)) << 8; greenPixel = greenPixel | ardu_cam_spi_read_8(SINGLE_FIFO_READ); greenPixel = (greenPixel & 0x07E0) >> 3; if(static_cast<uint8_t>(greenPixel) < black_calibrate) { isValid = 0; } calTemp += static_cast<uint8_t>(greenPixel); } else { ardu_cam_spi_read_8(SINGLE_FIFO_READ); ardu_cam_spi_read_8(SINGLE_FIFO_READ); } } if(isValid) { calTemp = calTemp / static_cast<float>(CAM_BLK_CAL_RIGHT - CAM_BLK_CAL_LEFT); black_calibrate = static_cast<uint8_t>(calTemp * 0.7f); } #endif //cal_black_calibrate(); uint8_t leftPos = 0; uint8_t rightPos = 0; uint8_t isBorderFound = BOTH_NOT_FOUND; is_intersection_detected = 0; uint8_t leftNearCenter1 = 0; uint8_t leftNearCenter2 = 0; uint8_t rightNearCenter1 = 0; uint8_t rightNearCenter2 = 0; is_encounter_terminate = 0; for (uint8_t i = 0; i < CAM_ROI_UPPER_LIMIT; ++i) { #if defined(CAM_DISP_IMG) or defined(CAM_DISP_DEBUG) ardu_utft_set_camimg_row(CAM_ROI_UPPER_LIMIT - i); #endif get_img_row_info(0, i, &leftPos, &rightPos, &isBorderFound); temp_mid_pos = (leftPos + rightPos) / 2; uint8_t dis_btw_left_right = rightPos - leftPos - 1; if(dis_btw_left_right < TERMINATE_WIDTH) { is_encounter_terminate = 1; } #ifdef CAM_DISP_DEBUG_CENTER ardu_utft_set_camimg_rowcol(CAM_ROI_UPPER_LIMIT - i, temp_mid_pos); ardu_utft_write_DATA(0xF8, 0x00); #endif centerLine[CAM_ROI_UPPER_LIMIT - i - 1] = temp_mid_pos; centerLine[(2 * CAM_ROI_UPPER_LIMIT) - i - 1] = isBorderFound; if(leftPos > leftNearCenter1) { leftNearCenter2 = leftNearCenter1; leftNearCenter1 = CAM_ROI_UPPER_LIMIT - i - 1; } if(rightPos < rightNearCenter1) { rightNearCenter2 = rightNearCenter1; rightNearCenter1 = CAM_ROI_UPPER_LIMIT - i - 1; } } if( ((1 < rightNearCenter1 && rightNearCenter1 < (CAM_ROI_UPPER_LIMIT - 2)) && (abs(rightNearCenter1 - rightNearCenter2) == 1)) || ((1 < leftNearCenter1 && leftNearCenter1 < (CAM_ROI_UPPER_LIMIT - 2)) && (abs(leftNearCenter1 - leftNearCenter1) == 1)) ) { is_intersection_detected = 1; } } } void ardu_cam_display_img_utft() { ardu_cam_start_capture(); while (!(ardu_cam_spi_read_8(ARDUCHIP_TRIG) & CAP_DONE_MASK)); temp_mid_pos = RESOLUTION_WIDTH / 2; for (uint8_t i = 0; i < CAM_ROI_UPPER_LIMIT; ++i) { ardu_utft_set_camimg_row(CAM_ROI_UPPER_LIMIT - i); for (uint8_t j = 0; j < RESOLUTION_WIDTH; ++j) { uint8_t VH = ardu_cam_spi_read_8(SINGLE_FIFO_READ); uint8_t VL = ardu_cam_spi_read_8(SINGLE_FIFO_READ); ardu_utft_write_DATA(VH, VL); } } } uint8_t ardu_cam_get_is_encounter_terminate() { return is_encounter_terminate; } /* uint8_t ardu_cam_get_is_border_found() { return is_border_find; } */ uint8_t ardu_cam_get_is_intersection_detected() { return is_intersection_detected; } #ifdef __cplusplus } #endif