Spidey Wall is the name for a physical wall lit up by multiple addressable LED strips. This program is an LPC1768 web server to control the wall from a browser.
Dependencies: EthernetInterfacePlusHostname RdWebServer mbed-rtos mbed
This project is part of a Light-Wall using addressable LED strips (WS2801). I have published a few posts on my blog about the construction of the wall and building a game to play on it (PacMan). I have also had a guest post from a friend who has set his children the task of producing some interesting animations. The original post is http://robdobson.com/2015/07/spidey-wall/
So far, however, I hadn't fully connected the physical (and electronic) wall with the web-browser creations to drive it. This project is hopefully the final link. A fast and reliable web server using REST commands to drive the 1686 LEDs in the Spidey Wall from code running in a browser (say on an iPad while you are playing a game).
The approach taken here results in the ability to control the RGB values of all 1686 LEDs at a rate of 20 frames per second.
A blog post describing the whole thing is here:
http://robdobson.com/2015/08/a-reliable-mbed-webserver/
ledstrip.cpp
- Committer:
- Bobty
- Date:
- 2015-08-29
- Revision:
- 2:99eb4c6e9ea4
- Parent:
- 1:362331cec9b7
- Child:
- 3:e5ea80fae61d
File content as of revision 2:99eb4c6e9ea4:
// LED Strip using WS2801 with two ISRs for two SPI connected
// LED strips running in parallel
// Rob Dobson 2013-2014
#include "ledstrip.h"
#include "colourconverters.h"
#include "stddef.h"
#define SPIF 0 // SPI interrupt flag bit
#define SSP_IMSC_TX_RDY 3
#define SSP_IMSC_BITMASK 0x0f
volatile int mCurPos0 = 0;
int mEndPos0 = 0;
volatile bool isr0Busy = false;
unsigned char* pLedValues0 = NULL;
extern "C" void spi0_isr()
{
if (mCurPos0 < mEndPos0)
{
LPC_SSP0->DR = pLedValues0[mCurPos0]; // write to FIFO data register
mCurPos0++;
}
else
{
// Turn off interrupts
LPC_SSP0->IMSC = 0;
isr0Busy = false;
}
}
volatile int mCurPos1 = 0;
int mEndPos1 = 0;
volatile bool isr1Busy = false;
unsigned char* pLedValues1 = NULL;
extern "C" void spi1_isr()
{
if (mCurPos1 < mEndPos1)
{
LPC_SSP1->DR = pLedValues1[mCurPos1]; // write to FIFO data register
mCurPos1++;
}
else
{
// Turn off interrupts
LPC_SSP1->IMSC = 0;
isr1Busy = false;
}
}
ledstrip::ledstrip(int length, int splitPoint)
{
mpLedValuesA = NULL;
mpLedValuesB = NULL;
mpCurLedValues = NULL;
// SPI0 (using SSP 0 in 1768 chip)
mpSPI0 = new SPI(p11, NC, p13);
mpSPI0->format(8,0);
mpSPI0->frequency(500000);
LPC_SSP0->IMSC = 0; // initially no interrupts requested
NVIC_SetVector(SSP0_IRQn,( uint32_t ) spi0_isr);
NVIC_ClearPendingIRQ(SSP0_IRQn);
NVIC_SetPriority(SSP0_IRQn, 2);
NVIC_EnableIRQ(SSP0_IRQn);
// SPI1 (using SSP 1 in 1768 chip)
mpSPI1 = new SPI(p5, NC, p7);
mpSPI1->format(8,0);
mpSPI1->frequency(500000);
LPC_SSP1->IMSC = 0; // initially no interrupts requested
NVIC_SetVector(SSP1_IRQn,( uint32_t ) spi1_isr);
NVIC_ClearPendingIRQ(SSP1_IRQn);
NVIC_SetPriority(SSP1_IRQn, 2);
NVIC_EnableIRQ(SSP1_IRQn);
// Resize the string length
Resize(length, splitPoint);
}
ledstrip::~ledstrip()
{
delete mpLedValuesA;
delete mpLedValuesB;
}
bool ledstrip::Resize(int length, int splitPoint)
{
if (isr0Busy || isr1Busy)
return false;
if (mpLedValuesA != NULL)
delete mpLedValuesA;
if (mpLedValuesB != NULL)
delete mpLedValuesB;
mLedsBufSize = length*mColoursPerLed;
mpLedValuesA = new unsigned char[mLedsBufSize];
mpLedValuesB = new unsigned char[mLedsBufSize];
mpCurLedValues = mpLedValuesA;
mLedsInStrip = length;
mSplitPoint = splitPoint;
Clear();
return true;
}
void ledstrip::Clear()
{
/* Timer timr;
timr.start();
for (int i = 0; i < mLedsInStrip*mColoursPerLed; i++)
mpCurLedValues[i] = 0;
timr.stop();
printf("ClearTime loop %d\n", timr.read_us()); // Result is 863uS for 2500 x 3colour LEDS
timr.reset();
timr.start();
*/
memset(mpCurLedValues, 0, mLedsBufSize);
/* timr.stop();
printf("ClearTime memset %d\n", timr.read_us()); // Result is 35uS for 2500 x 3 colour LEDS
*/
}
unsigned char* ledstrip::GetBuffer()
{
return mpCurLedValues;
}
int ledstrip::GetBufferSizeinBytes()
{
return mLedsBufSize;
}
bool ledstrip::IsBusy()
{
return isr0Busy || isr1Busy;
}
void ledstrip::RawFill(int startLed, int numLeds, const unsigned char* pLedVals)
{
if ((startLed < 0) || (startLed >= mLedsInStrip))
return;
if (numLeds >= mLedsInStrip - startLed)
numLeds = mLedsInStrip - startLed;
int pos = startLed * mColoursPerLed;
unsigned char* pBuf = GetBuffer() + pos;
memcpy(pBuf, pLedVals, numLeds * mColoursPerLed);
}
// Fill - solid colour
void ledstrip::Fill(int startLed, int numLeds,
int r1, int g1, int b1)
{
/* Timer timr;
timr.start();
*/
if ((startLed < 0) || (startLed >= mLedsInStrip))
return;
if (numLeds >= mLedsInStrip - startLed)
numLeds = mLedsInStrip - startLed;
int pos = startLed * mColoursPerLed;
unsigned char* pBuf = GetBuffer();
for (int i = 0; i < numLeds; i++)
{
pBuf[pos] = (unsigned char) r1;
pBuf[pos+1] = (unsigned char) g1;
pBuf[pos+2] = (unsigned char) b1;
pos += mColoursPerLed;
}
/* timr.stop();
printf("Fill solid %d\n", timr.read_us()); // Fill 50 LEDS solid colour = 11uS
*/
}
// Fill - with interpolation of colours using HSV colour space
void ledstrip::Fill(int startLed, int numLeds,
int r1, int g1, int b1,
int r2, int g2, int b2)
{
/* Timer timr;
timr.start();
*/
if ((startLed < 0) || (startLed >= mLedsInStrip))
return;
if (numLeds >= mLedsInStrip - startLed)
numLeds = mLedsInStrip - startLed;
int pos = startLed * mColoursPerLed;
RgbColor startRGB(r1,g1,b1);
HsvColor startHsv = RgbToHsv(startRGB);
RgbColor endRGB(r2,g2,b2);
HsvColor endHsv = RgbToHsv(endRGB);
int curH = startHsv.h << 16;
int curS = startHsv.s << 16;
int curV = startHsv.v << 16;
int interpSteps = numLeds - 1;
if (interpSteps < 1)
interpSteps = 1;
int incH = ((endHsv.h - startHsv.h) << 16) / interpSteps;
int incS = ((endHsv.s - startHsv.s) << 16) / interpSteps;
int incV = ((endHsv.v - startHsv.v) << 16) / interpSteps;
// Since H is a polar value we need to find out if it is best to go clockwise or anti-clockwise
if (endHsv.h > startHsv.h)
{
if (endHsv.h-startHsv.h > 128)
incH = ((startHsv.h-endHsv.h) << 16) / interpSteps;
}
else
{
// Go "round the top" using modulo result
if (startHsv.h-endHsv.h > 128)
incH = ((endHsv.h + 255 - startHsv.h) << 16) / interpSteps;
}
// printf("StartHSV %d %d %d EndHSV %d %d %d IncHSV %d %d %d\n", startHsv.h, startHsv.s, startHsv.v, endHsv.h, endHsv.s, endHsv.v, incH, incS, incV);
unsigned char* pBuf = GetBuffer();
for (int i = 0; i < numLeds; i++)
{
RgbColor colrVal = HsvToRgb(HsvColor((curH>>16)&0xff,curS>>16,curV>>16));
pBuf[pos] = colrVal.r;
pBuf[pos+1] = colrVal.g;
pBuf[pos+2] = colrVal.b;
// printf("HSV %d %d %d RGB %d %d %d\n", curH>>16, curS>>16, curV>>16, colrVal.r, colrVal.g, colrVal.b);
pos += mColoursPerLed;
curH = curH + incH;
curS = curS + incS;
curV = curV + incV;
}
/*
timr.stop();
printf("Fill gradient %d\n", timr.read_us()); // Fill gradient 50 LEDS = 64uS
*/
}
void ledstrip::ShowLeds()
{
// Check if busy
while (isr0Busy || isr1Busy)
wait_us(2000);
wait_us(2000);
// Set up start points
mCurPos0 = 0;
mEndPos0 = mSplitPoint*mColoursPerLed;
mCurPos1 = mSplitPoint*mColoursPerLed;
mEndPos1 = mLedsInStrip*mColoursPerLed;
// Set the buffer for the ISRs
pLedValues0 = mpCurLedValues;
pLedValues1 = mpCurLedValues;
// Flip the current buffer to the alternate one for interleaved writing
if (mpCurLedValues == mpLedValuesA)
{
memcpy(mpLedValuesB, mpLedValuesA, mLedsBufSize);
mpCurLedValues = mpLedValuesB;
}
else
{
memcpy(mpLedValuesA, mpLedValuesB, mLedsBufSize);
mpCurLedValues = mpLedValuesA;
}
// Enable interrupts
isr0Busy = true;
if (mSplitPoint < mLedsInStrip)
isr1Busy = true;
// Check if second strip is used
LPC_SSP0->IMSC = (1 << SSP_IMSC_TX_RDY) & SSP_IMSC_BITMASK;
if (mSplitPoint < mLedsInStrip && mSplitPoint > 0)
LPC_SSP1->IMSC = (1 << SSP_IMSC_TX_RDY) & SSP_IMSC_BITMASK;
}