Spidey Wall is the name for a physical wall lit up by multiple addressable LED strips. This program is an LPC1768 web server to control the wall from a browser.
Dependencies: EthernetInterfacePlusHostname RdWebServer mbed-rtos mbed
This project is part of a Light-Wall using addressable LED strips (WS2801). I have published a few posts on my blog about the construction of the wall and building a game to play on it (PacMan). I have also had a guest post from a friend who has set his children the task of producing some interesting animations. The original post is http://robdobson.com/2015/07/spidey-wall/
So far, however, I hadn't fully connected the physical (and electronic) wall with the web-browser creations to drive it. This project is hopefully the final link. A fast and reliable web server using REST commands to drive the 1686 LEDs in the Spidey Wall from code running in a browser (say on an iPad while you are playing a game).
The approach taken here results in the ability to control the RGB values of all 1686 LEDs at a rate of 20 frames per second.
A blog post describing the whole thing is here:
http://robdobson.com/2015/08/a-reliable-mbed-webserver/
Diff: ledstrip.cpp
- Revision:
- 0:887096209439
- Child:
- 1:362331cec9b7
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/ledstrip.cpp Tue Aug 18 16:03:29 2015 +0000
@@ -0,0 +1,285 @@
+#include "ledstrip.h"
+#include "colourconverters.h"
+#include "stddef.h"
+
+#define SPIF 0 // SPI interrupt flag bit
+#define SSP_IMSC_TX_RDY 3
+#define SSP_IMSC_BITMASK 0x0f
+
+volatile int mCurPos0;
+int mEndPos0;
+volatile int mCurPos1;
+int mEndPos1;
+volatile bool mShowingLeds0;
+volatile bool mShowingLeds1;
+unsigned char* pLedValues;
+bool inISR;
+
+extern "C" void spi0_isr()
+{
+ if (mCurPos0 < mEndPos0)
+ {
+ LPC_SSP0->DR = pLedValues[mCurPos0]; // write to FIFO data register
+ mCurPos0++;
+ }
+ else
+ {
+ // Turn off interrupts
+ LPC_SSP0->IMSC = 0;
+ mShowingLeds0 = false;
+ }
+}
+
+extern "C" void spi1_isr()
+{
+ if (mCurPos1 < mEndPos1)
+ {
+ LPC_SSP1->DR = pLedValues[mCurPos1]; // write to FIFO data register
+ mCurPos1++;
+ }
+ else
+ {
+ // Turn off interrupts
+ LPC_SSP1->IMSC = 0;
+ mShowingLeds1 = false;
+ }
+}
+
+ledstrip::ledstrip(int length, int splitPoint)
+{
+ mpLedValuesA = 0;
+ mpLedValuesB = 0;
+ mpCurLedValues = 0;
+
+ // SPI0 (using SSP 0 in 1768 chip)
+ mpSPI0 = new SPI(p11, NC, p13);
+ mpSPI0->format(8,0);
+ mpSPI0->frequency(500000);
+ LPC_SSP0->IMSC = 0; // initially no interrupts requested
+ NVIC_SetVector(SSP0_IRQn,( uint32_t ) spi0_isr);
+ NVIC_ClearPendingIRQ(SSP0_IRQn);
+ NVIC_SetPriority(SSP0_IRQn, 2);
+ NVIC_EnableIRQ(SSP0_IRQn);
+
+ // SPI1 (using SSP 1 in 1768 chip)
+ mpSPI1 = new SPI(p5, NC, p7);
+ mpSPI1->format(8,0);
+ mpSPI1->frequency(500000);
+ LPC_SSP1->IMSC = 0; // initially no interrupts requested
+ NVIC_SetVector(SSP1_IRQn,( uint32_t ) spi1_isr);
+ NVIC_ClearPendingIRQ(SSP1_IRQn);
+ NVIC_SetPriority(SSP1_IRQn, 2);
+ NVIC_EnableIRQ(SSP1_IRQn);
+
+ // Enable interrupts
+ __enable_irq();
+
+ // Resize the string length
+ Resize(length, splitPoint);
+}
+
+ledstrip::~ledstrip()
+{
+ delete mpLedValuesA;
+ delete mpLedValuesB;
+}
+
+bool ledstrip::Resize(int length, int splitPoint)
+{
+ if (mShowingLeds0 || mShowingLeds1)
+ return false;
+ if (mpLedValuesA != 0)
+ delete mpLedValuesA;
+ if (mpLedValuesB != 0)
+ delete mpLedValuesB;
+ mLedsBufSize = length*mColoursPerLed;
+ mpLedValuesA = new unsigned char[mLedsBufSize];
+ mpLedValuesB = new unsigned char[mLedsBufSize];
+ mpCurLedValues = mpLedValuesA;
+ mLedsInStrip = length;
+ mSplitPoint = splitPoint;
+ Clear();
+ return true;
+}
+
+void ledstrip::Clear()
+{
+/* Timer timr;
+ timr.start();
+ for (int i = 0; i < mLedsInStrip*mColoursPerLed; i++)
+ mpCurLedValues[i] = 0;
+ timr.stop();
+ printf("ClearTime loop %d\n", timr.read_us()); // Result is 863uS for 2500 x 3colour LEDS
+ timr.reset();
+ timr.start();
+ */
+ memset(mpCurLedValues, 0, mLedsBufSize);
+ /* timr.stop();
+ printf("ClearTime memset %d\n", timr.read_us()); // Result is 35uS for 2500 x 3 colour LEDS
+*/
+}
+
+unsigned char* ledstrip::GetBuffer()
+{
+ return mpCurLedValues;
+}
+
+int ledstrip::GetBufferSizeinBytes()
+{
+ return mLedsBufSize;
+}
+
+bool ledstrip::IsBusy()
+{
+ return mShowingLeds0 || mShowingLeds1;
+}
+
+// Fill - solid colour
+void ledstrip::Fill(int startLed, int numLeds,
+ int r1, int g1, int b1)
+{
+/* Timer timr;
+ timr.start();
+*/
+ if ((startLed < 0) || (startLed >= mLedsInStrip))
+ return;
+ if (numLeds >= mLedsInStrip - startLed)
+ numLeds = mLedsInStrip - startLed;
+ int pos = startLed * mColoursPerLed;
+ unsigned char* pBuf = GetBuffer();
+ for (int i = 0; i < numLeds; i++)
+ {
+ pBuf[pos] = (unsigned char) r1;
+ pBuf[pos+1] = (unsigned char) g1;
+ pBuf[pos+2] = (unsigned char) b1;
+ pos += mColoursPerLed;
+ }
+/* timr.stop();
+ printf("Fill solid %d\n", timr.read_us()); // Fill 50 LEDS solid colour = 11uS
+ */
+}
+
+// Fill - with interpolation of colours using HSV colour space
+void ledstrip::Fill(int startLed, int numLeds,
+ int r1, int g1, int b1,
+ int r2, int g2, int b2)
+{
+/* Timer timr;
+ timr.start();
+ */
+ if ((startLed < 0) || (startLed >= mLedsInStrip))
+ return;
+ if (numLeds >= mLedsInStrip - startLed)
+ numLeds = mLedsInStrip - startLed;
+ int pos = startLed * mColoursPerLed;
+ RgbColor startRGB(r1,g1,b1);
+ HsvColor startHsv = RgbToHsv(startRGB);
+ RgbColor endRGB(r2,g2,b2);
+ HsvColor endHsv = RgbToHsv(endRGB);
+ int curH = startHsv.h << 16;
+ int curS = startHsv.s << 16;
+ int curV = startHsv.v << 16;
+ int interpSteps = numLeds - 1;
+ if (interpSteps < 1)
+ interpSteps = 1;
+ int incH = ((endHsv.h - startHsv.h) << 16) / interpSteps;
+ int incS = ((endHsv.s - startHsv.s) << 16) / interpSteps;
+ int incV = ((endHsv.v - startHsv.v) << 16) / interpSteps;
+ // Since H is a polar value we need to find out if it is best to go clockwise or anti-clockwise
+ if (endHsv.h > startHsv.h)
+ {
+ if (endHsv.h-startHsv.h > 128)
+ incH = ((startHsv.h-endHsv.h) << 16) / interpSteps;
+ }
+ else
+ {
+ // Go "round the top" using modulo result
+ if (startHsv.h-endHsv.h > 128)
+ incH = ((endHsv.h + 255 - startHsv.h) << 16) / interpSteps;
+ }
+
+// printf("StartHSV %d %d %d EndHSV %d %d %d IncHSV %d %d %d\n", startHsv.h, startHsv.s, startHsv.v, endHsv.h, endHsv.s, endHsv.v, incH, incS, incV);
+ unsigned char* pBuf = GetBuffer();
+ for (int i = 0; i < numLeds; i++)
+ {
+ RgbColor colrVal = HsvToRgb(HsvColor((curH>>16)&0xff,curS>>16,curV>>16));
+ pBuf[pos] = colrVal.r;
+ pBuf[pos+1] = colrVal.g;
+ pBuf[pos+2] = colrVal.b;
+// printf("HSV %d %d %d RGB %d %d %d\n", curH>>16, curS>>16, curV>>16, colrVal.r, colrVal.g, colrVal.b);
+ pos += mColoursPerLed;
+ curH = curH + incH;
+ curS = curS + incS;
+ curV = curV + incV;
+ }
+ /*
+ timr.stop();
+ printf("Fill gradient %d\n", timr.read_us()); // Fill gradient 50 LEDS = 64uS
+ */
+}
+
+
+void ledstrip::ShowLeds()
+{
+ // Check if busy
+ while (mShowingLeds0 || mShowingLeds1)
+ ;
+ wait_us(750);
+
+ // Set up start points
+ mCurPos0 = 0;
+ mEndPos0 = mSplitPoint*mColoursPerLed;
+ mCurPos1 = mSplitPoint*mColoursPerLed;
+ mEndPos1 = mLedsInStrip*mColoursPerLed;
+
+ // Set the buffer for the ISRs
+ pLedValues = mpCurLedValues;
+
+ // Flip the current buffer to the alternate one for interleaved writing
+ if (mpCurLedValues == mpLedValuesA)
+ mpCurLedValues = mpLedValuesB;
+ else
+ mpCurLedValues = mpLedValuesA;
+
+ // Enable interrupts
+ mShowingLeds0 = true;
+ LPC_SSP0->IMSC = (1 << SSP_IMSC_TX_RDY) & SSP_IMSC_BITMASK;
+
+ // Check if second strip is used
+ if (mSplitPoint < mLedsInStrip)
+ {
+ LPC_SSP1->IMSC = (1 << SSP_IMSC_TX_RDY) & SSP_IMSC_BITMASK;
+ mShowingLeds1 = true;
+ }
+ // for (int q = 0; q < mLedsInStrip*3; q+=3)
+ // printf("%d %02x%02x%02x\n", q/3, mpLedValues[q], mpLedValues[q+1], mpLedValues[q+2]);
+/*
+ int pos1 = 0;
+ int pos2 = mSplitPoint * mColoursPerLed;
+ for (int j = 0; j < mMaxChainLength; j++)
+ {
+ for (int k = 0; k < mColoursPerLed; k++)
+ {
+ unsigned char tval1 = 0;
+ if (pos1 + k < mLedsBufSize)
+ tval1 = mpLedValues[pos1 + k];
+ unsigned char tval2 = 0;
+ if (pos2 + k < mLedsBufSize)
+ tval2 = mpLedValues[pos2 + k];
+ for (int i = 0; i < 8; i++)
+ {
+ dat1 = (tval1 & 0x80) != 0;
+ tval1 = tval1 << 1;
+ dat2 = (tval2 & 0x80) != 0;
+ tval2 = tval2 << 1;
+ clk = 1;
+ clk = 0;
+ wait_us(1);
+ }
+ }
+ pos1 += mColoursPerLed;
+ pos2 += mColoursPerLed;
+ }
+ wait_us(750);
+*/
+}