Simple Vector Library 1.5 http://www.cs.cmu.edu/~ajw/doc/svl.html
Quat.h
- Committer:
- BartJanssens
- Date:
- 2016-01-05
- Revision:
- 1:e25ff4b06ed2
- Parent:
- 0:785cff1e5a7c
File content as of revision 1:e25ff4b06ed2:
#ifndef __Quat__
#define __Quat__
#include "Vec3.h"
#include "Mat3.h"
#include "Vec4.h"
#include "Mat4.h"
class Quat
{
public:
// constructors
Quat();
Quat(Real q0, Real q1, Real q2, Real q3); // [q0,(q1,q2,q3)]
Quat (const Vec3 &axis, Real angle);
Quat (const Mat3 &m);
Int Elts() const { return (4); };
Real &operator [] (Int i);
const Real &operator [] (Int i) const;
// Assignment operators
Quat &operator = (const Quat &a);
Quat &operator += (const Quat &a);
Quat &operator -= (const Quat &a);
Quat &operator *= (const Quat &a);
Quat &operator *= (Real s);
Quat &operator /= (Real s);
// Arithmetic operators
Quat operator + (const Quat &a) const; // v + a
Quat operator - (const Quat &a) const; // v - a
Quat operator - () const; // -v
Quat operator * (const Quat &a) const; // v * a (vx * ax, ...)
Quat operator * (Real s) const; // v * s
Quat operator / (Real s) const; // v / s
Quat &Normalise(); // normalise vector
protected:
Real elt[4];
};
inline Quat operator * (Real s, const Quat &v); // Left mult. by s
inline Real dot(const Quat &a, const Quat &b); // v . a
inline Real len(const Quat &v); // || v ||
inline Real sqrlen(const Quat &v); // v . v
inline Quat norm(const Quat &v); // v / || v ||
inline Void normalise(Quat &v); // v = norm(v)
inline Quat slerp(const Quat &q1, const Quat &q2, Real t);
inline Quat conjugate(const Quat &q);
Mat3 Rot3(const Quat &q);
Mat4 HRot4(const Quat &q);
//std::ostream &operator << (std::ostream &s, const Quat &v);
//std::istream &operator >> (std::istream &s, Quat &v);
void printQuat(const Quat &v);
inline Real &Quat::operator [] (Int i)
{
CheckRange(i, 0, 4, "(Quat::[i]) index out of range");
return(elt[i]);
}
inline const Real &Quat::operator [] (Int i) const
{
CheckRange(i, 0, 4, "(Quat::[i]) index out of range");
return(elt[i]);
}
inline Quat::Quat()
{
}
inline Quat::Quat(Real q0, Real q1, Real q2, Real q3)
{
elt[0] = q0;
elt[1] = q1;
elt[2] = q2;
elt[3] = q3;
}
inline Quat::Quat(const Vec3 &axis, Real angle)
{
Vec3 n = norm(axis);
Real sinhalf = sin(angle/2);
elt[1] = sinhalf*n[0];
elt[2] = sinhalf*n[1];
elt[3] = sinhalf*n[2];
elt[0] = cos(angle/2);
}
inline Quat &Quat::operator = (const Quat &v)
{
elt[0] = v[0];
elt[1] = v[1];
elt[2] = v[2];
elt[3] = v[3];
return(SELF);
}
inline Quat &Quat::operator += (const Quat &v)
{
elt[0] += v[0];
elt[1] += v[1];
elt[2] += v[2];
elt[3] += v[3];
return(SELF);
}
inline Quat &Quat::operator -= (const Quat &v)
{
elt[0] -= v[0];
elt[1] -= v[1];
elt[2] -= v[2];
elt[3] -= v[3];
return(SELF);
}
inline Quat &Quat::operator *= (const Quat &v)
{
Quat tmp(elt[0],elt[1],elt[2],elt[3]);
tmp = tmp * v;
elt[0] = tmp[0];
elt[1] = tmp[1];
elt[2] = tmp[2];
elt[3] = tmp[3];
return(SELF);
}
inline Quat &Quat::operator *= (Real s)
{
elt[0] *= s;
elt[1] *= s;
elt[2] *= s;
elt[3] *= s;
return(SELF);
}
inline Quat &Quat::operator /= (Real s)
{
elt[0] /= s;
elt[1] /= s;
elt[2] /= s;
elt[3] /= s;
return(SELF);
}
inline Quat Quat::operator + (const Quat &a) const
{
Quat result;
result[0] = elt[0] + a[0];
result[1] = elt[1] + a[1];
result[2] = elt[2] + a[2];
result[3] = elt[3] + a[3];
return(result);
}
inline Quat Quat::operator - (const Quat &a) const
{
Quat result;
result[0] = elt[0] - a[0];
result[1] = elt[1] - a[1];
result[2] = elt[2] - a[2];
result[3] = elt[3] - a[3];
return(result);
}
inline Quat Quat::operator - () const
{
Quat result;
result[0] = -elt[0];
result[1] = -elt[1];
result[2] = -elt[2];
result[3] = -elt[3];
return(result);
}
inline Quat Quat::operator * (const Quat &a) const
{
Quat result;
Vec3 qv(elt[1],elt[2],elt[3]); Real qs = elt[0];
Vec3 av(a[1],a[2],a[3]); Real as = a[0];
Vec3 rv = qs*av + as*qv + cross(qv,av);
Real rs = qs*as - dot(qv,av);
result[1] = rv[0];
result[2] = rv[1];
result[3] = rv[2];
result[0] = rs;
return(result);
}
inline Quat Quat::operator * (Real s) const
{
Quat result;
result[0] = elt[0] * s;
result[1] = elt[1] * s;
result[2] = elt[2] * s;
result[3] = elt[3] * s;
return(result);
}
inline Quat Quat::operator / (Real s) const
{
Quat result;
result[0] = elt[0] / s;
result[1] = elt[1] / s;
result[2] = elt[2] / s;
result[3] = elt[3] / s;
return(result);
}
inline Quat operator * (Real s, const Quat &v)
{
return(v * s);
}
// for convenience. Quat has no dot operation.
inline Real dot(const Quat &a, const Quat &b)
{
return(a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3]);
}
inline Real len(const Quat &v)
{
return(sqrt(dot(v, v)));
}
inline Real sqrlen(const Quat &v)
{
return(dot(v, v));
}
inline Quat norm(const Quat &v)
{
Assert(sqrlen(v) > 0.0, "normalising length-zero vector");
return(v / len(v));
}
inline Void normalise(Quat &v)
{
v /= len(v);
}
inline Quat slerp (const Quat& q1, const Quat& q2, Real t)
{
Quat result;
Quat qq = q1;
if (dot(qq,q2) < 0)
qq = -q1;
Real phi = acos(dot (qq, q2));
Real denom = sin(phi);
result = sin(phi*(1-t))/denom * qq + sin(phi*t)/denom * q2;
return result;
}
inline Quat conjugate(const Quat &q)
{
return Quat (q[0], -q[1], -q[2], -q[3]);
}
#endif