Simple Vector Library 1.5 http://www.cs.cmu.edu/~ajw/doc/svl.html
Mat2.h
- Committer:
- BartJanssens
- Date:
- 2016-01-05
- Revision:
- 1:e25ff4b06ed2
- Parent:
- 0:785cff1e5a7c
File content as of revision 1:e25ff4b06ed2:
/*
File: Mat2.h
Function: Defines a 2 x 2 matrix.
Author(s): Andrew Willmott
Copyright: (c) 1995-2001, Andrew Willmott
*/
#ifndef __Mat2__
#define __Mat2__
#include "Vec2.h"
// --- Mat2 Class -------------------------------------------------------------
class Mat2
{
public:
// Constructors
Mat2();
Mat2(Real a, Real b, Real c, Real d); // Create from rows
Mat2(const Mat2 &m); // Copy constructor
Mat2(ZeroOrOne k);
Mat2(Block k);
// Accessor functions
Int Rows() const { return(2); };
Int Cols() const { return(2); };
Vec2 &operator [] (Int i);
const Vec2 &operator [] (Int i) const;
Real *Ref() const; // Return pointer to data
// Assignment operators
Mat2 &operator = (const Mat2 &m);
Mat2 &operator = (ZeroOrOne k);
Mat2 &operator = (Block k);
Mat2 &operator += (const Mat2 &m);
Mat2 &operator -= (const Mat2 &m);
Mat2 &operator *= (const Mat2 &m);
Mat2 &operator *= (Real s);
Mat2 &operator /= (Real s);
// Comparison operators
Bool operator == (const Mat2 &m) const; // M == N?
Bool operator != (const Mat2 &m) const; // M != N?
// Arithmetic operators
Mat2 operator + (const Mat2 &m) const; // M + N
Mat2 operator - (const Mat2 &m) const; // M - N
Mat2 operator - () const; // -M
Mat2 operator * (const Mat2 &m) const; // M * N
Mat2 operator * (Real s) const; // M * s
Mat2 operator / (Real s) const; // M / s
// Initialisers
Void MakeZero(); // Zero matrix
Void MakeDiag(Real k = vl_one); // I
Void MakeBlock(Real k = vl_one); // all elts=k
// Vector Transformations
Mat2& MakeRot(Real theta);
Mat2& MakeScale(const Vec2 &s);
// Private...
protected:
Vec2 row[2]; // Rows of the matrix
};
// --- Matrix operators -------------------------------------------------------
inline Vec2 &operator *= (Vec2 &v, const Mat2 &m); // v *= m
inline Vec2 operator * (const Mat2 &m, const Vec2 &v); // m * v
inline Vec2 operator * (const Vec2 &v, const Mat2 &m); // v * m
inline Mat2 operator * (Real s, const Mat2 &m); // s * m
inline Mat2 trans(const Mat2 &m); // Transpose
inline Real trace(const Mat2 &m); // Trace
inline Mat2 adj(const Mat2 &m); // Adjoint
Real det(const Mat2 &m); // Determinant
Mat2 inv(const Mat2 &m); // Inverse
Mat2 oprod(const Vec2 &a, const Vec2 &b);
// Outer product
// The xform functions help avoid dependence on whether row or column
// vectors are used to represent points and vectors.
inline Vec2 xform(const Mat2 &m, const Vec2 &v); // Transform of v by m
inline Mat2 xform(const Mat2 &m, const Mat2 &n); // xform v -> m(n(v))
//std::ostream &operator << (std::ostream &s, const Mat2 &m);
//std::istream &operator >> (std::istream &s, Mat2 &m);
void printMat2(const Mat2 &m);
// --- Inlines ----------------------------------------------------------------
inline Vec2 &Mat2::operator [] (Int i)
{
CheckRange(i, 0, 2, "(Mat2::[i]) index out of range");
return(row[i]);
}
inline const Vec2 &Mat2::operator [] (Int i) const
{
CheckRange(i, 0, 2, "(Mat2::[i]) index out of range");
return(row[i]);
}
inline Real *Mat2::Ref() const
{
return((Real*) row);
}
inline Mat2::Mat2()
{
}
inline Mat2::Mat2(Real a, Real b, Real c, Real d)
{
row[0][0] = a; row[0][1] = b;
row[1][0] = c; row[1][1] = d;
}
inline Mat2::Mat2(const Mat2 &m)
{
row[0] = m[0];
row[1] = m[1];
}
inline Void Mat2::MakeZero()
{
row[0][0] = vl_zero; row[0][1] = vl_zero;
row[1][0] = vl_zero; row[1][1] = vl_zero;
}
inline Void Mat2::MakeDiag(Real k)
{
row[0][0] = k; row[0][1] = vl_zero;
row[1][0] = vl_zero; row[1][1] = k;
}
inline Void Mat2::MakeBlock(Real k)
{
row[0][0] = k; row[0][1] = k;
row[1][0] = k; row[1][1] = k;
}
inline Mat2::Mat2(ZeroOrOne k)
{
MakeDiag(k);
}
inline Mat2::Mat2(Block k)
{
MakeBlock((ZeroOrOne) k);
}
inline Mat2 &Mat2::operator = (ZeroOrOne k)
{
MakeDiag(k);
return(SELF);
}
inline Mat2 &Mat2::operator = (Block k)
{
MakeBlock((ZeroOrOne) k);
return(SELF);
}
inline Mat2 &Mat2::operator = (const Mat2 &m)
{
row[0] = m[0];
row[1] = m[1];
return(SELF);
}
inline Mat2 &Mat2::operator += (const Mat2 &m)
{
row[0] += m[0];
row[1] += m[1];
return(SELF);
}
inline Mat2 &Mat2::operator -= (const Mat2 &m)
{
row[0] -= m[0];
row[1] -= m[1];
return(SELF);
}
inline Mat2 &Mat2::operator *= (const Mat2 &m)
{
SELF = SELF * m;
return(SELF);
}
inline Mat2 &Mat2::operator *= (Real s)
{
row[0] *= s;
row[1] *= s;
return(SELF);
}
inline Mat2 &Mat2::operator /= (Real s)
{
row[0] /= s;
row[1] /= s;
return(SELF);
}
inline Mat2 Mat2::operator + (const Mat2 &m) const
{
Mat2 result;
result[0] = row[0] + m[0];
result[1] = row[1] + m[1];
return(result);
}
inline Mat2 Mat2::operator - (const Mat2 &m) const
{
Mat2 result;
result[0] = row[0] - m[0];
result[1] = row[1] - m[1];
return(result);
}
inline Mat2 Mat2::operator - () const
{
Mat2 result;
result[0] = -row[0];
result[1] = -row[1];
return(result);
}
inline Mat2 Mat2::operator * (const Mat2 &m) const
{
#define N(x,y) row[x][y]
#define M(x,y) m.row[x][y]
#define R(x,y) result[x][y]
Mat2 result;
R(0,0) = N(0,0) * M(0,0) + N(0,1) * M(1,0);
R(0,1) = N(0,0) * M(0,1) + N(0,1) * M(1,1);
R(1,0) = N(1,0) * M(0,0) + N(1,1) * M(1,0);
R(1,1) = N(1,0) * M(0,1) + N(1,1) * M(1,1);
return(result);
#undef N
#undef M
#undef R
}
inline Mat2 Mat2::operator * (Real s) const
{
Mat2 result;
result[0] = row[0] * s;
result[1] = row[1] * s;
return(result);
}
inline Mat2 Mat2::operator / (Real s) const
{
Mat2 result;
result[0] = row[0] / s;
result[1] = row[1] / s;
return(result);
}
inline Mat2 operator * (Real s, const Mat2 &m)
{
return(m * s);
}
inline Vec2 operator * (const Mat2 &m, const Vec2 &v)
{
Vec2 result;
result[0] = m[0][0] * v[0] + m[0][1] * v[1];
result[1] = m[1][0] * v[0] + m[1][1] * v[1];
return(result);
}
inline Vec2 operator * (const Vec2 &v, const Mat2 &m)
{
Vec2 result;
result[0] = v[0] * m[0][0] + v[1] * m[1][0];
result[1] = v[0] * m[0][1] + v[1] * m[1][1];
return(result);
}
inline Vec2 &operator *= (Vec2 &v, const Mat2 &m)
{
Real t;
t = v[0] * m[0][0] + v[1] * m[1][0];
v[1] = v[0] * m[0][1] + v[1] * m[1][1];
v[0] = t;
return(v);
}
inline Mat2 trans(const Mat2 &m)
{
Mat2 result;
result[0][0] = m[0][0]; result[0][1] = m[1][0];
result[1][0] = m[0][1]; result[1][1] = m[1][1];
return(result);
}
inline Real trace(const Mat2 &m)
{
return(m[0][0] + m[1][1]);
}
inline Mat2 adj(const Mat2 &m)
{
Mat2 result;
result[0] = cross(m[1]);
result[1] = -cross(m[0]);
return(result);
}
#ifdef VL_ROW_ORIENT
inline Vec2 xform(const Mat2 &m, const Vec2 &v)
{ return(v * m); }
inline Mat2 xform(const Mat2 &m, const Mat2 &n)
{ return(n * m); }
#else
inline Vec2 xform(const Mat2 &m, const Vec2 &v)
{ return(m * v); }
inline Mat2 xform(const Mat2 &m, const Mat2 &n)
{ return(m * n); }
#endif
#endif