Mapping for TP2

Dependencies:   ISR_Mini-explorer mbed

Fork of GoToPointWithAngle by Georgios Tsamis

Committer:
AurelienBernier
Date:
Mon Mar 27 16:44:37 2017 +0000
Revision:
14:44ab4626f1ad
Parent:
13:41f75c132135
Child:
16:ff73cc7b3156
Child:
18:dbc5fbad4975
print mms;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
geotsam 0:8bffb51cc345 1 #include "mbed.h"
geotsam 0:8bffb51cc345 2 #include "robot.h" // Initializes the robot. This include should be used in all main.cpp!
geotsam 0:8bffb51cc345 3 #include "math.h"
AurelienBernier 6:afde4b08166b 4
AurelienBernier 6:afde4b08166b 5 Timer t;
AurelienBernier 4:8c56c3ba6e54 6
geotsam 0:8bffb51cc345 7 float dist(float robot_x, float robot_y, float target_x, float target_y);
geotsam 0:8bffb51cc345 8
geotsam 12:3c0ca2350624 9 int goToPointWithAngle(float target_x, float target_y, float target_angle);
AurelienBernier 8:109314be5b68 10
AurelienBernier 11:e641aa08c92e 11 int updateSonarValues();
AurelienBernier 11:e641aa08c92e 12
AurelienBernier 8:109314be5b68 13 float alpha; //angle error
AurelienBernier 8:109314be5b68 14 float rho; //distance from target
AurelienBernier 8:109314be5b68 15 float beta;
AurelienBernier 11:e641aa08c92e 16 float kRho=12, ka=30, kb=-13; //Kappa values
AurelienBernier 8:109314be5b68 17 float linear, angular, angular_left, angular_right;
AurelienBernier 8:109314be5b68 18 float dt=0.5;
AurelienBernier 8:109314be5b68 19 float temp;
AurelienBernier 8:109314be5b68 20 float d2;
AurelienBernier 8:109314be5b68 21
AurelienBernier 11:e641aa08c92e 22 bool tooClose = false;
AurelienBernier 11:e641aa08c92e 23
AurelienBernier 11:e641aa08c92e 24 int leftMm;
AurelienBernier 11:e641aa08c92e 25 int frontMm;
AurelienBernier 11:e641aa08c92e 26 int rightMm;
AurelienBernier 11:e641aa08c92e 27
AurelienBernier 8:109314be5b68 28 //Diameter of a wheel and distance between the 2
AurelienBernier 8:109314be5b68 29 float r=3.25, b=7.2;
AurelienBernier 8:109314be5b68 30
AurelienBernier 8:109314be5b68 31 int speed=999; // Max speed at beggining of movement
AurelienBernier 8:109314be5b68 32
AurelienBernier 8:109314be5b68 33 //Target example x,y values
AurelienBernier 8:109314be5b68 34 float target_x=46.8, target_y=78.6, target_angle=1.7;
AurelienBernier 8:109314be5b68 35
AurelienBernier 4:8c56c3ba6e54 36 //Timeout time;
geotsam 0:8bffb51cc345 37 int main(){
geotsam 13:41f75c132135 38 i2c1.frequency(100000);
AurelienBernier 2:ea61e801e81f 39 initRobot(); //Initializing the robot
geotsam 0:8bffb51cc345 40 pc.baud(9600); // baud for the pc communication
geotsam 0:8bffb51cc345 41
geotsam 13:41f75c132135 42 measure_always_on();
geotsam 13:41f75c132135 43 wait_ms(50);
geotsam 13:41f75c132135 44
AurelienBernier 2:ea61e801e81f 45 //Resetting coordinates before moving
AurelienBernier 2:ea61e801e81f 46 theta=0;
geotsam 0:8bffb51cc345 47 X=0;
geotsam 0:8bffb51cc345 48 Y=0;
geotsam 0:8bffb51cc345 49
AurelienBernier 4:8c56c3ba6e54 50 alpha = atan2((target_y-Y),(target_x-X))-theta;
AurelienBernier 4:8c56c3ba6e54 51 alpha = atan(sin(alpha)/cos(alpha));
AurelienBernier 4:8c56c3ba6e54 52 rho = dist(X, Y, target_x, target_y);
AurelienBernier 6:afde4b08166b 53
AurelienBernier 4:8c56c3ba6e54 54 beta = -alpha-theta+target_angle;
AurelienBernier 6:afde4b08166b 55 //beta = atan(sin(beta)/cos(beta));
AurelienBernier 8:109314be5b68 56
AurelienBernier 8:109314be5b68 57 goToPointWithAngle(target_x, target_y, target_angle);
AurelienBernier 8:109314be5b68 58
AurelienBernier 8:109314be5b68 59 //Stop at the end
AurelienBernier 8:109314be5b68 60 leftMotor(1,0);
AurelienBernier 8:109314be5b68 61 rightMotor(1,0);
AurelienBernier 8:109314be5b68 62
AurelienBernier 8:109314be5b68 63 pc.printf("\n\r %f -- arrived!", rho);
AurelienBernier 8:109314be5b68 64 }
AurelienBernier 8:109314be5b68 65
AurelienBernier 8:109314be5b68 66 //Distance computation function
AurelienBernier 8:109314be5b68 67 float dist(float robot_x, float robot_y, float target_x, float target_y){
AurelienBernier 8:109314be5b68 68 return sqrt(pow(target_y-robot_y,2) + pow(target_x-robot_x,2));
AurelienBernier 8:109314be5b68 69 }
AurelienBernier 8:109314be5b68 70
AurelienBernier 11:e641aa08c92e 71 //Updates sonar values
AurelienBernier 11:e641aa08c92e 72 int updateSonarValues() {
AurelienBernier 11:e641aa08c92e 73 leftMm = get_distance_left_sensor();
AurelienBernier 11:e641aa08c92e 74 frontMm = get_distance_front_sensor();
AurelienBernier 11:e641aa08c92e 75 rightMm = get_distance_right_sensor();
AurelienBernier 11:e641aa08c92e 76 return 0;
AurelienBernier 11:e641aa08c92e 77 }
AurelienBernier 11:e641aa08c92e 78
geotsam 12:3c0ca2350624 79 int goToPointWithAngle(float target_x, float target_y, float target_angle) {
AurelienBernier 8:109314be5b68 80 do {
geotsam 0:8bffb51cc345 81 pc.printf("\n\n\r entered while");
AurelienBernier 2:ea61e801e81f 82
AurelienBernier 6:afde4b08166b 83 //Timer stuff
AurelienBernier 6:afde4b08166b 84 dt = t.read();
AurelienBernier 6:afde4b08166b 85 t.reset();
AurelienBernier 6:afde4b08166b 86 t.start();
AurelienBernier 6:afde4b08166b 87
AurelienBernier 11:e641aa08c92e 88 updateSonarValues();
AurelienBernier 11:e641aa08c92e 89 if (leftMm < 100 || frontMm < 100 || rightMm < 100) {
AurelienBernier 11:e641aa08c92e 90 tooClose = true;
AurelienBernier 11:e641aa08c92e 91 }
AurelienBernier 11:e641aa08c92e 92
AurelienBernier 2:ea61e801e81f 93 //Updating X,Y and theta with the odometry values
geotsam 0:8bffb51cc345 94 Odometria();
geotsam 3:1e0f4cb93eda 95
AurelienBernier 4:8c56c3ba6e54 96 alpha = atan2((target_y-Y),(target_x-X))-theta;
AurelienBernier 4:8c56c3ba6e54 97 alpha = atan(sin(alpha)/cos(alpha));
AurelienBernier 4:8c56c3ba6e54 98 rho = dist(X, Y, target_x, target_y);
AurelienBernier 6:afde4b08166b 99 d2 = rho;
AurelienBernier 5:dea05b8f30d0 100 beta = -alpha-theta+target_angle;
AurelienBernier 6:afde4b08166b 101 //beta = atan(sin(beta)/cos(beta));
AurelienBernier 6:afde4b08166b 102
AurelienBernier 6:afde4b08166b 103
AurelienBernier 2:ea61e801e81f 104 //Computing angle error and distance towards the target value
AurelienBernier 4:8c56c3ba6e54 105 rho += dt*(-kRho*cos(alpha)*rho);
AurelienBernier 4:8c56c3ba6e54 106 temp = alpha;
AurelienBernier 6:afde4b08166b 107 alpha += dt*(kRho*sin(alpha)-ka*alpha-kb*beta);
AurelienBernier 6:afde4b08166b 108 beta += dt*(-kRho*sin(temp));
AurelienBernier 6:afde4b08166b 109 pc.printf("\n\r d2=%f", d2);
AurelienBernier 6:afde4b08166b 110 pc.printf("\n\r dt=%f", dt);
geotsam 0:8bffb51cc345 111
AurelienBernier 2:ea61e801e81f 112 //Computing linear and angular velocities
AurelienBernier 4:8c56c3ba6e54 113 if(alpha>=-1.5708 && alpha<=1.5708){
AurelienBernier 4:8c56c3ba6e54 114 linear=kRho*rho;
AurelienBernier 4:8c56c3ba6e54 115 angular=ka*alpha+kb*beta;
geotsam 3:1e0f4cb93eda 116 }
geotsam 3:1e0f4cb93eda 117 else{
AurelienBernier 4:8c56c3ba6e54 118 linear=-kRho*rho;
AurelienBernier 4:8c56c3ba6e54 119 angular=-ka*alpha-kb*beta;
geotsam 3:1e0f4cb93eda 120 }
geotsam 0:8bffb51cc345 121 angular_left=(linear-0.5*b*angular)/r;
geotsam 0:8bffb51cc345 122 angular_right=(linear+0.5*b*angular)/r;
geotsam 0:8bffb51cc345 123
AurelienBernier 2:ea61e801e81f 124 //Slowing down at the end for more precision
AurelienBernier 6:afde4b08166b 125 if (d2<25) {
AurelienBernier 6:afde4b08166b 126 speed = d2*30;
geotsam 0:8bffb51cc345 127 }
AurelienBernier 2:ea61e801e81f 128
AurelienBernier 2:ea61e801e81f 129 //Normalize speed for motors
geotsam 0:8bffb51cc345 130 if(angular_left>angular_right) {
geotsam 0:8bffb51cc345 131 angular_right=speed*angular_right/angular_left;
geotsam 0:8bffb51cc345 132 angular_left=speed;
geotsam 0:8bffb51cc345 133 } else {
geotsam 0:8bffb51cc345 134 angular_left=speed*angular_left/angular_right;
geotsam 0:8bffb51cc345 135 angular_right=speed;
geotsam 0:8bffb51cc345 136 }
geotsam 0:8bffb51cc345 137
geotsam 0:8bffb51cc345 138 pc.printf("\n\r X=%f", X);
geotsam 0:8bffb51cc345 139 pc.printf("\n\r Y=%f", Y);
AurelienBernier 14:44ab4626f1ad 140 pc.printf("\n\r leftMm=%f", leftMm);
AurelienBernier 14:44ab4626f1ad 141 pc.printf("\n\r frontMm=%f", frontMm);
AurelienBernier 14:44ab4626f1ad 142 pc.printf("\n\r rightMm=%f", rightMm);
geotsam 0:8bffb51cc345 143
AurelienBernier 2:ea61e801e81f 144 //Updating motor velocities
AurelienBernier 1:f0807d5c5a4b 145 leftMotor(1,angular_left);
AurelienBernier 1:f0807d5c5a4b 146 rightMotor(1,angular_right);
geotsam 0:8bffb51cc345 147
AurelienBernier 7:c94070f9af78 148 wait(0.2);
AurelienBernier 6:afde4b08166b 149 //Timer stuff
AurelienBernier 6:afde4b08166b 150 t.stop();
AurelienBernier 11:e641aa08c92e 151 } while(d2>1 & !tooClose);
AurelienBernier 8:109314be5b68 152
AurelienBernier 8:109314be5b68 153 return 0;
AurelienBernier 6:afde4b08166b 154 }