Martin Olejar
/
FRDM_MFRC522
MFRC522 example project for FRDM
Diff: MFRC522.cpp
- Revision:
- 1:8e41a7b03f45
- Parent:
- 0:1d9c7c0b5015
diff -r 1d9c7c0b5015 -r 8e41a7b03f45 MFRC522.cpp --- a/MFRC522.cpp Sat Dec 14 21:41:08 2013 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1189 +0,0 @@ -/* -* MFRC522.cpp - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI W AND R BY COOQROBOT. -* _Please_ see the comments in MFRC522.h - they give useful hints and background. -* Released into the public domain. -*/ - -#include "MFRC522.h" - - -#define MFRC522_MaxPICCs 9 -#define MFRC522_MaxError 10 - -static std::string _TypeNamePICC[MFRC522_MaxPICCs] = -{ - "Unknown type", - "PICC compliant with ISO/IEC 14443-4", - "PICC compliant with ISO/IEC 18092 (NFC)", - "MIFARE Mini, 320 bytes", - "MIFARE 1KB", - "MIFARE 4KB", - "MIFARE Ultralight or Ultralight C", - "MIFARE Plus", - "MIFARE TNP3XXX" -}; - -static std::string _ErrorMessage[MFRC522_MaxError] = -{ - "Unknown error", - "Success", - "Error in communication", - "Collision detected", - "Timeout in communication", - "A buffer is not big enough", - "Internal error in the code, should not happen", - "Invalid argument", - "The CRC_A does not match", - "A MIFARE PICC responded with NAK" -}; - -///////////////////////////////////////////////////////////////////////////////////// -// Functions for setting up the driver -///////////////////////////////////////////////////////////////////////////////////// - -/** - * Constructor. - * Prepares the output pins. - */ -MFRC522::MFRC522(PinName mosi, - PinName miso, - PinName sclk, - PinName cs, - PinName reset) : m_SPI(mosi, miso, sclk), m_CS(cs), m_RESET(reset) -{ - /* init MFRC522 SPI BUS */ - m_SPI.format(8, 0); - m_SPI.frequency(8000000); - - /* init MFRC522 SPI_CS pin */ - m_CS = 1; - - /* init MFRC522 RESET pin */ - m_RESET = 1; -} // End constructor - - -///////////////////////////////////////////////////////////////////////////////////// -// Basic interface functions for communicating with the MFRC522 -///////////////////////////////////////////////////////////////////////////////////// - -/** - * Writes a byte to the specified register in the MFRC522 chip. - * The interface is described in the datasheet section 8.1.2. - */ -void MFRC522::PCD_WriteRegister(uint8_t reg, uint8_t value) -{ - m_CS = 0; /* Select SPI Chip MFRC522 */ - - // MSB == 0 is for writing. LSB is not used in address. Datasheet section 8.1.2.3. - (void) m_SPI.write(reg & 0x7E); - (void) m_SPI.write(value); - - m_CS = 1; /* Release SPI Chip MFRC522 */ -} // End PCD_WriteRegister() - -/** - * Writes a number of bytes to the specified register in the MFRC522 chip. - * The interface is described in the datasheet section 8.1.2. - */ -void MFRC522::PCD_WriteRegister(uint8_t reg, uint8_t count, uint8_t *values) -{ - m_CS = 0; /* Select SPI Chip MFRC522 */ - - // MSB == 0 is for writing. LSB is not used in address. Datasheet section 8.1.2.3. - (void) m_SPI.write(reg & 0x7E); - for (uint8_t index = 0; index < count; index++) - { - (void) m_SPI.write(values[index]); - } - - m_CS = 1; /* Release SPI Chip MFRC522 */ -} // End PCD_WriteRegister() - -/** - * Reads a byte from the specified register in the MFRC522 chip. - * The interface is described in the datasheet section 8.1.2. - */ -uint8_t MFRC522::PCD_ReadRegister(uint8_t reg) -{ - uint8_t value; - m_CS = 0; /* Select SPI Chip MFRC522 */ - - // MSB == 1 is for reading. LSB is not used in address. Datasheet section 8.1.2.3. - (void) m_SPI.write(0x80 | reg); - value = m_SPI.write(0); // Read the value back. Send 0 to stop reading. - - m_CS = 1; /* Release SPI Chip MFRC522 */ - return value; -} // End PCD_ReadRegister() - -/** - * Reads a number of bytes from the specified register in the MFRC522 chip. - * The interface is described in the datasheet section 8.1.2. - */ -void MFRC522::PCD_ReadRegister(uint8_t reg, uint8_t count, uint8_t *values, uint8_t rxAlign) -{ - if (count == 0) { return; } - - //Serial.print("Reading "); Serial.print(count); Serial.println(" bytes from register."); - uint8_t address = 0x80 | reg; // MSB == 1 is for reading. LSB is not used in address. Datasheet section 8.1.2.3. - uint8_t index = 0; // Index in values array. - - m_CS = 0; /* Select SPI Chip MFRC522 */ - count--; // One read is performed outside of the loop - (void) m_SPI.write(address); // Tell MFRC522 which address we want to read - - while (index < count) - { - if ((index == 0) && rxAlign) // Only update bit positions rxAlign..7 in values[0] - { - // Create bit mask for bit positions rxAlign..7 - uint8_t mask = 0; - for (uint8_t i = rxAlign; i <= 7; i++) - { - mask |= (1 << i); - } - - // Read value and tell that we want to read the same address again. - uint8_t value = m_SPI.write(address); - - // Apply mask to both current value of values[0] and the new data in value. - values[0] = (values[index] & ~mask) | (value & mask); - } - else - { - // Read value and tell that we want to read the same address again. - values[index] = m_SPI.write(address); - } - - index++; - } - - values[index] = m_SPI.write(0); // Read the final byte. Send 0 to stop reading. - - m_CS = 1; /* Release SPI Chip MFRC522 */ -} // End PCD_ReadRegister() - -/** - * Sets the bits given in mask in register reg. - */ -void MFRC522::PCD_SetRegisterBitMask(uint8_t reg, uint8_t mask) -{ - uint8_t tmp; - tmp = PCD_ReadRegister(reg); - PCD_WriteRegister(reg, tmp | mask); // set bit mask -} // End PCD_SetRegisterBitMask() - -/** - * Clears the bits given in mask from register reg. - */ -void MFRC522::PCD_ClearRegisterBitMask(uint8_t reg, uint8_t mask) -{ - uint8_t tmp; - tmp = PCD_ReadRegister(reg); - PCD_WriteRegister(reg, tmp & (~mask)); // clear bit mask -} // End PCD_ClearRegisterBitMask() - - -/** - * Use the CRC coprocessor in the MFRC522 to calculate a CRC_A. - * - * @return STATUS_OK on success, STATUS_??? otherwise. - */ -uint8_t MFRC522::PCD_CalculateCRC(uint8_t *data, uint8_t length, uint8_t *result) -{ - PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command. - PCD_WriteRegister(DivIrqReg, 0x04); // Clear the CRCIRq interrupt request bit - PCD_SetRegisterBitMask(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization - PCD_WriteRegister(FIFODataReg, length, data); // Write data to the FIFO - PCD_WriteRegister(CommandReg, PCD_CalcCRC); // Start the calculation - - // Wait for the CRC calculation to complete. Each iteration of the while-loop takes 17.73�s. - uint16_t i = 5000; - uint8_t n; - while (1) - { - n = PCD_ReadRegister(DivIrqReg); // DivIrqReg[7..0] bits are: Set2 reserved reserved MfinActIRq reserved CRCIRq reserved reserved - if (n & 0x04) - { - // CRCIRq bit set - calculation done - break; - } - if (--i == 0) - { - // The emergency break. We will eventually terminate on this one after 89ms. - // Communication with the MFRC522 might be down. - return STATUS_TIMEOUT; - } - } - - // Stop calculating CRC for new content in the FIFO. - PCD_WriteRegister(CommandReg, PCD_Idle); - - // Transfer the result from the registers to the result buffer - result[0] = PCD_ReadRegister(CRCResultRegL); - result[1] = PCD_ReadRegister(CRCResultRegH); - return STATUS_OK; -} // End PCD_CalculateCRC() - - -///////////////////////////////////////////////////////////////////////////////////// -// Functions for manipulating the MFRC522 -///////////////////////////////////////////////////////////////////////////////////// - -/** - * Initializes the MFRC522 chip. - */ -void MFRC522::PCD_Init() -{ - /* Reset MFRC522 */ - m_RESET = 0; - wait_ms(10); - m_RESET = 1; - // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74�s. Let us be generous: 50ms. - wait_ms(50); - - // When communicating with a PICC we need a timeout if something goes wrong. - // f_timer = 13.56 MHz / (2*TPreScaler+1) where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo]. - // TPrescaler_Hi are the four low bits in TModeReg. TPrescaler_Lo is TPrescalerReg. - PCD_WriteRegister(TModeReg, 0x80); // TAuto=1; timer starts automatically at the end of the transmission in all communication modes at all speeds - PCD_WriteRegister(TPrescalerReg, 0xA9); // TPreScaler = TModeReg[3..0]:TPrescalerReg, ie 0x0A9 = 169 => f_timer=40kHz, ie a timer period of 25�s. - PCD_WriteRegister(TReloadRegH, 0x03); // Reload timer with 0x3E8 = 1000, ie 25ms before timeout. - PCD_WriteRegister(TReloadRegL, 0xE8); - - PCD_WriteRegister(TxASKReg, 0x40); // Default 0x00. Force a 100 % ASK modulation independent of the ModGsPReg register setting - PCD_WriteRegister(ModeReg, 0x3D); // Default 0x3F. Set the preset value for the CRC coprocessor for the CalcCRC command to 0x6363 (ISO 14443-3 part 6.2.4) - PCD_AntennaOn(); // Enable the antenna driver pins TX1 and TX2 (they were disabled by the reset) -} // End PCD_Init() - -/** - * Performs a soft reset on the MFRC522 chip and waits for it to be ready again. - */ -void MFRC522::PCD_Reset() -{ - PCD_WriteRegister(CommandReg, PCD_SoftReset); // Issue the SoftReset command. - // The datasheet does not mention how long the SoftRest command takes to complete. - // But the MFRC522 might have been in soft power-down mode (triggered by bit 4 of CommandReg) - // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74�s. Let us be generous: 50ms. - wait_ms(50); - - // Wait for the PowerDown bit in CommandReg to be cleared - while (PCD_ReadRegister(CommandReg) & (1<<4)) - { - // PCD still restarting - unlikely after waiting 50ms, but better safe than sorry. - } -} // End PCD_Reset() - -/** - * Turns the antenna on by enabling pins TX1 and TX2. - * After a reset these pins disabled. - */ -void MFRC522::PCD_AntennaOn() -{ - uint8_t value = PCD_ReadRegister(TxControlReg); - if ((value & 0x03) != 0x03) - { - PCD_WriteRegister(TxControlReg, value | 0x03); - } -} // End PCD_AntennaOn() - -///////////////////////////////////////////////////////////////////////////////////// -// Functions for communicating with PICCs -///////////////////////////////////////////////////////////////////////////////////// - -/** - * Executes the Transceive command. - * CRC validation can only be done if backData and backLen are specified. - * - * @return STATUS_OK on success, STATUS_??? otherwise. - */ -uint8_t MFRC522::PCD_TransceiveData(uint8_t *sendData, ///< Pointer to the data to transfer to the FIFO. - uint8_t sendLen, ///< Number of bytes to transfer to the FIFO. - uint8_t *backData, ///< NULL or pointer to buffer if data should be read back after executing the command. - uint8_t *backLen, ///< In: Max number of bytes to write to *backData. Out: The number of bytes returned. - uint8_t *validBits, ///< In/Out: The number of valid bits in the last byte. 0 for 8 valid bits. Default NULL. - uint8_t rxAlign, ///< In: Defines the bit position in backData[0] for the first bit received. Default 0. - bool checkCRC) ///< In: True => The last two bytes of the response is assumed to be a CRC_A that must be validated. -{ - uint8_t waitIRq = 0x30; // RxIRq and IdleIRq - return PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, sendData, sendLen, backData, backLen, validBits, rxAlign, checkCRC); -} // End PCD_TransceiveData() - -/** - * Transfers data to the MFRC522 FIFO, executes a commend, waits for completion and transfers data back from the FIFO. - * CRC validation can only be done if backData and backLen are specified. - * - * @return STATUS_OK on success, STATUS_??? otherwise. - */ -uint8_t MFRC522::PCD_CommunicateWithPICC(uint8_t command, ///< The command to execute. One of the PCD_Command enums. - uint8_t waitIRq, ///< The bits in the ComIrqReg register that signals successful completion of the command. - uint8_t *sendData, ///< Pointer to the data to transfer to the FIFO. - uint8_t sendLen, ///< Number of bytes to transfer to the FIFO. - uint8_t *backData, ///< NULL or pointer to buffer if data should be read back after executing the command. - uint8_t *backLen, ///< In: Max number of bytes to write to *backData. Out: The number of bytes returned. - uint8_t *validBits, ///< In/Out: The number of valid bits in the last byte. 0 for 8 valid bits. - uint8_t rxAlign, ///< In: Defines the bit position in backData[0] for the first bit received. Default 0. - bool checkCRC) ///< In: True => The last two bytes of the response is assumed to be a CRC_A that must be validated. -{ - uint8_t n, _validBits = 0; - uint32_t i; - - // Prepare values for BitFramingReg - uint8_t txLastBits = validBits ? *validBits : 0; - uint8_t bitFraming = (rxAlign << 4) + txLastBits; // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0] - - PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command. - PCD_WriteRegister(ComIrqReg, 0x7F); // Clear all seven interrupt request bits - PCD_SetRegisterBitMask(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization - PCD_WriteRegister(FIFODataReg, sendLen, sendData); // Write sendData to the FIFO - PCD_WriteRegister(BitFramingReg, bitFraming); // Bit adjustments - PCD_WriteRegister(CommandReg, command); // Execute the command - if (command == PCD_Transceive) - { - PCD_SetRegisterBitMask(BitFramingReg, 0x80); // StartSend=1, transmission of data starts - } - - // Wait for the command to complete. - // In PCD_Init() we set the TAuto flag in TModeReg. This means the timer automatically starts when the PCD stops transmitting. - // Each iteration of the do-while-loop takes 17.86�s. - i = 2000; - while (1) - { - n = PCD_ReadRegister(ComIrqReg); // ComIrqReg[7..0] bits are: Set1 TxIRq RxIRq IdleIRq HiAlertIRq LoAlertIRq ErrIRq TimerIRq - if (n & waitIRq) - { // One of the interrupts that signal success has been set. - break; - } - - if (n & 0x01) - { // Timer interrupt - nothing received in 25ms - return STATUS_TIMEOUT; - } - - if (--i == 0) - { // The emergency break. If all other condions fail we will eventually terminate on this one after 35.7ms. Communication with the MFRC522 might be down. - return STATUS_TIMEOUT; - } - } - - // Stop now if any errors except collisions were detected. - uint8_t errorRegValue = PCD_ReadRegister(ErrorReg); // ErrorReg[7..0] bits are: WrErr TempErr reserved BufferOvfl CollErr CRCErr ParityErr ProtocolErr - if (errorRegValue & 0x13) - { // BufferOvfl ParityErr ProtocolErr - return STATUS_ERROR; - } - - // If the caller wants data back, get it from the MFRC522. - if (backData && backLen) - { - n = PCD_ReadRegister(FIFOLevelReg); // Number of bytes in the FIFO - if (n > *backLen) - { - return STATUS_NO_ROOM; - } - - *backLen = n; // Number of bytes returned - PCD_ReadRegister(FIFODataReg, n, backData, rxAlign); // Get received data from FIFO - _validBits = PCD_ReadRegister(ControlReg) & 0x07; // RxLastBits[2:0] indicates the number of valid bits in the last received byte. If this value is 000b, the whole byte is valid. - if (validBits) - { - *validBits = _validBits; - } - } - - // Tell about collisions - if (errorRegValue & 0x08) { // CollErr - return STATUS_COLLISION; - } - - // Perform CRC_A validation if requested. - if (backData && backLen && checkCRC) - { - // In this case a MIFARE Classic NAK is not OK. - if (*backLen == 1 && _validBits == 4) - { - return STATUS_MIFARE_NACK; - } - - // We need at least the CRC_A value and all 8 bits of the last byte must be received. - if (*backLen < 2 || _validBits != 0) - { - return STATUS_CRC_WRONG; - } - - // Verify CRC_A - do our own calculation and store the control in controlBuffer. - uint8_t controlBuffer[2]; - n = PCD_CalculateCRC(&backData[0], *backLen - 2, &controlBuffer[0]); - if (n != STATUS_OK) - { - return n; - } - - if ((backData[*backLen - 2] != controlBuffer[0]) || (backData[*backLen - 1] != controlBuffer[1])) - { - return STATUS_CRC_WRONG; - } - } - - return STATUS_OK; -} // End PCD_CommunicateWithPICC() - -/** - * Transmits a REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame. - * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. - * - * @return STATUS_OK on success, STATUS_??? otherwise. - */ -uint8_t MFRC522::PICC_RequestA(uint8_t *bufferATQA, uint8_t *bufferSize) -{ - return PICC_REQA_or_WUPA(PICC_CMD_REQA, bufferATQA, bufferSize); -} // End PICC_RequestA() - -/** - * Transmits a Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame. - * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. - * - * @return STATUS_OK on success, STATUS_??? otherwise. - */ -uint8_t MFRC522::PICC_WakeupA(uint8_t *bufferATQA, uint8_t *bufferSize) -{ - return PICC_REQA_or_WUPA(PICC_CMD_WUPA, bufferATQA, bufferSize); -} // End PICC_WakeupA() - -/** - * Transmits REQA or WUPA commands. - * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. - * - * @return STATUS_OK on success, STATUS_??? otherwise. - */ -uint8_t MFRC522::PICC_REQA_or_WUPA(uint8_t command, uint8_t *bufferATQA, uint8_t *bufferSize) -{ - uint8_t validBits; - uint8_t status; - - if (bufferATQA == NULL || *bufferSize < 2) { // The ATQA response is 2 bytes long. - return STATUS_NO_ROOM; - } - - PCD_ClearRegisterBitMask(CollReg, 0x80); // ValuesAfterColl=1 => Bits received after collision are cleared. - validBits = 7; // For REQA and WUPA we need the short frame format - transmit only 7 bits of the last (and only) byte. TxLastBits = BitFramingReg[2..0] - status = PCD_TransceiveData(&command, 1, bufferATQA, bufferSize, &validBits); - if (status != STATUS_OK) - { - return status; - } - - if (*bufferSize != 2 || validBits != 0) { // ATQA must be exactly 16 bits. - return STATUS_ERROR; - } - - return STATUS_OK; -} // End PICC_REQA_or_WUPA() - -/** - * Transmits SELECT/ANTICOLLISION commands to select a single PICC. - * Before calling this function the PICCs must be placed in the READY(*) state by calling PICC_RequestA() or PICC_WakeupA(). - * On success: - * - The chosen PICC is in state ACTIVE(*) and all other PICCs have returned to state IDLE/HALT. (Figure 7 of the ISO/IEC 14443-3 draft.) - * - The UID size and value of the chosen PICC is returned in *uid along with the SAK. - * - * A PICC UID consists of 4, 7 or 10 bytes. - * Only 4 bytes can be specified in a SELECT command, so for the longer UIDs two or three iterations are used: - * UID size Number of UID bytes Cascade levels Example of PICC - * ======== =================== ============== =============== - * single 4 1 MIFARE Classic - * double 7 2 MIFARE Ultralight - * triple 10 3 Not currently in use? - * - * @return STATUS_OK on success, STATUS_??? otherwise. - */ -uint8_t MFRC522::PICC_Select(Uid *uid, uint8_t validBits) -{ - bool uidComplete; - bool selectDone; - bool useCascadeTag; - uint8_t cascadeLevel = 1; - uint8_t result; - uint8_t count; - uint8_t index; - uint8_t uidIndex; // The first index in uid->uidByte[] that is used in the current Cascade Level. - uint8_t currentLevelKnownBits; // The number of known UID bits in the current Cascade Level. - uint8_t buffer[9]; // The SELECT/ANTICOLLISION commands uses a 7 byte standard frame + 2 bytes CRC_A - uint8_t bufferUsed; // The number of bytes used in the buffer, ie the number of bytes to transfer to the FIFO. - uint8_t rxAlign; // Used in BitFramingReg. Defines the bit position for the first bit received. - uint8_t txLastBits; // Used in BitFramingReg. The number of valid bits in the last transmitted byte. - uint8_t *responseBuffer; - uint8_t responseLength; - - // Description of buffer structure: - // Byte 0: SEL Indicates the Cascade Level: PICC_CMD_SEL_CL1, PICC_CMD_SEL_CL2 or PICC_CMD_SEL_CL3 - // Byte 1: NVB Number of Valid Bits (in complete command, not just the UID): High nibble: complete bytes, Low nibble: Extra bits. - // Byte 2: UID-data or CT See explanation below. CT means Cascade Tag. - // Byte 3: UID-data - // Byte 4: UID-data - // Byte 5: UID-data - // Byte 6: BCC Block Check Character - XOR of bytes 2-5 - // Byte 7: CRC_A - // Byte 8: CRC_A - // The BCC and CRC_A is only transmitted if we know all the UID bits of the current Cascade Level. - // - // Description of bytes 2-5: (Section 6.5.4 of the ISO/IEC 14443-3 draft: UID contents and cascade levels) - // UID size Cascade level Byte2 Byte3 Byte4 Byte5 - // ======== ============= ===== ===== ===== ===== - // 4 bytes 1 uid0 uid1 uid2 uid3 - // 7 bytes 1 CT uid0 uid1 uid2 - // 2 uid3 uid4 uid5 uid6 - // 10 bytes 1 CT uid0 uid1 uid2 - // 2 CT uid3 uid4 uid5 - // 3 uid6 uid7 uid8 uid9 - - // Sanity checks - if (validBits > 80) - { - return STATUS_INVALID; - } - - // Prepare MFRC522 - PCD_ClearRegisterBitMask(CollReg, 0x80); // ValuesAfterColl=1 => Bits received after collision are cleared. - - // Repeat Cascade Level loop until we have a complete UID. - uidComplete = false; - while ( ! uidComplete) - { - // Set the Cascade Level in the SEL byte, find out if we need to use the Cascade Tag in byte 2. - switch (cascadeLevel) - { - case 1: - buffer[0] = PICC_CMD_SEL_CL1; - uidIndex = 0; - useCascadeTag = validBits && uid->size > 4; // When we know that the UID has more than 4 bytes - break; - - case 2: - buffer[0] = PICC_CMD_SEL_CL2; - uidIndex = 3; - useCascadeTag = validBits && uid->size > 7; // When we know that the UID has more than 7 bytes - break; - - case 3: - buffer[0] = PICC_CMD_SEL_CL3; - uidIndex = 6; - useCascadeTag = false; // Never used in CL3. - break; - - default: - return STATUS_INTERNAL_ERROR; - //break; - } - - // How many UID bits are known in this Cascade Level? - if(validBits > (8 * uidIndex)) - { - currentLevelKnownBits = validBits - (8 * uidIndex); - } - else - { - currentLevelKnownBits = 0; - } - // Copy the known bits from uid->uidByte[] to buffer[] - index = 2; // destination index in buffer[] - if (useCascadeTag) - { - buffer[index++] = PICC_CMD_CT; - } - - uint8_t bytesToCopy = currentLevelKnownBits / 8 + (currentLevelKnownBits % 8 ? 1 : 0); // The number of bytes needed to represent the known bits for this level. - if (bytesToCopy) - { - uint8_t maxBytes = useCascadeTag ? 3 : 4; // Max 4 bytes in each Cascade Level. Only 3 left if we use the Cascade Tag - if (bytesToCopy > maxBytes) - { - bytesToCopy = maxBytes; - } - - for (count = 0; count < bytesToCopy; count++) - { - buffer[index++] = uid->uidByte[uidIndex + count]; - } - } - // Now that the data has been copied we need to include the 8 bits in CT in currentLevelKnownBits - if (useCascadeTag) - { - currentLevelKnownBits += 8; - } - - // Repeat anti collision loop until we can transmit all UID bits + BCC and receive a SAK - max 32 iterations. - selectDone = false; - while ( ! selectDone) - { - // Find out how many bits and bytes to send and receive. - if (currentLevelKnownBits >= 32) { // All UID bits in this Cascade Level are known. This is a SELECT. - //Serial.print("SELECT: currentLevelKnownBits="); Serial.println(currentLevelKnownBits, DEC); - buffer[1] = 0x70; // NVB - Number of Valid Bits: Seven whole bytes - // Calulate BCC - Block Check Character - buffer[6] = buffer[2] ^ buffer[3] ^ buffer[4] ^ buffer[5]; - // Calculate CRC_A - result = PCD_CalculateCRC(buffer, 7, &buffer[7]); - if (result != STATUS_OK) - { - return result; - } - txLastBits = 0; // 0 => All 8 bits are valid. - bufferUsed = 9; - // Store response in the last 3 bytes of buffer (BCC and CRC_A - not needed after tx) - responseBuffer = &buffer[6]; - responseLength = 3; - } - else { // This is an ANTICOLLISION. - //Serial.print("ANTICOLLISION: currentLevelKnownBits="); Serial.println(currentLevelKnownBits, DEC); - txLastBits = currentLevelKnownBits % 8; - count = currentLevelKnownBits / 8; // Number of whole bytes in the UID part. - index = 2 + count; // Number of whole bytes: SEL + NVB + UIDs - buffer[1] = (index << 4) + txLastBits; // NVB - Number of Valid Bits - bufferUsed = index + (txLastBits ? 1 : 0); - // Store response in the unused part of buffer - responseBuffer = &buffer[index]; - responseLength = sizeof(buffer) - index; - } - - // Set bit adjustments - rxAlign = txLastBits; // Having a seperate variable is overkill. But it makes the next line easier to read. - PCD_WriteRegister(BitFramingReg, (rxAlign << 4) + txLastBits); // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0] - - // Transmit the buffer and receive the response. - result = PCD_TransceiveData(buffer, bufferUsed, responseBuffer, &responseLength, &txLastBits, rxAlign); - if (result == STATUS_COLLISION) { // More than one PICC in the field => collision. - result = PCD_ReadRegister(CollReg); // CollReg[7..0] bits are: ValuesAfterColl reserved CollPosNotValid CollPos[4:0] - if (result & 0x20) { // CollPosNotValid - return STATUS_COLLISION; // Without a valid collision position we cannot continue - } - uint8_t collisionPos = result & 0x1F; // Values 0-31, 0 means bit 32. - if (collisionPos == 0) - { - collisionPos = 32; - } - if (collisionPos <= currentLevelKnownBits) { // No progress - should not happen - return STATUS_INTERNAL_ERROR; - } - // Choose the PICC with the bit set. - currentLevelKnownBits = collisionPos; - count = (currentLevelKnownBits - 1) % 8; // The bit to modify - index = 1 + (currentLevelKnownBits / 8) + (count ? 1 : 0); // First byte is index 0. - buffer[index] |= (1 << count); - } - else if (result != STATUS_OK) { - return result; - } - else { // STATUS_OK - if (currentLevelKnownBits >= 32) { // This was a SELECT. - selectDone = true; // No more anticollision - // We continue below outside the while. - } - else { // This was an ANTICOLLISION. - // We now have all 32 bits of the UID in this Cascade Level - currentLevelKnownBits = 32; - // Run loop again to do the SELECT. - } - } - } // End of while ( ! selectDone) - - // We do not check the CBB - it was constructed by us above. - - // Copy the found UID bytes from buffer[] to uid->uidByte[] - index = (buffer[2] == PICC_CMD_CT) ? 3 : 2; // source index in buffer[] - bytesToCopy = (buffer[2] == PICC_CMD_CT) ? 3 : 4; - for (count = 0; count < bytesToCopy; count++) - { - uid->uidByte[uidIndex + count] = buffer[index++]; - } - - // Check response SAK (Select Acknowledge) - if (responseLength != 3 || txLastBits != 0) { // SAK must be exactly 24 bits (1 byte + CRC_A). - return STATUS_ERROR; - } - // Verify CRC_A - do our own calculation and store the control in buffer[2..3] - those bytes are not needed anymore. - result = PCD_CalculateCRC(responseBuffer, 1, &buffer[2]); - if (result != STATUS_OK) - { - return result; - } - if ((buffer[2] != responseBuffer[1]) || (buffer[3] != responseBuffer[2])) - { - return STATUS_CRC_WRONG; - } - if (responseBuffer[0] & 0x04) { // Cascade bit set - UID not complete yes - cascadeLevel++; - } - else - { - uidComplete = true; - uid->sak = responseBuffer[0]; - } - } // End of while ( ! uidComplete) - - // Set correct uid->size - uid->size = 3 * cascadeLevel + 1; - - return STATUS_OK; -} // End PICC_Select() - -/** - * Instructs a PICC in state ACTIVE(*) to go to state HALT. - * - * @return STATUS_OK on success, STATUS_??? otherwise. - */ -uint8_t MFRC522::PICC_HaltA() -{ - uint8_t result; - uint8_t buffer[4]; - - // Build command buffer - buffer[0] = PICC_CMD_HLTA; - buffer[1] = 0; - // Calculate CRC_A - result = PCD_CalculateCRC(buffer, 2, &buffer[2]); - if (result != STATUS_OK) - { - return result; - } - - // Send the command. - // The standard says: - // If the PICC responds with any modulation during a period of 1 ms after the end of the frame containing the - // HLTA command, this response shall be interpreted as 'not acknowledge'. - // We interpret that this way: Only STATUS_TIMEOUT is an success. - result = PCD_TransceiveData(buffer, sizeof(buffer), NULL, 0); - if (result == STATUS_TIMEOUT) - { - return STATUS_OK; - } - if (result == STATUS_OK) { // That is ironically NOT ok in this case ;-) - return STATUS_ERROR; - } - return result; -} // End PICC_HaltA() - - -///////////////////////////////////////////////////////////////////////////////////// -// Functions for communicating with MIFARE PICCs -///////////////////////////////////////////////////////////////////////////////////// - -/** - * Executes the MFRC522 MFAuthent command. - * This command manages MIFARE authentication to enable a secure communication to any MIFARE Mini, MIFARE 1K and MIFARE 4K card. - * The authentication is described in the MFRC522 datasheet section 10.3.1.9 and http://www.nxp.com/documents/data_sheet/MF1S503x.pdf section 10.1. - * For use with MIFARE Classic PICCs. - * The PICC must be selected - ie in state ACTIVE(*) - before calling this function. - * Remember to call PCD_StopCrypto1() after communicating with the authenticated PICC - otherwise no new communications can start. - * - * All keys are set to FFFFFFFFFFFFh at chip delivery. - * - * @return STATUS_OK on success, STATUS_??? otherwise. Probably STATUS_TIMEOUT if you supply the wrong key. - */ -uint8_t MFRC522::PCD_Authenticate(uint8_t command, uint8_t blockAddr, MIFARE_Key *key, Uid *uid) -{ - uint8_t waitIRq = 0x10; // IdleIRq - - // Build command buffer - uint8_t sendData[12]; - sendData[0] = command; - sendData[1] = blockAddr; - for (uint8_t i = 0; i < MF_KEY_SIZE; i++) { // 6 key bytes - sendData[2+i] = key->keyByte[i]; - } - for (uint8_t i = 0; i < 4; i++) { // The first 4 bytes of the UID - sendData[8+i] = uid->uidByte[i]; - } - - // Start the authentication. - return PCD_CommunicateWithPICC(PCD_MFAuthent, waitIRq, &sendData[0], sizeof(sendData)); -} // End PCD_Authenticate() - -/** - * Used to exit the PCD from its authenticated state. - * Remember to call this function after communicating with an authenticated PICC - otherwise no new communications can start. - */ -void MFRC522::PCD_StopCrypto1() -{ - // Clear MFCrypto1On bit - PCD_ClearRegisterBitMask(Status2Reg, 0x08); // Status2Reg[7..0] bits are: TempSensClear I2CForceHS reserved reserved MFCrypto1On ModemState[2:0] -} // End PCD_StopCrypto1() - -/** - * Reads 16 bytes (+ 2 bytes CRC_A) from the active PICC. - * - * For MIFARE Classic the sector containing the block must be authenticated before calling this function. - * - * For MIFARE Ultralight only addresses 00h to 0Fh are decoded. - * The MF0ICU1 returns a NAK for higher addresses. - * The MF0ICU1 responds to the READ command by sending 16 bytes starting from the page address defined by the command argument. - * For example; if blockAddr is 03h then pages 03h, 04h, 05h, 06h are returned. - * A roll-back is implemented: If blockAddr is 0Eh, then the contents of pages 0Eh, 0Fh, 00h and 01h are returned. - * - * The buffer must be at least 18 bytes because a CRC_A is also returned. - * Checks the CRC_A before returning STATUS_OK. - * - * @return STATUS_OK on success, STATUS_??? otherwise. - */ -uint8_t MFRC522::MIFARE_Read(uint8_t blockAddr, uint8_t *buffer, uint8_t *bufferSize) -{ - uint8_t result; - - // Sanity check - if (buffer == NULL || *bufferSize < 18) - { - return STATUS_NO_ROOM; - } - - // Build command buffer - buffer[0] = PICC_CMD_MF_READ; - buffer[1] = blockAddr; - // Calculate CRC_A - result = PCD_CalculateCRC(buffer, 2, &buffer[2]); - if (result != STATUS_OK) - { - return result; - } - - // Transmit the buffer and receive the response, validate CRC_A. - return PCD_TransceiveData(buffer, 4, buffer, bufferSize, NULL, 0, true); -} // End MIFARE_Read() - -/** - * Writes 16 bytes to the active PICC. - * - * For MIFARE Classic the sector containing the block must be authenticated before calling this function. - * - * For MIFARE Ultralight the opretaion is called "COMPATIBILITY WRITE". - * Even though 16 bytes are transferred to the Ultralight PICC, only the least significant 4 bytes (bytes 0 to 3) - * are written to the specified address. It is recommended to set the remaining bytes 04h to 0Fh to all logic 0. - * * - * @return STATUS_OK on success, STATUS_??? otherwise. - */ -uint8_t MFRC522::MIFARE_Write(uint8_t blockAddr, uint8_t *buffer, uint8_t bufferSize) -{ - uint8_t result; - - // Sanity check - if (buffer == NULL || bufferSize < 16) - { - return STATUS_INVALID; - } - - // Mifare Classic protocol requires two communications to perform a write. - // Step 1: Tell the PICC we want to write to block blockAddr. - uint8_t cmdBuffer[2]; - cmdBuffer[0] = PICC_CMD_MF_WRITE; - cmdBuffer[1] = blockAddr; - result = PCD_MIFARE_Transceive(cmdBuffer, 2); // Adds CRC_A and checks that the response is MF_ACK. - if (result != STATUS_OK) - { - return result; - } - - // Step 2: Transfer the data - result = PCD_MIFARE_Transceive( buffer, bufferSize); // Adds CRC_A and checks that the response is MF_ACK. - if (result != STATUS_OK) - { - return result; - } - - return STATUS_OK; -} // End MIFARE_Write() - -/** - * Writes a 4 byte page to the active MIFARE Ultralight PICC. - * - * @return STATUS_OK on success, STATUS_??? otherwise. - */ -uint8_t MFRC522::MIFARE_Ultralight_Write(uint8_t page, uint8_t *buffer, uint8_t bufferSize) -{ - uint8_t result; - - // Sanity check - if (buffer == NULL || bufferSize < 4) - { - return STATUS_INVALID; - } - - // Build commmand buffer - uint8_t cmdBuffer[6]; - cmdBuffer[0] = PICC_CMD_UL_WRITE; - cmdBuffer[1] = page; - memcpy(&cmdBuffer[2], buffer, 4); - - // Perform the write - result = PCD_MIFARE_Transceive(cmdBuffer, 6); // Adds CRC_A and checks that the response is MF_ACK. - if (result != STATUS_OK) - { - return result; - } - return STATUS_OK; -} // End MIFARE_Ultralight_Write() - -/** - * MIFARE Decrement subtracts the delta from the value of the addressed block, and stores the result in a volatile memory. - * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. - * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. - * Use MIFARE_Transfer() to store the result in a block. - * - * @return STATUS_OK on success, STATUS_??? otherwise. - */ -uint8_t MFRC522::MIFARE_Decrement(uint8_t blockAddr, uint32_t delta) -{ - return MIFARE_TwoStepHelper(PICC_CMD_MF_DECREMENT, blockAddr, delta); -} // End MIFARE_Decrement() - -/** - * MIFARE Increment adds the delta to the value of the addressed block, and stores the result in a volatile memory. - * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. - * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. - * Use MIFARE_Transfer() to store the result in a block. - * - * @return STATUS_OK on success, STATUS_??? otherwise. - */ -uint8_t MFRC522::MIFARE_Increment(uint8_t blockAddr, uint32_t delta) -{ - return MIFARE_TwoStepHelper(PICC_CMD_MF_INCREMENT, blockAddr, delta); -} // End MIFARE_Increment() - -/** - * MIFARE Restore copies the value of the addressed block into a volatile memory. - * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. - * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. - * Use MIFARE_Transfer() to store the result in a block. - * - * @return STATUS_OK on success, STATUS_??? otherwise. - */ -uint8_t MFRC522::MIFARE_Restore(uint8_t blockAddr) -{ - // The datasheet describes Restore as a two step operation, but does not explain what data to transfer in step 2. - // Doing only a single step does not work, so I chose to transfer 0L in step two. - return MIFARE_TwoStepHelper(PICC_CMD_MF_RESTORE, blockAddr, 0L); -} // End MIFARE_Restore() - -/** - * Helper function for the two-step MIFARE Classic protocol operations Decrement, Increment and Restore. - * - * @return STATUS_OK on success, STATUS_??? otherwise. - */ -uint8_t MFRC522::MIFARE_TwoStepHelper(uint8_t command, uint8_t blockAddr, uint32_t data) -{ - uint8_t result; - uint8_t cmdBuffer[2]; // We only need room for 2 bytes. - - // Step 1: Tell the PICC the command and block address - cmdBuffer[0] = command; - cmdBuffer[1] = blockAddr; - result = PCD_MIFARE_Transceive( cmdBuffer, 2); // Adds CRC_A and checks that the response is MF_ACK. - if (result != STATUS_OK) - { - return result; - } - - // Step 2: Transfer the data - result = PCD_MIFARE_Transceive((uint8_t *) &data, 4, true); // Adds CRC_A and accept timeout as success. - if (result != STATUS_OK) - { - return result; - } - - return STATUS_OK; -} // End MIFARE_TwoStepHelper() - -/** - * MIFARE Transfer writes the value stored in the volatile memory into one MIFARE Classic block. - * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. - * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. - * - * @return STATUS_OK on success, STATUS_??? otherwise. - */ -uint8_t MFRC522::MIFARE_Transfer(uint8_t blockAddr) -{ - uint8_t result; - uint8_t cmdBuffer[2]; // We only need room for 2 bytes. - - // Tell the PICC we want to transfer the result into block blockAddr. - cmdBuffer[0] = PICC_CMD_MF_TRANSFER; - cmdBuffer[1] = blockAddr; - result = PCD_MIFARE_Transceive( cmdBuffer, 2); // Adds CRC_A and checks that the response is MF_ACK. - if (result != STATUS_OK) - { - return result; - } - return STATUS_OK; -} // End MIFARE_Transfer() - - -///////////////////////////////////////////////////////////////////////////////////// -// Support functions -///////////////////////////////////////////////////////////////////////////////////// - -/** - * Wrapper for MIFARE protocol communication. - * Adds CRC_A, executes the Transceive command and checks that the response is MF_ACK or a timeout. - * - * @return STATUS_OK on success, STATUS_??? otherwise. - */ -uint8_t MFRC522::PCD_MIFARE_Transceive(uint8_t *sendData, uint8_t sendLen, bool acceptTimeout) -{ - uint8_t result; - uint8_t cmdBuffer[18]; // We need room for 16 bytes data and 2 bytes CRC_A. - - // Sanity check - if (sendData == NULL || sendLen > 16) - { - return STATUS_INVALID; - } - - // Copy sendData[] to cmdBuffer[] and add CRC_A - memcpy(cmdBuffer, sendData, sendLen); - result = PCD_CalculateCRC(cmdBuffer, sendLen, &cmdBuffer[sendLen]); - if (result != STATUS_OK) - { - return result; - } - sendLen += 2; - - // Transceive the data, store the reply in cmdBuffer[] - uint8_t waitIRq = 0x30; // RxIRq and IdleIRq - uint8_t cmdBufferSize = sizeof(cmdBuffer); - uint8_t validBits = 0; - result = PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, cmdBuffer, sendLen, cmdBuffer, &cmdBufferSize, &validBits); - if (acceptTimeout && result == STATUS_TIMEOUT) - { - return STATUS_OK; - } - - if (result != STATUS_OK) - { - return result; - } - - // The PICC must reply with a 4 bit ACK - if (cmdBufferSize != 1 || validBits != 4) - { - return STATUS_ERROR; - } - - if (cmdBuffer[0] != MF_ACK) - { - return STATUS_MIFARE_NACK; - } - - return STATUS_OK; -} // End PCD_MIFARE_Transceive() - - -/** - * Translates the SAK (Select Acknowledge) to a PICC type. - * - * @return PICC_Type - */ -uint8_t MFRC522::PICC_GetType(uint8_t sak) -{ - uint8_t retType = PICC_TYPE_UNKNOWN; - - if (sak & 0x04) // UID not complete - { - retType = PICC_TYPE_NOT_COMPLETE; - } - else - { - switch (sak) - { - case 0x09: retType = PICC_TYPE_MIFARE_MINI; break; - case 0x08: retType = PICC_TYPE_MIFARE_1K; break; - case 0x18: retType = PICC_TYPE_MIFARE_4K; break; - case 0x00: retType = PICC_TYPE_MIFARE_UL; break; - case 0x10: - case 0x11: retType = PICC_TYPE_MIFARE_PLUS; break; - case 0x01: retType = PICC_TYPE_TNP3XXX; break; - default: - if (sak & 0x20) - { - retType = PICC_TYPE_ISO_14443_4; - } - else if (sak & 0x40) - { - retType = PICC_TYPE_ISO_18092; - } - break; - } - } - - return (retType); -} // End PICC_GetType() - -/** - * Returns a string pointer to the PICC type name. - * - */ -std::string MFRC522::PICC_GetTypeName(uint8_t piccType) -{ - if(piccType == PICC_TYPE_NOT_COMPLETE) - { - return ("SAK indicates UID is not complete."); - } - - return(_TypeNamePICC[piccType]); -} // End PICC_GetTypeName() - -/** - * Returns a string pointer to a status code name. - * - */ -std::string MFRC522::GetStatusCodeName(uint8_t code) -{ - return(_ErrorMessage[code]); -} // End GetStatusCodeName() - -/** - * Calculates the bit pattern needed for the specified access bits. In the [C1 C2 C3] tupples C1 is MSB (=4) and C3 is LSB (=1). - */ -void MFRC522::MIFARE_SetAccessBits(uint8_t *accessBitBuffer, ///< Pointer to byte 6, 7 and 8 in the sector trailer. Bytes [0..2] will be set. - uint8_t g0, ///< Access bits [C1 C2 C3] for block 0 (for sectors 0-31) or blocks 0-4 (for sectors 32-39) - uint8_t g1, ///< Access bits C1 C2 C3] for block 1 (for sectors 0-31) or blocks 5-9 (for sectors 32-39) - uint8_t g2, ///< Access bits C1 C2 C3] for block 2 (for sectors 0-31) or blocks 10-14 (for sectors 32-39) - uint8_t g3) ///< Access bits C1 C2 C3] for the sector trailer, block 3 (for sectors 0-31) or block 15 (for sectors 32-39) -{ - uint8_t c1 = ((g3 & 4) << 1) | ((g2 & 4) << 0) | ((g1 & 4) >> 1) | ((g0 & 4) >> 2); - uint8_t c2 = ((g3 & 2) << 2) | ((g2 & 2) << 1) | ((g1 & 2) << 0) | ((g0 & 2) >> 1); - uint8_t c3 = ((g3 & 1) << 3) | ((g2 & 1) << 2) | ((g1 & 1) << 1) | ((g0 & 1) << 0); - - accessBitBuffer[0] = (~c2 & 0xF) << 4 | (~c1 & 0xF); - accessBitBuffer[1] = c1 << 4 | (~c3 & 0xF); - accessBitBuffer[2] = c3 << 4 | c2; -} // End MIFARE_SetAccessBits() - -///////////////////////////////////////////////////////////////////////////////////// -// Convenience functions - does not add extra functionality -///////////////////////////////////////////////////////////////////////////////////// - -/** - * Returns true if a PICC responds to PICC_CMD_REQA. - * Only "new" cards in state IDLE are invited. Sleeping cards in state HALT are ignored. - * - * @return bool - */ -bool MFRC522::PICC_IsNewCardPresent() -{ - uint8_t bufferATQA[2]; - uint8_t bufferSize = sizeof(bufferATQA); - uint8_t result = PICC_RequestA(bufferATQA, &bufferSize); - return (result == STATUS_OK || result == STATUS_COLLISION); -} // End PICC_IsNewCardPresent() - -/** - * Simple wrapper around PICC_Select. - * Returns true if a UID could be read. - * Remember to call PICC_IsNewCardPresent(), PICC_RequestA() or PICC_WakeupA() first. - * The read UID is available in the class variable uid. - * - * @return bool - */ -bool MFRC522::PICC_ReadCardSerial() -{ - uint8_t result = PICC_Select(&uid); - return (result == STATUS_OK); -} // End PICC_ReadCardSerial()