DW1000 UWB driver based on work of Matthias Grob & Manuel Stalder - ETH Zürich - 2015

Dependencies:   BurstSPI

Committer:
AndyA
Date:
Thu Apr 07 14:31:28 2016 +0000
Revision:
3:1459d2aa6b97
Parent:
1:dcbd071f38d5
Child:
4:5f1025df5530
Simplified system config.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
AndyA 0:bddb8cd5e7df 1 #include "DW1000.h"
AndyA 0:bddb8cd5e7df 2
AndyA 0:bddb8cd5e7df 3 #define SPIRATE_PLL (5*1000*1000)
AndyA 0:bddb8cd5e7df 4 #define SPIRATE_OSC (2*1000*1000)
AndyA 0:bddb8cd5e7df 5
AndyA 0:bddb8cd5e7df 6 DW1000::DW1000(UWBMode setup, PinName MOSI, PinName MISO, PinName SCLK, PinName CS, PinName IRQ) : irq(IRQ), spi(MOSI, MISO, SCLK), cs(CS)
AndyA 0:bddb8cd5e7df 7 {
AndyA 0:bddb8cd5e7df 8 setCallbacks(NULL, NULL);
AndyA 0:bddb8cd5e7df 9
AndyA 0:bddb8cd5e7df 10 deselect(); // Chip must be deselected first
AndyA 0:bddb8cd5e7df 11 spi.format(8,0); // Setup the spi for standard 8 bit data and SPI-Mode 0 (GPIO5, GPIO6 open circuit or ground on DW1000)
AndyA 0:bddb8cd5e7df 12 spi.frequency(SPIRATE_PLL); // with a 1MHz clock rate (worked up to 49MHz in our Test)
AndyA 0:bddb8cd5e7df 13
AndyA 0:bddb8cd5e7df 14 resetAll(); // we do a soft reset of the DW1000 everytime the driver starts
AndyA 0:bddb8cd5e7df 15
AndyA 0:bddb8cd5e7df 16 switch (setup) {
AndyA 0:bddb8cd5e7df 17 case user110k: // values from Matthias Grob & Manuel Stalder - ETH Zürich - library
AndyA 0:bddb8cd5e7df 18
AndyA 3:1459d2aa6b97 19 systemConfig.channel = 5;
AndyA 3:1459d2aa6b97 20 systemConfig.prf = prf16MHz;
AndyA 3:1459d2aa6b97 21 systemConfig.dataRate = kbps110;
AndyA 3:1459d2aa6b97 22 systemConfig.sfd = standard;
AndyA 3:1459d2aa6b97 23 systemConfig.preamble = pre1024;
AndyA 3:1459d2aa6b97 24 systemConfig.preambleCode = 3;
AndyA 3:1459d2aa6b97 25 systemConfig.enableSmartPower = true;
AndyA 0:bddb8cd5e7df 26
AndyA 3:1459d2aa6b97 27 setupRadio();
AndyA 0:bddb8cd5e7df 28
AndyA 3:1459d2aa6b97 29 setTxPower(230); // power = 23dB gain
AndyA 0:bddb8cd5e7df 30
AndyA 3:1459d2aa6b97 31 setRxDelay(1<<14); // set delays to 2^14 (1/4 of max)
AndyA 3:1459d2aa6b97 32 setTxDelay(1<<14);
AndyA 0:bddb8cd5e7df 33 break;
AndyA 0:bddb8cd5e7df 34
AndyA 0:bddb8cd5e7df 35 case tunedDefault: // User Manual "2.5.5 Default Configurations that should be modified" p. 22
AndyA 3:1459d2aa6b97 36 default:
AndyA 3:1459d2aa6b97 37
AndyA 3:1459d2aa6b97 38 systemConfig.channel = 5;
AndyA 3:1459d2aa6b97 39 systemConfig.prf = prf16MHz;
AndyA 3:1459d2aa6b97 40 systemConfig.dataRate = kbps6800;
AndyA 3:1459d2aa6b97 41 systemConfig.sfd = standard;
AndyA 3:1459d2aa6b97 42 systemConfig.preamble = pre128;
AndyA 3:1459d2aa6b97 43 systemConfig.preambleCode = 3;
AndyA 3:1459d2aa6b97 44 systemConfig.enableSmartPower = false;;
AndyA 3:1459d2aa6b97 45
AndyA 3:1459d2aa6b97 46 setupRadio();
AndyA 0:bddb8cd5e7df 47
AndyA 3:1459d2aa6b97 48 setTxPower(230,260,290); // power = 23dB gain
AndyA 3:1459d2aa6b97 49 setRxDelay(0);
AndyA 3:1459d2aa6b97 50 setTxDelay(0);
AndyA 0:bddb8cd5e7df 51
AndyA 3:1459d2aa6b97 52 break;
AndyA 3:1459d2aa6b97 53 case minPacketSize:
AndyA 3:1459d2aa6b97 54 systemConfig.channel = 5;
AndyA 3:1459d2aa6b97 55 systemConfig.prf = prf16MHz;
AndyA 3:1459d2aa6b97 56 systemConfig.dataRate = kbps6800;
AndyA 3:1459d2aa6b97 57 systemConfig.sfd = standard;
AndyA 3:1459d2aa6b97 58 systemConfig.preamble = pre64;
AndyA 3:1459d2aa6b97 59 systemConfig.preambleCode = 3;
AndyA 3:1459d2aa6b97 60 systemConfig.enableSmartPower = true;;
AndyA 0:bddb8cd5e7df 61
AndyA 3:1459d2aa6b97 62 setupRadio();
AndyA 3:1459d2aa6b97 63 uint16_t txPower = 25*10; // 25dB gain.
AndyA 3:1459d2aa6b97 64 // 3 packets per ms max. So can increase TX power of 250us packets by 10log(4/3) dB and 125us packets by 10log(8/3) dB
AndyA 3:1459d2aa6b97 65 setTxPower(txPower,txPower,txPower+15,txPower+45); // power = 23dB gain
AndyA 0:bddb8cd5e7df 66
AndyA 0:bddb8cd5e7df 67 setRxDelay(0);
AndyA 0:bddb8cd5e7df 68 setTxDelay(0);
AndyA 0:bddb8cd5e7df 69
AndyA 0:bddb8cd5e7df 70 break;
AndyA 0:bddb8cd5e7df 71 }
AndyA 0:bddb8cd5e7df 72
AndyA 0:bddb8cd5e7df 73 writeRegister8(DW1000_SYS_CFG, 3, 0x20); // enable auto reenabling receiver after error
AndyA 0:bddb8cd5e7df 74
AndyA 0:bddb8cd5e7df 75 irq.rise(this, &DW1000::ISR); // attach interrupt handler to rising edge of interrupt pin from DW1000
AndyA 0:bddb8cd5e7df 76 }
AndyA 0:bddb8cd5e7df 77
AndyA 3:1459d2aa6b97 78 void DW1000::setupRadio()
AndyA 3:1459d2aa6b97 79 {
AndyA 3:1459d2aa6b97 80 setupAGC();
AndyA 3:1459d2aa6b97 81 setupRxConfig();
AndyA 3:1459d2aa6b97 82 setupLDE();
AndyA 3:1459d2aa6b97 83 setupChannel();
AndyA 3:1459d2aa6b97 84 setupAnalogRF();
AndyA 3:1459d2aa6b97 85 setupFreqSynth();
AndyA 3:1459d2aa6b97 86 setupTxCalibration();
AndyA 3:1459d2aa6b97 87 setupTxFrameCtrl();
AndyA 3:1459d2aa6b97 88 setupSystemConfig();
AndyA 3:1459d2aa6b97 89
AndyA 3:1459d2aa6b97 90 }
AndyA 3:1459d2aa6b97 91
AndyA 3:1459d2aa6b97 92 void DW1000::setupAGC()
AndyA 3:1459d2aa6b97 93 {
AndyA 3:1459d2aa6b97 94
AndyA 3:1459d2aa6b97 95 writeRegister16(DW1000_AGC_CTRL, DWAGCCTRL_AGC_CTRL1, 0x0001);
AndyA 3:1459d2aa6b97 96 if (systemConfig.prf == prf16MHz)
AndyA 3:1459d2aa6b97 97 writeRegister16(DW1000_AGC_CTRL, DWAGCCTRL_AGC_TUNE1, 0x8870);
AndyA 3:1459d2aa6b97 98 else
AndyA 3:1459d2aa6b97 99 writeRegister16(DW1000_AGC_CTRL, DWAGCCTRL_AGC_TUNE1, 0x889B);
AndyA 3:1459d2aa6b97 100
AndyA 3:1459d2aa6b97 101 writeRegister32(DW1000_AGC_CTRL, DWAGCCTRL_AGC_TUNE2, 0x2502A907);
AndyA 3:1459d2aa6b97 102 writeRegister16(DW1000_AGC_CTRL, DWAGCCTRL_AGC_TUNE3, 0x0035);
AndyA 3:1459d2aa6b97 103 }
AndyA 3:1459d2aa6b97 104
AndyA 3:1459d2aa6b97 105 void DW1000::setupSystemConfig()
AndyA 3:1459d2aa6b97 106 {
AndyA 3:1459d2aa6b97 107 uint32_t valueToUse = 0;
AndyA 3:1459d2aa6b97 108 valueToUse |= 1<<9; // IRQ output is active high (default)
AndyA 3:1459d2aa6b97 109 valueToUse |= 1<<12; // Disable double buffered Rx (default)
AndyA 3:1459d2aa6b97 110
AndyA 3:1459d2aa6b97 111 // valueToUse |= 3<<16; // enable long (>125bytes data) packets
AndyA 3:1459d2aa6b97 112
AndyA 3:1459d2aa6b97 113 if (!systemConfig.enableSmartPower)
AndyA 3:1459d2aa6b97 114 valueToUse |= 1<<18; // disable smart power
AndyA 3:1459d2aa6b97 115
AndyA 3:1459d2aa6b97 116 if (systemConfig.dataRate == kbps110)
AndyA 3:1459d2aa6b97 117 valueToUse |= 1<<22;
AndyA 3:1459d2aa6b97 118
AndyA 3:1459d2aa6b97 119 writeRegister8(DW1000_SYS_CFG, 0, valueToUse);
AndyA 3:1459d2aa6b97 120 }
AndyA 3:1459d2aa6b97 121
AndyA 3:1459d2aa6b97 122 void DW1000::setupRxConfig()
AndyA 3:1459d2aa6b97 123 {
AndyA 3:1459d2aa6b97 124
AndyA 3:1459d2aa6b97 125 switch (systemConfig.dataRate) {
AndyA 3:1459d2aa6b97 126 case kbps110:
AndyA 3:1459d2aa6b97 127 if (systemConfig.sfd == standard)
AndyA 3:1459d2aa6b97 128 writeRegister16(DW1000_DRX_CONF, DWDRX_DRX_TUNE0B, 0x000A);
AndyA 3:1459d2aa6b97 129 else
AndyA 3:1459d2aa6b97 130 writeRegister16(DW1000_DRX_CONF, DWDRX_DRX_TUNE0B, 0x0016);
AndyA 3:1459d2aa6b97 131 break;
AndyA 3:1459d2aa6b97 132 case kbps850:
AndyA 3:1459d2aa6b97 133 if (systemConfig.sfd == standard)
AndyA 3:1459d2aa6b97 134 writeRegister16(DW1000_DRX_CONF, DWDRX_DRX_TUNE0B, 0x0001);
AndyA 3:1459d2aa6b97 135 else
AndyA 3:1459d2aa6b97 136 writeRegister16(DW1000_DRX_CONF, DWDRX_DRX_TUNE0B, 0x0006);
AndyA 3:1459d2aa6b97 137 break;
AndyA 3:1459d2aa6b97 138 case kbps6800:
AndyA 3:1459d2aa6b97 139 default:
AndyA 3:1459d2aa6b97 140 if (systemConfig.sfd == standard)
AndyA 3:1459d2aa6b97 141 writeRegister16(DW1000_DRX_CONF, DWDRX_DRX_TUNE0B, 0x0001);
AndyA 3:1459d2aa6b97 142 else
AndyA 3:1459d2aa6b97 143 writeRegister16(DW1000_DRX_CONF, DWDRX_DRX_TUNE0B, 0x0002);
AndyA 3:1459d2aa6b97 144 break;
AndyA 3:1459d2aa6b97 145 }
AndyA 3:1459d2aa6b97 146
AndyA 3:1459d2aa6b97 147 if (systemConfig.prf == prf16MHz)
AndyA 3:1459d2aa6b97 148 writeRegister16(DW1000_DRX_CONF, DWDRX_DRX_TUNE1A, 0x0087); //DRX_TUNE1a for 16MHz PRF
AndyA 3:1459d2aa6b97 149 else
AndyA 3:1459d2aa6b97 150 writeRegister16(DW1000_DRX_CONF, DWDRX_DRX_TUNE1A, 0x008D);
AndyA 3:1459d2aa6b97 151
AndyA 3:1459d2aa6b97 152 switch (systemConfig.preamble) {
AndyA 3:1459d2aa6b97 153 case pre1536:
AndyA 3:1459d2aa6b97 154 case pre2048:
AndyA 3:1459d2aa6b97 155 case pre4096:
AndyA 3:1459d2aa6b97 156 writeRegister16(DW1000_DRX_CONF, DWDRX_DRX_TUNE1B, 0x0064); //DRX_TUNE1b for 110kbps & > 1024 symbols
AndyA 3:1459d2aa6b97 157 break;
AndyA 3:1459d2aa6b97 158 default: // 128 to 1024
AndyA 3:1459d2aa6b97 159 writeRegister16(DW1000_DRX_CONF, DWDRX_DRX_TUNE1B, 0x0020); //DRX_TUNE1b for 128- 1024 symbols
AndyA 3:1459d2aa6b97 160 break;
AndyA 3:1459d2aa6b97 161 case pre64:
AndyA 3:1459d2aa6b97 162 writeRegister16(DW1000_DRX_CONF, DWDRX_DRX_TUNE1B, 0x0010); //DRX_TUNE1b for 64 symbols
AndyA 3:1459d2aa6b97 163 break;
AndyA 3:1459d2aa6b97 164 }
AndyA 3:1459d2aa6b97 165
AndyA 3:1459d2aa6b97 166 switch (systemConfig.preamble) {
AndyA 3:1459d2aa6b97 167 case pre64:
AndyA 3:1459d2aa6b97 168 case pre128: // PAC = 8
AndyA 3:1459d2aa6b97 169 if (systemConfig.prf == prf16MHz)
AndyA 3:1459d2aa6b97 170 writeRegister32(DW1000_DRX_CONF, DWDRX_DRX_TUNE2, 0x311A002D); //DRX_TUNE2 PAC 8 for 64MHz PRF
AndyA 3:1459d2aa6b97 171 else
AndyA 3:1459d2aa6b97 172 writeRegister32(DW1000_DRX_CONF, DWDRX_DRX_TUNE2, 0x313B006B); //DRX_TUNE2 PAC 8 for 64MHz PRF
AndyA 3:1459d2aa6b97 173 break;
AndyA 3:1459d2aa6b97 174 case pre256:
AndyA 3:1459d2aa6b97 175 case pre512:
AndyA 3:1459d2aa6b97 176 if (systemConfig.prf == prf16MHz)
AndyA 3:1459d2aa6b97 177 writeRegister32(DW1000_DRX_CONF, DWDRX_DRX_TUNE2, 0x331A0052); //DRX_TUNE2 PAC 16 for 64MHz PRF
AndyA 3:1459d2aa6b97 178 else
AndyA 3:1459d2aa6b97 179 writeRegister32(DW1000_DRX_CONF, DWDRX_DRX_TUNE2, 0x333B00BE); //DRX_TUNE2 PAC 16 for 64MHz PRF
AndyA 3:1459d2aa6b97 180 break;
AndyA 3:1459d2aa6b97 181 case pre1024:
AndyA 3:1459d2aa6b97 182 if (systemConfig.prf == prf16MHz)
AndyA 3:1459d2aa6b97 183 writeRegister32(DW1000_DRX_CONF, DWDRX_DRX_TUNE2, 0x351A009A); //DRX_TUNE2 PAC 32 for 64MHz PRF
AndyA 3:1459d2aa6b97 184 else
AndyA 3:1459d2aa6b97 185 writeRegister32(DW1000_DRX_CONF, DWDRX_DRX_TUNE2, 0x353B015E); //DRX_TUNE2 PAC 32 for 64MHz PRF
AndyA 3:1459d2aa6b97 186 break;
AndyA 3:1459d2aa6b97 187 case pre1536:
AndyA 3:1459d2aa6b97 188 case pre2048:
AndyA 3:1459d2aa6b97 189 case pre4096:
AndyA 3:1459d2aa6b97 190 if (systemConfig.prf == prf16MHz)
AndyA 3:1459d2aa6b97 191 writeRegister32(DW1000_DRX_CONF, DWDRX_DRX_TUNE2, 0x371A011D); //DRX_TUNE2 PAC 64 for 64MHz PRF
AndyA 3:1459d2aa6b97 192 else
AndyA 3:1459d2aa6b97 193 writeRegister32(DW1000_DRX_CONF, DWDRX_DRX_TUNE2, 0x373B0296); //DRX_TUNE2 PAC 64 for 64MHz PRF
AndyA 3:1459d2aa6b97 194 break;
AndyA 3:1459d2aa6b97 195 }
AndyA 3:1459d2aa6b97 196
AndyA 3:1459d2aa6b97 197
AndyA 3:1459d2aa6b97 198 if (systemConfig.preamble == pre64)
AndyA 3:1459d2aa6b97 199 writeRegister16(DW1000_DRX_CONF, DWDRX_DRX_TUNE4H, 0x0010);
AndyA 3:1459d2aa6b97 200 else
AndyA 3:1459d2aa6b97 201 writeRegister16(DW1000_DRX_CONF, DWDRX_DRX_TUNE4H, 0x0028);
AndyA 3:1459d2aa6b97 202
AndyA 3:1459d2aa6b97 203 }
AndyA 3:1459d2aa6b97 204
AndyA 3:1459d2aa6b97 205
AndyA 3:1459d2aa6b97 206 void DW1000::setupLDE()
AndyA 3:1459d2aa6b97 207 {
AndyA 3:1459d2aa6b97 208
AndyA 3:1459d2aa6b97 209 writeRegister8 (DW1000_LDE_CTRL, DWLDE_LDE_CFG1, 0x13 | 0x03<<5); //NTM = 13 (12 may be better in some situations. PMULT = 3
AndyA 3:1459d2aa6b97 210
AndyA 3:1459d2aa6b97 211 if (systemConfig.prf == prf16MHz)
AndyA 3:1459d2aa6b97 212 writeRegister16(DW1000_LDE_CTRL, DWLDE_LDE_CFG2, 0x1607); //LDE_CFG2 for 16MHz PRF
AndyA 3:1459d2aa6b97 213 else
AndyA 3:1459d2aa6b97 214 writeRegister16(DW1000_LDE_CTRL, DWLDE_LDE_CFG2, 0x0607); //LDE_CFG2 for 64MHz PRF
AndyA 3:1459d2aa6b97 215
AndyA 3:1459d2aa6b97 216 uint16_t replicaCoeff;
AndyA 3:1459d2aa6b97 217 switch (systemConfig.preambleCode) {
AndyA 3:1459d2aa6b97 218 default:
AndyA 3:1459d2aa6b97 219 case 1:
AndyA 3:1459d2aa6b97 220 case 2:
AndyA 3:1459d2aa6b97 221 replicaCoeff = 0x5998;
AndyA 3:1459d2aa6b97 222 break;
AndyA 3:1459d2aa6b97 223 case 3:
AndyA 3:1459d2aa6b97 224 replicaCoeff = 0x51EA;
AndyA 3:1459d2aa6b97 225 break;
AndyA 3:1459d2aa6b97 226 case 4:
AndyA 3:1459d2aa6b97 227 replicaCoeff = 0x428E;
AndyA 3:1459d2aa6b97 228 break;
AndyA 3:1459d2aa6b97 229 case 5:
AndyA 3:1459d2aa6b97 230 replicaCoeff = 0x451E;
AndyA 3:1459d2aa6b97 231 break;
AndyA 3:1459d2aa6b97 232 case 6:
AndyA 3:1459d2aa6b97 233 replicaCoeff = 0x2E14;
AndyA 3:1459d2aa6b97 234 break;
AndyA 3:1459d2aa6b97 235 case 7:
AndyA 3:1459d2aa6b97 236 replicaCoeff = 0x8000;
AndyA 3:1459d2aa6b97 237 break;
AndyA 3:1459d2aa6b97 238 case 8:
AndyA 3:1459d2aa6b97 239 replicaCoeff = 0x51EA;
AndyA 3:1459d2aa6b97 240 break;
AndyA 3:1459d2aa6b97 241 case 9:
AndyA 3:1459d2aa6b97 242 replicaCoeff = 0x28F4;
AndyA 3:1459d2aa6b97 243 break;
AndyA 3:1459d2aa6b97 244 case 10:
AndyA 3:1459d2aa6b97 245 replicaCoeff = 0x3332;
AndyA 3:1459d2aa6b97 246 break;
AndyA 3:1459d2aa6b97 247 case 11:
AndyA 3:1459d2aa6b97 248 replicaCoeff = 0x3AE0;
AndyA 3:1459d2aa6b97 249 break;
AndyA 3:1459d2aa6b97 250 case 12:
AndyA 3:1459d2aa6b97 251 replicaCoeff = 0x3D70;
AndyA 3:1459d2aa6b97 252 break;
AndyA 3:1459d2aa6b97 253 case 13:
AndyA 3:1459d2aa6b97 254 replicaCoeff = 0x3AE0;
AndyA 3:1459d2aa6b97 255 break;
AndyA 3:1459d2aa6b97 256 case 14:
AndyA 3:1459d2aa6b97 257 replicaCoeff = 0x35C2;
AndyA 3:1459d2aa6b97 258 break;
AndyA 3:1459d2aa6b97 259 case 15:
AndyA 3:1459d2aa6b97 260 replicaCoeff = 0x2B84;
AndyA 3:1459d2aa6b97 261 break;
AndyA 3:1459d2aa6b97 262 case 16:
AndyA 3:1459d2aa6b97 263 replicaCoeff = 0x35C2;
AndyA 3:1459d2aa6b97 264 break;
AndyA 3:1459d2aa6b97 265 case 17:
AndyA 3:1459d2aa6b97 266 replicaCoeff = 0x3332;
AndyA 3:1459d2aa6b97 267 break;
AndyA 3:1459d2aa6b97 268 case 18:
AndyA 3:1459d2aa6b97 269 replicaCoeff = 0x35C2;
AndyA 3:1459d2aa6b97 270 break;
AndyA 3:1459d2aa6b97 271 case 19:
AndyA 3:1459d2aa6b97 272 replicaCoeff = 0x35C2;
AndyA 3:1459d2aa6b97 273 break;
AndyA 3:1459d2aa6b97 274 case 20:
AndyA 3:1459d2aa6b97 275 replicaCoeff = 0x47AE;
AndyA 3:1459d2aa6b97 276 break;
AndyA 3:1459d2aa6b97 277 case 21:
AndyA 3:1459d2aa6b97 278 replicaCoeff = 0x3AE0;
AndyA 3:1459d2aa6b97 279 break;
AndyA 3:1459d2aa6b97 280 case 22:
AndyA 3:1459d2aa6b97 281 replicaCoeff = 0x3850;
AndyA 3:1459d2aa6b97 282 break;
AndyA 3:1459d2aa6b97 283 case 23:
AndyA 3:1459d2aa6b97 284 replicaCoeff = 0x30A2;
AndyA 3:1459d2aa6b97 285 break;
AndyA 3:1459d2aa6b97 286 case 24:
AndyA 3:1459d2aa6b97 287 replicaCoeff = 0x3850;
AndyA 3:1459d2aa6b97 288 break;
AndyA 3:1459d2aa6b97 289 }
AndyA 3:1459d2aa6b97 290
AndyA 3:1459d2aa6b97 291 if (systemConfig.dataRate == kbps110)
AndyA 3:1459d2aa6b97 292 replicaCoeff = replicaCoeff>>3;
AndyA 3:1459d2aa6b97 293
AndyA 3:1459d2aa6b97 294 writeRegister16(DW1000_LDE_CTRL, DWLDE_LDE_REPC, replicaCoeff);
AndyA 3:1459d2aa6b97 295
AndyA 3:1459d2aa6b97 296 loadLDE();
AndyA 3:1459d2aa6b97 297 }
AndyA 3:1459d2aa6b97 298
AndyA 3:1459d2aa6b97 299 void DW1000::setupChannel()
AndyA 3:1459d2aa6b97 300 {
AndyA 3:1459d2aa6b97 301 uint16_t registerValue = 0;
AndyA 3:1459d2aa6b97 302
AndyA 3:1459d2aa6b97 303 registerValue = systemConfig.channel; // set Tx channel
AndyA 3:1459d2aa6b97 304 registerValue |= systemConfig.channel<<4; // set Rx channel
AndyA 3:1459d2aa6b97 305
AndyA 3:1459d2aa6b97 306 if ( systemConfig.prf == prf16MHz) // set PRF (2 bit value 01 or 10)
AndyA 3:1459d2aa6b97 307 registerValue |= 0x01 << 18;
AndyA 3:1459d2aa6b97 308 else
AndyA 3:1459d2aa6b97 309 registerValue |= 0x02 << 18;
AndyA 3:1459d2aa6b97 310
AndyA 3:1459d2aa6b97 311 if (systemConfig.sfd == nonStandard) {
AndyA 3:1459d2aa6b97 312 registerValue |= 0x01 << 17; // enable DW own SFD
AndyA 3:1459d2aa6b97 313 // registerValue |= 0x01 << 20; // enable user set SFD Tx
AndyA 3:1459d2aa6b97 314 // registerValue |= 0x01 << 21; // enable user set SFD Rx
AndyA 3:1459d2aa6b97 315 }
AndyA 3:1459d2aa6b97 316
AndyA 3:1459d2aa6b97 317 registerValue |= systemConfig.preambleCode << 22; // set Tx preamble code
AndyA 3:1459d2aa6b97 318 registerValue |= systemConfig.preambleCode << 27; // set Rx preamble code
AndyA 3:1459d2aa6b97 319
AndyA 3:1459d2aa6b97 320 writeRegister16(DW1000_CHAN_CTRL, 0, registerValue);
AndyA 3:1459d2aa6b97 321 }
AndyA 3:1459d2aa6b97 322
AndyA 3:1459d2aa6b97 323
AndyA 3:1459d2aa6b97 324 uint8_t DW1000::powerToRegValue(uint16_t powercB)
AndyA 3:1459d2aa6b97 325 {
AndyA 3:1459d2aa6b97 326
AndyA 3:1459d2aa6b97 327 // course power control - 0 = 18dB, 6 = 0dB in 3dB steps.
AndyA 3:1459d2aa6b97 328 uint8_t course = powercB / 30;
AndyA 3:1459d2aa6b97 329
AndyA 3:1459d2aa6b97 330 if(course > 6)
AndyA 3:1459d2aa6b97 331 course = 6;
AndyA 3:1459d2aa6b97 332
AndyA 3:1459d2aa6b97 333 // remaining power
AndyA 3:1459d2aa6b97 334 powercB -= course * 30;
AndyA 3:1459d2aa6b97 335
AndyA 3:1459d2aa6b97 336 // value in reg is inverse.
AndyA 3:1459d2aa6b97 337 course = 6-course;
AndyA 3:1459d2aa6b97 338
AndyA 3:1459d2aa6b97 339 // fine control in steps of 0.5dB
AndyA 3:1459d2aa6b97 340 uint8_t fine = powercB / 5;
AndyA 3:1459d2aa6b97 341 if (fine > 31)
AndyA 3:1459d2aa6b97 342 fine = 31;
AndyA 3:1459d2aa6b97 343
AndyA 3:1459d2aa6b97 344
AndyA 3:1459d2aa6b97 345 return (course << 5) | fine;
AndyA 3:1459d2aa6b97 346
AndyA 3:1459d2aa6b97 347 }
AndyA 3:1459d2aa6b97 348
AndyA 3:1459d2aa6b97 349 // transmit power: 0 to 33.5 dB gain in steps of 0.5. Inputs are in 10ths of a dB (0 to 335)
AndyA 3:1459d2aa6b97 350 void DW1000::setTxPower(uint16_t normalPowercB, uint16_t boost500, uint16_t boost250, uint16_t boost125)
AndyA 3:1459d2aa6b97 351 {
AndyA 3:1459d2aa6b97 352 if(normalPowercB > 335)
AndyA 3:1459d2aa6b97 353 normalPowercB = 335;
AndyA 3:1459d2aa6b97 354
AndyA 3:1459d2aa6b97 355 if (boost500 < normalPowercB)
AndyA 3:1459d2aa6b97 356 boost500 = normalPowercB;
AndyA 3:1459d2aa6b97 357 if(boost500 > 335)
AndyA 3:1459d2aa6b97 358 boost500 = 335;
AndyA 3:1459d2aa6b97 359
AndyA 3:1459d2aa6b97 360 if (boost250 < boost500)
AndyA 3:1459d2aa6b97 361 boost250 = boost500;
AndyA 3:1459d2aa6b97 362 if(boost250 > 335)
AndyA 3:1459d2aa6b97 363 boost250 = 335;
AndyA 3:1459d2aa6b97 364
AndyA 3:1459d2aa6b97 365 if (boost125 < boost250)
AndyA 3:1459d2aa6b97 366 boost125 = boost250;
AndyA 3:1459d2aa6b97 367 if(boost125 > 335)
AndyA 3:1459d2aa6b97 368 boost125 = 335;
AndyA 3:1459d2aa6b97 369
AndyA 3:1459d2aa6b97 370 uint32_t powerReg = powerToRegValue(normalPowercB);
AndyA 3:1459d2aa6b97 371 powerReg |= powerToRegValue(boost500) << 8;
AndyA 3:1459d2aa6b97 372 powerReg |= powerToRegValue(boost250) << 16;
AndyA 3:1459d2aa6b97 373 powerReg |= powerToRegValue(boost125) << 24;
AndyA 3:1459d2aa6b97 374 }
AndyA 3:1459d2aa6b97 375
AndyA 3:1459d2aa6b97 376 void DW1000::setupAnalogRF()
AndyA 3:1459d2aa6b97 377 {
AndyA 3:1459d2aa6b97 378 switch (systemConfig.channel) {
AndyA 3:1459d2aa6b97 379 case 1:
AndyA 3:1459d2aa6b97 380 writeRegister32(DW1000_RF_CONF, DWRFCONF_RF_TXCTRL, 0x00005C40);
AndyA 3:1459d2aa6b97 381 break;
AndyA 3:1459d2aa6b97 382 case 2:
AndyA 3:1459d2aa6b97 383 writeRegister32(DW1000_RF_CONF, DWRFCONF_RF_TXCTRL, 0x00045CA0);
AndyA 3:1459d2aa6b97 384 break;
AndyA 3:1459d2aa6b97 385 case 3:
AndyA 3:1459d2aa6b97 386 writeRegister32(DW1000_RF_CONF, DWRFCONF_RF_TXCTRL, 0x00086CC0);
AndyA 3:1459d2aa6b97 387 break;
AndyA 3:1459d2aa6b97 388 case 4:
AndyA 3:1459d2aa6b97 389 writeRegister32(DW1000_RF_CONF, DWRFCONF_RF_TXCTRL, 0x00045C80);
AndyA 3:1459d2aa6b97 390 break;
AndyA 3:1459d2aa6b97 391 case 5:
AndyA 3:1459d2aa6b97 392 default:
AndyA 3:1459d2aa6b97 393 writeRegister32(DW1000_RF_CONF, DWRFCONF_RF_TXCTRL, 0x001E3FE0);
AndyA 3:1459d2aa6b97 394 break;
AndyA 3:1459d2aa6b97 395 case 7:
AndyA 3:1459d2aa6b97 396 writeRegister32(DW1000_RF_CONF, DWRFCONF_RF_TXCTRL, 0x001E7DE0);
AndyA 3:1459d2aa6b97 397 break;
AndyA 3:1459d2aa6b97 398 }
AndyA 3:1459d2aa6b97 399
AndyA 3:1459d2aa6b97 400 switch (systemConfig.channel) {
AndyA 3:1459d2aa6b97 401 case 1:
AndyA 3:1459d2aa6b97 402 case 2:
AndyA 3:1459d2aa6b97 403 case 3:
AndyA 3:1459d2aa6b97 404 case 5:
AndyA 3:1459d2aa6b97 405 default:
AndyA 3:1459d2aa6b97 406 writeRegister8(DW1000_RF_CONF, DWRFCONF_RF_RXCTRLH, 0xD8);
AndyA 3:1459d2aa6b97 407 break;
AndyA 3:1459d2aa6b97 408 case 4:
AndyA 3:1459d2aa6b97 409 case 7:
AndyA 3:1459d2aa6b97 410 writeRegister8(DW1000_RF_CONF, DWRFCONF_RF_RXCTRLH, 0xBC);
AndyA 3:1459d2aa6b97 411 break;
AndyA 3:1459d2aa6b97 412 }
AndyA 3:1459d2aa6b97 413
AndyA 3:1459d2aa6b97 414 loadLDOTUNE();
AndyA 3:1459d2aa6b97 415
AndyA 3:1459d2aa6b97 416 }
AndyA 3:1459d2aa6b97 417
AndyA 3:1459d2aa6b97 418 void DW1000::setupTxCalibration()
AndyA 3:1459d2aa6b97 419 {
AndyA 3:1459d2aa6b97 420 switch (systemConfig.channel) {
AndyA 3:1459d2aa6b97 421 case 1:
AndyA 3:1459d2aa6b97 422 writeRegister8 (DW1000_TX_CAL, DWTXCAL_TC_PGDELAY, 0xC9);
AndyA 3:1459d2aa6b97 423 break;
AndyA 3:1459d2aa6b97 424 case 2:
AndyA 3:1459d2aa6b97 425 writeRegister8 (DW1000_TX_CAL, DWTXCAL_TC_PGDELAY, 0xC2);
AndyA 3:1459d2aa6b97 426 break;
AndyA 3:1459d2aa6b97 427 case 3:
AndyA 3:1459d2aa6b97 428 writeRegister8 (DW1000_TX_CAL, DWTXCAL_TC_PGDELAY, 0xC5);
AndyA 3:1459d2aa6b97 429 break;
AndyA 3:1459d2aa6b97 430 case 4:
AndyA 3:1459d2aa6b97 431 writeRegister8 (DW1000_TX_CAL, DWTXCAL_TC_PGDELAY, 0x95);
AndyA 3:1459d2aa6b97 432 break;
AndyA 3:1459d2aa6b97 433 case 5:
AndyA 3:1459d2aa6b97 434 default:
AndyA 3:1459d2aa6b97 435 writeRegister8 (DW1000_TX_CAL, DWTXCAL_TC_PGDELAY, 0xC0);
AndyA 3:1459d2aa6b97 436 break;
AndyA 3:1459d2aa6b97 437 case 7:
AndyA 3:1459d2aa6b97 438 writeRegister8 (DW1000_TX_CAL, DWTXCAL_TC_PGDELAY, 0x93);
AndyA 3:1459d2aa6b97 439 break;
AndyA 3:1459d2aa6b97 440 }
AndyA 3:1459d2aa6b97 441 }
AndyA 3:1459d2aa6b97 442
AndyA 3:1459d2aa6b97 443 void DW1000::setupFreqSynth()
AndyA 3:1459d2aa6b97 444 {
AndyA 3:1459d2aa6b97 445
AndyA 3:1459d2aa6b97 446 switch (systemConfig.channel) {
AndyA 3:1459d2aa6b97 447 case 1:
AndyA 3:1459d2aa6b97 448 writeRegister32 (DW1000_FS_CTRL, DWFSCTRL_FS_PLLCFG, 0x09000407); //FS_PLLCFG for channel 1
AndyA 3:1459d2aa6b97 449 writeRegister8 (DW1000_FS_CTRL, DWFSCTRL_FS_PLLTUNE, 0x1E);
AndyA 3:1459d2aa6b97 450 break;
AndyA 3:1459d2aa6b97 451 case 2:
AndyA 3:1459d2aa6b97 452 case 4:
AndyA 3:1459d2aa6b97 453 writeRegister32 (DW1000_FS_CTRL, DWFSCTRL_FS_PLLCFG, 0x08400508); //FS_PLLCFG for channel 2,4
AndyA 3:1459d2aa6b97 454 writeRegister8 (DW1000_FS_CTRL, DWFSCTRL_FS_PLLTUNE, 0x26);
AndyA 3:1459d2aa6b97 455 break;
AndyA 3:1459d2aa6b97 456 case 3:
AndyA 3:1459d2aa6b97 457 writeRegister32 (DW1000_FS_CTRL, DWFSCTRL_FS_PLLCFG, 0x08401009); //FS_PLLCFG for channel 3
AndyA 3:1459d2aa6b97 458 writeRegister8 (DW1000_FS_CTRL, DWFSCTRL_FS_PLLTUNE, 0x5E);
AndyA 3:1459d2aa6b97 459 break;
AndyA 3:1459d2aa6b97 460 case 5:
AndyA 3:1459d2aa6b97 461 case 7:
AndyA 3:1459d2aa6b97 462 default:
AndyA 3:1459d2aa6b97 463 writeRegister32 (DW1000_FS_CTRL, DWFSCTRL_FS_PLLCFG, 0x0800041D); //FS_PLLCFG for channel 5,7
AndyA 3:1459d2aa6b97 464 writeRegister8 (DW1000_FS_CTRL, DWFSCTRL_FS_PLLTUNE, 0xBE); //FS_PLLTUNE for channel 5
AndyA 3:1459d2aa6b97 465 break;
AndyA 3:1459d2aa6b97 466 }
AndyA 3:1459d2aa6b97 467 }
AndyA 3:1459d2aa6b97 468
AndyA 3:1459d2aa6b97 469 void DW1000::setupTxFrameCtrl()
AndyA 3:1459d2aa6b97 470 {
AndyA 3:1459d2aa6b97 471 uint16_t frameCtrlValue = 0;
AndyA 3:1459d2aa6b97 472 switch (systemConfig.dataRate) {
AndyA 3:1459d2aa6b97 473 case kbps110:
AndyA 3:1459d2aa6b97 474 break;
AndyA 3:1459d2aa6b97 475 case kbps850:
AndyA 3:1459d2aa6b97 476 frameCtrlValue |= 0x01<<13;
AndyA 3:1459d2aa6b97 477 break;
AndyA 3:1459d2aa6b97 478 case kbps6800:
AndyA 3:1459d2aa6b97 479 default:
AndyA 3:1459d2aa6b97 480 frameCtrlValue |= 0x02<<13;
AndyA 3:1459d2aa6b97 481 break;
AndyA 3:1459d2aa6b97 482 }
AndyA 3:1459d2aa6b97 483 frameCtrlValue |= 0x01<<15;
AndyA 3:1459d2aa6b97 484
AndyA 3:1459d2aa6b97 485 if (systemConfig.prf == prf16MHz)
AndyA 3:1459d2aa6b97 486 frameCtrlValue |= 0x01<<16;
AndyA 3:1459d2aa6b97 487 else
AndyA 3:1459d2aa6b97 488 frameCtrlValue |= 0x02<<16;
AndyA 3:1459d2aa6b97 489
AndyA 3:1459d2aa6b97 490 switch (systemConfig.preamble) {
AndyA 3:1459d2aa6b97 491 case pre64:
AndyA 3:1459d2aa6b97 492 frameCtrlValue |= 0x01<<18; // TXPSR
AndyA 3:1459d2aa6b97 493 frameCtrlValue |= 0x00<<20; // PE
AndyA 3:1459d2aa6b97 494 break;
AndyA 3:1459d2aa6b97 495 case pre128:
AndyA 3:1459d2aa6b97 496 default:
AndyA 3:1459d2aa6b97 497 frameCtrlValue |= 0x01<<18; // TXPSR
AndyA 3:1459d2aa6b97 498 frameCtrlValue |= 0x01<<20; // PE
AndyA 3:1459d2aa6b97 499 break;
AndyA 3:1459d2aa6b97 500 case pre256:
AndyA 3:1459d2aa6b97 501 frameCtrlValue |= 0x01<<18; // TXPSR
AndyA 3:1459d2aa6b97 502 frameCtrlValue |= 0x02<<20; // PE
AndyA 3:1459d2aa6b97 503 break;
AndyA 3:1459d2aa6b97 504 case pre512:
AndyA 3:1459d2aa6b97 505 frameCtrlValue |= 0x01<<18; // TXPSR
AndyA 3:1459d2aa6b97 506 frameCtrlValue |= 0x03<<20; // PE
AndyA 3:1459d2aa6b97 507 break;
AndyA 3:1459d2aa6b97 508 case pre1024:
AndyA 3:1459d2aa6b97 509 frameCtrlValue |= 0x02<<18; // TXPSR
AndyA 3:1459d2aa6b97 510 frameCtrlValue |= 0x00<<20; // PE
AndyA 3:1459d2aa6b97 511 break;
AndyA 3:1459d2aa6b97 512 case pre1536:
AndyA 3:1459d2aa6b97 513 frameCtrlValue |= 0x02<<18; // TXPSR
AndyA 3:1459d2aa6b97 514 frameCtrlValue |= 0x01<<20; // PE
AndyA 3:1459d2aa6b97 515 break;
AndyA 3:1459d2aa6b97 516 case pre2048:
AndyA 3:1459d2aa6b97 517 frameCtrlValue |= 0x02<<18; // TXPSR
AndyA 3:1459d2aa6b97 518 frameCtrlValue |= 0x02<<20; // PE
AndyA 3:1459d2aa6b97 519 break;
AndyA 3:1459d2aa6b97 520 case pre4096:
AndyA 3:1459d2aa6b97 521 frameCtrlValue |= 0x03<<18; // TXPSR
AndyA 3:1459d2aa6b97 522 frameCtrlValue |= 0x00<<20; // PE
AndyA 3:1459d2aa6b97 523 break;
AndyA 3:1459d2aa6b97 524 }
AndyA 3:1459d2aa6b97 525 }
AndyA 3:1459d2aa6b97 526
AndyA 0:bddb8cd5e7df 527 void DW1000::setRxDelay(uint16_t ticks)
AndyA 0:bddb8cd5e7df 528 {
AndyA 0:bddb8cd5e7df 529 writeRegister16(DW1000_LDE_CTRL, DWLDE_LDE_RXANTD, ticks);
AndyA 0:bddb8cd5e7df 530 }
AndyA 0:bddb8cd5e7df 531 void DW1000::setTxDelay(uint16_t ticks)
AndyA 0:bddb8cd5e7df 532 {
AndyA 0:bddb8cd5e7df 533 writeRegister16(DW1000_TX_ANTD, 0, ticks);
AndyA 0:bddb8cd5e7df 534 }
AndyA 0:bddb8cd5e7df 535
AndyA 0:bddb8cd5e7df 536 void DW1000::setCallbacks(void (*callbackRX)(void), void (*callbackTX)(void))
AndyA 0:bddb8cd5e7df 537 {
AndyA 0:bddb8cd5e7df 538 bool RX = false;
AndyA 0:bddb8cd5e7df 539 bool TX = false;
AndyA 0:bddb8cd5e7df 540 if (callbackRX) {
AndyA 0:bddb8cd5e7df 541 DW1000::callbackRX.attach(callbackRX);
AndyA 0:bddb8cd5e7df 542 RX = true;
AndyA 0:bddb8cd5e7df 543 }
AndyA 0:bddb8cd5e7df 544 if (callbackTX) {
AndyA 0:bddb8cd5e7df 545 DW1000::callbackTX.attach(callbackTX);
AndyA 0:bddb8cd5e7df 546 TX = true;
AndyA 0:bddb8cd5e7df 547 }
AndyA 0:bddb8cd5e7df 548 setInterrupt(RX,TX);
AndyA 0:bddb8cd5e7df 549 }
AndyA 0:bddb8cd5e7df 550
AndyA 0:bddb8cd5e7df 551 uint32_t DW1000::getDeviceID()
AndyA 0:bddb8cd5e7df 552 {
AndyA 0:bddb8cd5e7df 553 uint32_t result;
AndyA 0:bddb8cd5e7df 554 readRegister(DW1000_DEV_ID, 0, (uint8_t*)&result, 4);
AndyA 0:bddb8cd5e7df 555 return result;
AndyA 0:bddb8cd5e7df 556 }
AndyA 0:bddb8cd5e7df 557
AndyA 0:bddb8cd5e7df 558 uint64_t DW1000::getEUI()
AndyA 0:bddb8cd5e7df 559 {
AndyA 0:bddb8cd5e7df 560 uint64_t result;
AndyA 0:bddb8cd5e7df 561 readRegister(DW1000_EUI, 0, (uint8_t*)&result, 8);
AndyA 0:bddb8cd5e7df 562 return result;
AndyA 0:bddb8cd5e7df 563 }
AndyA 0:bddb8cd5e7df 564
AndyA 0:bddb8cd5e7df 565 void DW1000::setEUI(uint64_t EUI)
AndyA 0:bddb8cd5e7df 566 {
AndyA 0:bddb8cd5e7df 567 writeRegister(DW1000_EUI, 0, (uint8_t*)&EUI, 8);
AndyA 0:bddb8cd5e7df 568 }
AndyA 0:bddb8cd5e7df 569
AndyA 0:bddb8cd5e7df 570
AndyA 0:bddb8cd5e7df 571 float DW1000::getVoltage()
AndyA 0:bddb8cd5e7df 572 {
AndyA 0:bddb8cd5e7df 573 uint8_t data;
AndyA 0:bddb8cd5e7df 574
AndyA 0:bddb8cd5e7df 575 writeRegister8(DW1000_RF_CONF, 0x11, 0x80);
AndyA 0:bddb8cd5e7df 576 writeRegister8(DW1000_RF_CONF, 0x12, 0x0A);
AndyA 0:bddb8cd5e7df 577 writeRegister8(DW1000_RF_CONF, 0x12, 0x0F);
AndyA 0:bddb8cd5e7df 578 writeRegister8(DW1000_TX_CAL, 0x00, 0x01);
AndyA 0:bddb8cd5e7df 579 writeRegister8(DW1000_TX_CAL, 0x00, 0x00);
AndyA 0:bddb8cd5e7df 580 data = readRegister8(DW1000_TX_CAL, 0x03); // get the 8-Bit reading for Voltage
AndyA 1:dcbd071f38d5 581 float Voltage = (float)(data - (readOTP(0x08)&0x00ff)) *0.00578 + 3.3;
AndyA 0:bddb8cd5e7df 582 return Voltage;
AndyA 0:bddb8cd5e7df 583 }
AndyA 0:bddb8cd5e7df 584
AndyA 0:bddb8cd5e7df 585 float DW1000::getTemperature()
AndyA 0:bddb8cd5e7df 586 {
AndyA 0:bddb8cd5e7df 587 uint8_t data;
AndyA 0:bddb8cd5e7df 588
AndyA 0:bddb8cd5e7df 589 writeRegister8(DW1000_RF_CONF, 0x11, 0x80);
AndyA 0:bddb8cd5e7df 590 writeRegister8(DW1000_RF_CONF, 0x12, 0x0A);
AndyA 0:bddb8cd5e7df 591 writeRegister8(DW1000_RF_CONF, 0x12, 0x0F);
AndyA 0:bddb8cd5e7df 592 writeRegister8(DW1000_TX_CAL, 0x00, 0x01);
AndyA 0:bddb8cd5e7df 593 writeRegister8(DW1000_TX_CAL, 0x00, 0x00);
AndyA 0:bddb8cd5e7df 594 data = readRegister16(DW1000_TX_CAL, 0x04); // get the 8-Bit reading for Temperature
AndyA 1:dcbd071f38d5 595 float temperature = (float)(data - (readOTP(0x09) & 0x00ff))*0.9 + 23;
AndyA 0:bddb8cd5e7df 596 return temperature;
AndyA 0:bddb8cd5e7df 597 }
AndyA 0:bddb8cd5e7df 598
AndyA 0:bddb8cd5e7df 599
AndyA 0:bddb8cd5e7df 600 uint64_t DW1000::getStatus()
AndyA 0:bddb8cd5e7df 601 {
AndyA 0:bddb8cd5e7df 602 return readRegister40(DW1000_SYS_STATUS, 0);
AndyA 0:bddb8cd5e7df 603 }
AndyA 0:bddb8cd5e7df 604
AndyA 0:bddb8cd5e7df 605 uint64_t DW1000::getRXTimestamp()
AndyA 0:bddb8cd5e7df 606 {
AndyA 0:bddb8cd5e7df 607 return readRegister40(DW1000_RX_TIME, 0);
AndyA 0:bddb8cd5e7df 608 }
AndyA 0:bddb8cd5e7df 609
AndyA 0:bddb8cd5e7df 610 uint64_t DW1000::getTXTimestamp()
AndyA 0:bddb8cd5e7df 611 {
AndyA 0:bddb8cd5e7df 612 return readRegister40(DW1000_TX_TIME, 0);
AndyA 0:bddb8cd5e7df 613 }
AndyA 0:bddb8cd5e7df 614
AndyA 0:bddb8cd5e7df 615 void DW1000::sendString(char* message)
AndyA 0:bddb8cd5e7df 616 {
AndyA 0:bddb8cd5e7df 617 sendFrame((uint8_t*)message, strlen(message)+1);
AndyA 0:bddb8cd5e7df 618 }
AndyA 0:bddb8cd5e7df 619
AndyA 0:bddb8cd5e7df 620 void DW1000::receiveString(char* message)
AndyA 0:bddb8cd5e7df 621 {
AndyA 0:bddb8cd5e7df 622 readRegister(DW1000_RX_BUFFER, 0, (uint8_t*)message, getFramelength()); // get data from buffer
AndyA 0:bddb8cd5e7df 623 }
AndyA 0:bddb8cd5e7df 624
AndyA 0:bddb8cd5e7df 625 void DW1000::sendFrame(uint8_t* message, uint16_t length)
AndyA 0:bddb8cd5e7df 626 {
AndyA 0:bddb8cd5e7df 627 //if (length >= 1021) length = 1021; // check for maximim length a frame can have with 1024 Byte frames [not used, see constructor]
AndyA 0:bddb8cd5e7df 628 if (length >= 125) length = 125; // check for maximim length a frame can have with 127 Byte frames
AndyA 0:bddb8cd5e7df 629 uint8_t len_7bit = length;
AndyA 0:bddb8cd5e7df 630 writeRegister(DW1000_TX_BUFFER, 0, message, len_7bit); // fill buffer
AndyA 0:bddb8cd5e7df 631
AndyA 3:1459d2aa6b97 632 /* support for frames over 127 bytes
AndyA 3:1459d2aa6b97 633 uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); // put length of frame
AndyA 3:1459d2aa6b97 634 length += 2; // including 2 CRC Bytes
AndyA 3:1459d2aa6b97 635 length = ((backup & 0xFC) << 8) | (length & 0x03FF);
AndyA 3:1459d2aa6b97 636 writeRegister16(DW1000_TX_FCTRL, 0, length);
AndyA 3:1459d2aa6b97 637 */
AndyA 0:bddb8cd5e7df 638 len_7bit += 2; // including 2 CRC Bytes
AndyA 0:bddb8cd5e7df 639 writeRegister8(DW1000_TX_FCTRL, 0, len_7bit);
AndyA 0:bddb8cd5e7df 640
AndyA 0:bddb8cd5e7df 641 stopTRX(); // stop receiving
AndyA 0:bddb8cd5e7df 642 writeRegister8(DW1000_SYS_CTRL, 0, 0x02 | 0x80); // trigger sending process by setting the TXSTRT bit
AndyA 0:bddb8cd5e7df 643 // startRX(); // enable receiver again
AndyA 0:bddb8cd5e7df 644 }
AndyA 0:bddb8cd5e7df 645
AndyA 3:1459d2aa6b97 646 void DW1000::setupSyncedFrame(uint8_t* message, uint16_t length)
AndyA 3:1459d2aa6b97 647 {
AndyA 0:bddb8cd5e7df 648 //if (length >= 1021) length = 1021; // check for maximim length a frame can have with 1024 Byte frames [not used, see constructor]
AndyA 0:bddb8cd5e7df 649 if (length >= 125) length = 125; // check for maximim length a frame can have with 127 Byte frames
AndyA 0:bddb8cd5e7df 650 writeRegister(DW1000_TX_BUFFER, 0, message, length); // fill buffer
AndyA 0:bddb8cd5e7df 651
AndyA 0:bddb8cd5e7df 652 uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); // put length of frame
AndyA 0:bddb8cd5e7df 653 length += 2; // including 2 CRC Bytes
AndyA 0:bddb8cd5e7df 654 length = ((backup & 0xFC) << 8) | (length & 0x03FF);
AndyA 0:bddb8cd5e7df 655 writeRegister16(DW1000_TX_FCTRL, 0, length);
AndyA 0:bddb8cd5e7df 656 }
AndyA 0:bddb8cd5e7df 657
AndyA 3:1459d2aa6b97 658 void DW1000::armSyncedFrame()
AndyA 3:1459d2aa6b97 659 {
AndyA 0:bddb8cd5e7df 660 stopTRX(); // stop receiving
AndyA 0:bddb8cd5e7df 661 writeRegister16(DW1000_EXT_SYNC, DWEXTSYNC_EC_CTRL, 33<<3 | 0x01); // Sync register = TX start with a wait of 33 (recomended, value must fulfill wait % 4 = 1)
AndyA 3:1459d2aa6b97 662 }
AndyA 0:bddb8cd5e7df 663
AndyA 0:bddb8cd5e7df 664 void DW1000::sendDelayedFrame(uint8_t* message, uint16_t length, uint64_t TxTimestamp)
AndyA 0:bddb8cd5e7df 665 {
AndyA 0:bddb8cd5e7df 666 //if (length >= 1021) length = 1021; // check for maximim length a frame can have with 1024 Byte frames [not used, see constructor]
AndyA 0:bddb8cd5e7df 667 if (length >= 125) length = 125; // check for maximim length a frame can have with 127 Byte frames
AndyA 0:bddb8cd5e7df 668 writeRegister(DW1000_TX_BUFFER, 0, message, length); // fill buffer
AndyA 0:bddb8cd5e7df 669
AndyA 0:bddb8cd5e7df 670 uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); // put length of frame
AndyA 0:bddb8cd5e7df 671 length += 2; // including 2 CRC Bytes
AndyA 0:bddb8cd5e7df 672 length = ((backup & 0xFC) << 8) | (length & 0x03FF);
AndyA 0:bddb8cd5e7df 673 writeRegister16(DW1000_TX_FCTRL, 0, length);
AndyA 0:bddb8cd5e7df 674
AndyA 0:bddb8cd5e7df 675 writeRegister40(DW1000_DX_TIME, 0, TxTimestamp); //write the timestamp on which to send the message
AndyA 0:bddb8cd5e7df 676
AndyA 0:bddb8cd5e7df 677 stopTRX(); // stop receiving
AndyA 0:bddb8cd5e7df 678 writeRegister8(DW1000_SYS_CTRL, 0, 0x02 | 0x04 | 0x80); // trigger sending process by setting the TXSTRT and TXDLYS bit. Set Wait4resp to automatically enter RX mode after tx.
AndyA 0:bddb8cd5e7df 679 }
AndyA 0:bddb8cd5e7df 680
AndyA 0:bddb8cd5e7df 681 void DW1000::startRX()
AndyA 0:bddb8cd5e7df 682 {
AndyA 0:bddb8cd5e7df 683 writeRegister8(DW1000_SYS_CTRL, 0x01, 0x01); // start listening for preamble by setting the RXENAB bit
AndyA 0:bddb8cd5e7df 684 }
AndyA 0:bddb8cd5e7df 685
AndyA 0:bddb8cd5e7df 686 void DW1000::stopTRX()
AndyA 0:bddb8cd5e7df 687 {
AndyA 0:bddb8cd5e7df 688 writeRegister8(DW1000_SYS_CTRL, 0, 0x40); // disable tranceiver go back to idle mode
AndyA 0:bddb8cd5e7df 689 }
AndyA 0:bddb8cd5e7df 690
AndyA 0:bddb8cd5e7df 691 // PRIVATE Methods ------------------------------------------------------------------------------------
AndyA 0:bddb8cd5e7df 692 void DW1000::loadLDE() // initialise LDE algorithm LDELOAD User Manual p22
AndyA 0:bddb8cd5e7df 693 {
AndyA 0:bddb8cd5e7df 694 spi.frequency(SPIRATE_OSC); // with a 1MHz clock rate (worked up to 49MHz in our Test)
AndyA 0:bddb8cd5e7df 695
AndyA 0:bddb8cd5e7df 696 writeRegister16(DW1000_PMSC, 0, 0x0301); // set clock to XTAL so OTP is reliable
AndyA 0:bddb8cd5e7df 697 writeRegister16(DW1000_OTP_IF, DWOTP_OTP_CTRL, 0x8000); // set LDELOAD bit in OTP
AndyA 0:bddb8cd5e7df 698 wait_us(150);
AndyA 0:bddb8cd5e7df 699 writeRegister16(DW1000_PMSC, 0, 0x0200); // recover to PLL clock
AndyA 0:bddb8cd5e7df 700
AndyA 0:bddb8cd5e7df 701 wait_ms(1);
AndyA 0:bddb8cd5e7df 702
AndyA 0:bddb8cd5e7df 703 spi.frequency(SPIRATE_PLL); // with a 1MHz clock rate (worked up to 49MHz in our Test)
AndyA 0:bddb8cd5e7df 704
AndyA 0:bddb8cd5e7df 705 }
AndyA 0:bddb8cd5e7df 706
AndyA 0:bddb8cd5e7df 707 void DW1000::loadLDOTUNE()
AndyA 0:bddb8cd5e7df 708 {
AndyA 1:dcbd071f38d5 709 uint64_t LDOTuningValue = readOTP(0x0004);
AndyA 1:dcbd071f38d5 710 if (LDOTuningValue != 0) {
AndyA 1:dcbd071f38d5 711 LDOTuningValue = LDOTuningValue | ((uint64_t)(readOTP(0x0005) & 0x00ff) << 32);
AndyA 0:bddb8cd5e7df 712 writeRegister40(DW1000_RF_CONF,DWRFCONF_RF_LDOTUNE,LDOTuningValue);
AndyA 1:dcbd071f38d5 713 }
AndyA 0:bddb8cd5e7df 714 }
AndyA 0:bddb8cd5e7df 715
AndyA 0:bddb8cd5e7df 716 void DW1000::resetRX()
AndyA 0:bddb8cd5e7df 717 {
AndyA 0:bddb8cd5e7df 718 writeRegister8(DW1000_PMSC, 3, 0xE0); // set RX reset
AndyA 0:bddb8cd5e7df 719 writeRegister8(DW1000_PMSC, 3, 0xF0); // clear RX reset
AndyA 0:bddb8cd5e7df 720 }
AndyA 0:bddb8cd5e7df 721
AndyA 0:bddb8cd5e7df 722 void DW1000::resetAll()
AndyA 0:bddb8cd5e7df 723 {
AndyA 0:bddb8cd5e7df 724 spi.frequency(SPIRATE_OSC); // with a 1MHz clock rate (worked up to 49MHz in our Test)
AndyA 0:bddb8cd5e7df 725
AndyA 0:bddb8cd5e7df 726 writeRegister8(DW1000_PMSC, 0, 0x01); // set clock to XTAL
AndyA 0:bddb8cd5e7df 727 writeRegister8(DW1000_PMSC, 3, 0x00); // set All reset
AndyA 0:bddb8cd5e7df 728 wait_us(10); // wait for PLL to lock
AndyA 0:bddb8cd5e7df 729 writeRegister8(DW1000_PMSC, 3, 0xF0); // clear All reset
AndyA 0:bddb8cd5e7df 730
AndyA 0:bddb8cd5e7df 731 wait_ms(1);
AndyA 0:bddb8cd5e7df 732
AndyA 0:bddb8cd5e7df 733 spi.frequency(SPIRATE_PLL); // with a 1MHz clock rate (worked up to 49MHz in our Test)
AndyA 0:bddb8cd5e7df 734 }
AndyA 0:bddb8cd5e7df 735
AndyA 0:bddb8cd5e7df 736 /// After writes have been completed reset the device.
AndyA 1:dcbd071f38d5 737 bool DW1000::writeOTP(uint16_t word_address,uint32_t data)
AndyA 0:bddb8cd5e7df 738 {
AndyA 0:bddb8cd5e7df 739 spi.frequency(SPIRATE_OSC); // with a 1MHz clock rate (worked up to 49MHz in our Test)
AndyA 0:bddb8cd5e7df 740
AndyA 0:bddb8cd5e7df 741 writeRegister8(DW1000_PMSC, 0, 0x01); // set clock to XTAL
AndyA 0:bddb8cd5e7df 742 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL+1,0x03); //
AndyA 0:bddb8cd5e7df 743 writeRegister16(DW1000_OTP_IF,DWOTP_OTP_WDAT,0x9220); //
AndyA 0:bddb8cd5e7df 744 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL,0x08); //
AndyA 0:bddb8cd5e7df 745 wait_ms(1);
AndyA 0:bddb8cd5e7df 746 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL+1,0x02); //
AndyA 0:bddb8cd5e7df 747 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL,0x88); //
AndyA 0:bddb8cd5e7df 748 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL,0x80); //
AndyA 0:bddb8cd5e7df 749 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL,0x00); //
AndyA 0:bddb8cd5e7df 750
AndyA 0:bddb8cd5e7df 751 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL+1,0x05); //
AndyA 0:bddb8cd5e7df 752 writeRegister16(DW1000_OTP_IF,DWOTP_OTP_WDAT,0x000E); //
AndyA 0:bddb8cd5e7df 753 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL,0x08); //
AndyA 0:bddb8cd5e7df 754 wait_ms(1);
AndyA 0:bddb8cd5e7df 755 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL+1,0x04); //
AndyA 0:bddb8cd5e7df 756 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL,0x88); //
AndyA 0:bddb8cd5e7df 757 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL,0x80); //
AndyA 0:bddb8cd5e7df 758 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL,0x00); //
AndyA 0:bddb8cd5e7df 759
AndyA 0:bddb8cd5e7df 760 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL+1,0x01); //
AndyA 0:bddb8cd5e7df 761 writeRegister16(DW1000_OTP_IF,DWOTP_OTP_WDAT,0x1024); //
AndyA 0:bddb8cd5e7df 762 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL,0x08); //
AndyA 0:bddb8cd5e7df 763 wait_ms(1);
AndyA 0:bddb8cd5e7df 764 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL+1,0x00); //
AndyA 0:bddb8cd5e7df 765
AndyA 0:bddb8cd5e7df 766 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL,0x00); //
AndyA 0:bddb8cd5e7df 767 writeRegister32(DW1000_OTP_IF,DWOTP_OTP_WDAT,data); //
AndyA 1:dcbd071f38d5 768 writeRegister16(DW1000_OTP_IF,DWOTP_OTP_ADDR,word_address); //
AndyA 0:bddb8cd5e7df 769 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL,0x40); //
AndyA 0:bddb8cd5e7df 770 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL,0x00); //
AndyA 0:bddb8cd5e7df 771 wait_ms(1);
AndyA 0:bddb8cd5e7df 772
AndyA 0:bddb8cd5e7df 773 for (int i=0; i<10; i++) {
AndyA 1:dcbd071f38d5 774 if (readOTP(word_address) == data)
AndyA 0:bddb8cd5e7df 775 return true;
AndyA 0:bddb8cd5e7df 776 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL,0x40); // retry
AndyA 0:bddb8cd5e7df 777 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL,0x00);
AndyA 0:bddb8cd5e7df 778 wait_ms(1);
AndyA 0:bddb8cd5e7df 779 }
AndyA 0:bddb8cd5e7df 780 return false;
AndyA 0:bddb8cd5e7df 781 }
AndyA 0:bddb8cd5e7df 782
AndyA 0:bddb8cd5e7df 783
AndyA 1:dcbd071f38d5 784 uint32_t DW1000::readOTP(uint16_t word_address)
AndyA 0:bddb8cd5e7df 785 {
AndyA 1:dcbd071f38d5 786 writeRegister16(DW1000_OTP_IF,DWOTP_OTP_ADDR,word_address); // write address
AndyA 0:bddb8cd5e7df 787 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL,0x03); // read address load
AndyA 0:bddb8cd5e7df 788 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL,0x01); // read
AndyA 0:bddb8cd5e7df 789 uint32_t data = readRegister32(DW1000_OTP_IF,DWOTP_OTP_RDAT);
AndyA 0:bddb8cd5e7df 790 writeRegister8(DW1000_OTP_IF,DWOTP_OTP_CTRL,0x00); // OTP idle
AndyA 0:bddb8cd5e7df 791 return data;
AndyA 0:bddb8cd5e7df 792 }
AndyA 0:bddb8cd5e7df 793
AndyA 0:bddb8cd5e7df 794 void DW1000::setInterrupt(bool RX, bool TX)
AndyA 0:bddb8cd5e7df 795 {
AndyA 0:bddb8cd5e7df 796 writeRegister16(DW1000_SYS_MASK, 0, RX*0x4000 | TX*0x0080); // RX good frame 0x4000, TX done 0x0080
AndyA 0:bddb8cd5e7df 797 }
AndyA 0:bddb8cd5e7df 798
AndyA 0:bddb8cd5e7df 799 void DW1000::ISR()
AndyA 0:bddb8cd5e7df 800 {
AndyA 0:bddb8cd5e7df 801 uint64_t status = getStatus();
AndyA 0:bddb8cd5e7df 802 if (status & 0x4000) { // a frame was received
AndyA 0:bddb8cd5e7df 803 callbackRX.call();
AndyA 0:bddb8cd5e7df 804 writeRegister16(DW1000_SYS_STATUS, 0, 0x6F00); // clearing of receiving status bits
AndyA 0:bddb8cd5e7df 805 }
AndyA 0:bddb8cd5e7df 806 if (status & 0x80) { // sending complete
AndyA 0:bddb8cd5e7df 807 callbackTX.call();
AndyA 0:bddb8cd5e7df 808 writeRegister8(DW1000_SYS_STATUS, 0, 0xF8); // clearing of sending status bits
AndyA 0:bddb8cd5e7df 809 }
AndyA 0:bddb8cd5e7df 810 }
AndyA 0:bddb8cd5e7df 811
AndyA 0:bddb8cd5e7df 812 uint16_t DW1000::getFramelength()
AndyA 0:bddb8cd5e7df 813 {
AndyA 0:bddb8cd5e7df 814 uint16_t framelength = readRegister16(DW1000_RX_FINFO, 0); // get framelength
AndyA 0:bddb8cd5e7df 815 framelength = (framelength & 0x03FF) - 2; // take only the right bits and subtract the 2 CRC Bytes
AndyA 0:bddb8cd5e7df 816 return framelength;
AndyA 0:bddb8cd5e7df 817 }
AndyA 0:bddb8cd5e7df 818
AndyA 0:bddb8cd5e7df 819 // SPI Interface ------------------------------------------------------------------------------------
AndyA 0:bddb8cd5e7df 820 uint8_t DW1000::readRegister8(uint8_t reg, uint16_t subaddress)
AndyA 0:bddb8cd5e7df 821 {
AndyA 0:bddb8cd5e7df 822 uint8_t result;
AndyA 0:bddb8cd5e7df 823 readRegister(reg, subaddress, &result, 1);
AndyA 0:bddb8cd5e7df 824 return result;
AndyA 0:bddb8cd5e7df 825 }
AndyA 0:bddb8cd5e7df 826
AndyA 0:bddb8cd5e7df 827 uint16_t DW1000::readRegister16(uint8_t reg, uint16_t subaddress)
AndyA 0:bddb8cd5e7df 828 {
AndyA 0:bddb8cd5e7df 829 uint16_t result;
AndyA 0:bddb8cd5e7df 830 readRegister(reg, subaddress, (uint8_t*)&result, 2);
AndyA 0:bddb8cd5e7df 831 return result;
AndyA 0:bddb8cd5e7df 832 }
AndyA 0:bddb8cd5e7df 833
AndyA 0:bddb8cd5e7df 834 uint32_t DW1000::readRegister32(uint8_t reg, uint16_t subaddress)
AndyA 0:bddb8cd5e7df 835 {
AndyA 0:bddb8cd5e7df 836 uint32_t result;
AndyA 0:bddb8cd5e7df 837 readRegister(reg, subaddress, (uint8_t*)&result, 4);
AndyA 0:bddb8cd5e7df 838 return result;
AndyA 0:bddb8cd5e7df 839 }
AndyA 0:bddb8cd5e7df 840
AndyA 0:bddb8cd5e7df 841
AndyA 0:bddb8cd5e7df 842 uint64_t DW1000::readRegister40(uint8_t reg, uint16_t subaddress)
AndyA 0:bddb8cd5e7df 843 {
AndyA 0:bddb8cd5e7df 844 uint64_t result = 0;
AndyA 0:bddb8cd5e7df 845 readRegister(reg, subaddress, (uint8_t*)&result, 5);
AndyA 0:bddb8cd5e7df 846 return result;
AndyA 0:bddb8cd5e7df 847 }
AndyA 0:bddb8cd5e7df 848 uint64_t DW1000::readRegister64(uint8_t reg, uint16_t subaddress)
AndyA 0:bddb8cd5e7df 849 {
AndyA 0:bddb8cd5e7df 850 uint64_t result;
AndyA 0:bddb8cd5e7df 851 readRegister(reg, subaddress, (uint8_t*)&result, 8);
AndyA 0:bddb8cd5e7df 852 return result;
AndyA 0:bddb8cd5e7df 853 }
AndyA 0:bddb8cd5e7df 854
AndyA 0:bddb8cd5e7df 855 void DW1000::writeRegister8(uint8_t reg, uint16_t subaddress, uint8_t buffer)
AndyA 0:bddb8cd5e7df 856 {
AndyA 0:bddb8cd5e7df 857 writeRegister(reg, subaddress, &buffer, 1);
AndyA 0:bddb8cd5e7df 858 }
AndyA 0:bddb8cd5e7df 859
AndyA 0:bddb8cd5e7df 860 void DW1000::writeRegister16(uint8_t reg, uint16_t subaddress, uint16_t buffer)
AndyA 0:bddb8cd5e7df 861 {
AndyA 0:bddb8cd5e7df 862 writeRegister(reg, subaddress, (uint8_t*)&buffer, 2);
AndyA 0:bddb8cd5e7df 863 }
AndyA 0:bddb8cd5e7df 864
AndyA 0:bddb8cd5e7df 865 void DW1000::writeRegister32(uint8_t reg, uint16_t subaddress, uint32_t buffer)
AndyA 0:bddb8cd5e7df 866 {
AndyA 0:bddb8cd5e7df 867 writeRegister(reg, subaddress, (uint8_t*)&buffer, 4);
AndyA 0:bddb8cd5e7df 868 }
AndyA 0:bddb8cd5e7df 869
AndyA 0:bddb8cd5e7df 870 void DW1000::writeRegister40(uint8_t reg, uint16_t subaddress, uint64_t buffer)
AndyA 0:bddb8cd5e7df 871 {
AndyA 0:bddb8cd5e7df 872 writeRegister(reg, subaddress, (uint8_t*)&buffer, 5);
AndyA 0:bddb8cd5e7df 873 }
AndyA 0:bddb8cd5e7df 874
AndyA 0:bddb8cd5e7df 875 void DW1000::readRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length)
AndyA 0:bddb8cd5e7df 876 {
AndyA 0:bddb8cd5e7df 877 setupTransaction(reg, subaddress, false);
AndyA 0:bddb8cd5e7df 878 for(int i=0; i<length; i++) // get data
AndyA 0:bddb8cd5e7df 879 buffer[i] = spi.write(0x00);
AndyA 0:bddb8cd5e7df 880 deselect();
AndyA 0:bddb8cd5e7df 881 }
AndyA 0:bddb8cd5e7df 882
AndyA 0:bddb8cd5e7df 883 void DW1000::writeRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length)
AndyA 0:bddb8cd5e7df 884 {
AndyA 0:bddb8cd5e7df 885 setupTransaction(reg, subaddress, true);
AndyA 0:bddb8cd5e7df 886 for(int i=0; i<length; i++) // put data
AndyA 0:bddb8cd5e7df 887 spi.write(buffer[i]);
AndyA 0:bddb8cd5e7df 888 deselect();
AndyA 0:bddb8cd5e7df 889 }
AndyA 0:bddb8cd5e7df 890
AndyA 0:bddb8cd5e7df 891 void DW1000::setupTransaction(uint8_t reg, uint16_t subaddress, bool write)
AndyA 0:bddb8cd5e7df 892 {
AndyA 0:bddb8cd5e7df 893 reg |= (write * DW1000_WRITE_FLAG); // set read/write flag
AndyA 0:bddb8cd5e7df 894 select();
AndyA 0:bddb8cd5e7df 895 if (subaddress > 0) { // there's a subadress, we need to set flag and send second header byte
AndyA 0:bddb8cd5e7df 896 spi.write(reg | DW1000_SUBADDRESS_FLAG);
AndyA 0:bddb8cd5e7df 897 if (subaddress > 0x7F) { // sub address too long, we need to set flag and send third header byte
AndyA 0:bddb8cd5e7df 898 spi.write((uint8_t)(subaddress & 0x7F) | DW1000_2_SUBADDRESS_FLAG); // and
AndyA 0:bddb8cd5e7df 899 spi.write((uint8_t)(subaddress >> 7));
AndyA 0:bddb8cd5e7df 900 } else {
AndyA 0:bddb8cd5e7df 901 spi.write((uint8_t)subaddress);
AndyA 0:bddb8cd5e7df 902 }
AndyA 0:bddb8cd5e7df 903 } else {
AndyA 0:bddb8cd5e7df 904 spi.write(reg); // say which register address we want to access
AndyA 0:bddb8cd5e7df 905 }
AndyA 0:bddb8cd5e7df 906 }
AndyA 0:bddb8cd5e7df 907
AndyA 0:bddb8cd5e7df 908 void DW1000::select() // always called to start an SPI transmission
AndyA 0:bddb8cd5e7df 909 {
AndyA 0:bddb8cd5e7df 910 irq.disable_irq(); // disable interrupts from DW1000 during SPI becaus this leads to crashes! TODO: if you have other interrupt handlers attached on the micro controller, they could also interfere.
AndyA 0:bddb8cd5e7df 911 cs = 0; // set Cable Select pin low to start transmission
AndyA 0:bddb8cd5e7df 912 }
AndyA 0:bddb8cd5e7df 913
AndyA 0:bddb8cd5e7df 914 void DW1000::deselect() // always called to end an SPI transmission
AndyA 0:bddb8cd5e7df 915 {
AndyA 0:bddb8cd5e7df 916 cs = 1; // set Cable Select pin high to stop transmission
AndyA 0:bddb8cd5e7df 917 irq.enable_irq(); // reenable the interrupt handler
AndyA 0:bddb8cd5e7df 918 }