Latest version of my quadcopter controller with an LPC1768 and MPU9250.

Dependencies:   mbed

Currently running on a custom PCB with 30.5 x 30.5mm mounts. There are also 2 PC apps that go with the software; one to set up the PID controller and one to balance the motors and props. If anyone is interested, send me a message and I'll upload them.

Madgwick/MadgwickAHRS.cpp

Committer:
Anaesthetix
Date:
2018-07-09
Revision:
0:0929d3d566cf
Child:
5:0f4204941604

File content as of revision 0:0929d3d566cf:

//=============================================================================================
// MadgwickAHRS.c
//=============================================================================================
//
// Implementation of Madgwick's IMU and AHRS algorithms.
// See: http://www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/
//
// From the x-io website "Open-source resources available on this website are
// provided under the GNU General Public Licence unless an alternative licence
// is provided in source."
//
// Date         Author          Notes
// 29/09/2011   SOH Madgwick    Initial release
// 02/10/2011   SOH Madgwick    Optimised for reduced CPU load
// 19/02/2012   SOH Madgwick    Magnetometer measurement is normalised
//
//=============================================================================================

//-------------------------------------------------------------------------------------------
// Header files

#include "MadgwickAHRS.h"
#include <math.h>

//-------------------------------------------------------------------------------------------
// Definitions

#define sampleFreqDef   1500.0f          // sample frequency in Hz
#define betaDef         0.1f            // 2 * proportional gain 0.1 - 0.5 - 5 was 2.5


//============================================================================================
// Functions

//-------------------------------------------------------------------------------------------
// AHRS algorithm update

Madgwick::Madgwick() {
    beta = betaDef;
    q0 = 1.0f;
    q1 = 0.0f;
    q2 = 0.0f;
    q3 = 0.0f;
    invSampleFreq = 1.0f / sampleFreqDef;
    anglesComputed = 0;
}

void Madgwick::update(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz) {
    float recipNorm;
    float s0, s1, s2, s3;
    float qDot1, qDot2, qDot3, qDot4;
    float hx, hy;
    float _2q0mx, _2q0my, _2q0mz, _2q1mx, _2bx, _2bz, _4bx, _4bz, _8bx, _8bz, _2q0, _2q1, _2q2, _2q3, _2q0q2, _2q2q3, q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;

    // Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer normalisation)
    if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) {
        updateIMU(gx, gy, gz, ax, ay, az);
        return;
    }

    // Convert gyroscope degrees/sec to radians/sec
    gx *= 0.0174533f;
    gy *= 0.0174533f;
    gz *= 0.0174533f;

    // Rate of change of quaternion from gyroscope
    qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
    qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
    qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
    qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);

    // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
    if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {

        // Normalise accelerometer measurement
        recipNorm = invSqrt(ax * ax + ay * ay + az * az);
        ax *= recipNorm;
        ay *= recipNorm;
        az *= recipNorm;

        // Normalise magnetometer measurement
        recipNorm = invSqrt(mx * mx + my * my + mz * mz);
        mx *= recipNorm;
        my *= recipNorm;
        mz *= recipNorm;

        // Auxiliary variables to avoid repeated arithmetic
        _2q0mx = 2.0f * q0 * mx;
        _2q0my = 2.0f * q0 * my;
        _2q0mz = 2.0f * q0 * mz;
        _2q1mx = 2.0f * q1 * mx;
        _2q0 = 2.0f * q0;
        _2q1 = 2.0f * q1;
        _2q2 = 2.0f * q2;
        _2q3 = 2.0f * q3;
        _2q0q2 = 2.0f * q0 * q2;
        _2q2q3 = 2.0f * q2 * q3;
        q0q0 = q0 * q0;
        q0q1 = q0 * q1;
        q0q2 = q0 * q2;
        q0q3 = q0 * q3;
        q1q1 = q1 * q1;
        q1q2 = q1 * q2;
        q1q3 = q1 * q3;
        q2q2 = q2 * q2;
        q2q3 = q2 * q3;
        q3q3 = q3 * q3;
/*
        // Reference direction of Earth's magnetic field
        hx = mx * q0q0 - _2q0my * q3 + _2q0mz * q2 + mx * q1q1 + _2q1 * my * q2 + _2q1 * mz * q3 - mx * q2q2 - mx * q3q3;
        hy = _2q0mx * q3 + my * q0q0 - _2q0mz * q1 + _2q1mx * q2 - my * q1q1 + my * q2q2 + _2q2 * mz * q3 - my * q3q3;
        _2bx = sqrtf(hx * hx + hy * hy);
        _2bz = -_2q0mx * q2 + _2q0my * q1 + mz * q0q0 + _2q1mx * q3 - mz * q1q1 + _2q2 * my * q3 - mz * q2q2 + mz * q3q3;
        _4bx = 2.0f * _2bx;
        _4bz = 2.0f * _2bz;

        // Gradient decent algorithm corrective step
        s0 = -_2q2 * (2.0f * q1q3 - _2q0q2 - ax) + _2q1 * (2.0f * q0q1 + _2q2q3 - ay) - _2bz * q2 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q3 + _2bz * q1) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q2 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
        s1 = _2q3 * (2.0f * q1q3 - _2q0q2 - ax) + _2q0 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q1 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + _2bz * q3 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q2 + _2bz * q0) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q3 - _4bz * q1) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
        s2 = -_2q0 * (2.0f * q1q3 - _2q0q2 - ax) + _2q3 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q2 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + (-_4bx * q2 - _2bz * q0) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q1 + _2bz * q3) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q0 - _4bz * q2) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
        s3 = _2q1 * (2.0f * q1q3 - _2q0q2 - ax) + _2q2 * (2.0f * q0q1 + _2q2q3 - ay) + (-_4bx * q3 + _2bz * q1) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q0 + _2bz * q2) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q1 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
        */
				// Reference direction of Earth's magnetic field
				hx = mx * q0q0 - _2q0my * q3 + _2q0mz * q2 + mx * q1q1 + _2q1 * my * q2 + _2q1 * mz * q3 - mx * q2q2 - mx * q3q3;
				hy = _2q0mx * q3 + my * q0q0 - _2q0mz * q1 + _2q1mx * q2 - my * q1q1 + my * q2q2 + _2q2 * mz * q3 - my * q3q3;
				_2bx = sqrt(hx * hx + hy * hy);
				_2bz = -_2q0mx * q2 + _2q0my * q1 + mz * q0q0 + _2q1mx * q3 - mz * q1q1 + _2q2 * my * q3 - mz * q2q2 + mz * q3q3;
				_4bx = 2.0f * _2bx;
				_4bz = 2.0f * _2bz;
				_8bx = 2.0f * _4bx;
				_8bz = 2.0f * _4bz;

				// Gradient decent algorithm corrective step
				s0= -_2q2*(2.0f*(q1q3 - q0q2) - ax)    +   _2q1*(2.0f*(q0q1 + q2q3) - ay)   +  -_4bz*q2*(_4bx*(0.5 - q2q2 - q3q3) + _4bz*(q1q3 - q0q2) - mx)   +   (-_4bx*q3+_4bz*q1)*(_4bx*(q1q2 - q0q3) + _4bz*(q0q1 + q2q3) - my)    +   _4bx*q2*(_4bx*(q0q2 + q1q3) + _4bz*(0.5 - q1q1 - q2q2) - mz);
				s1= _2q3*(2.0f*(q1q3 - q0q2) - ax) +   _2q0*(2.0f*(q0q1 + q2q3) - ay) +   -4.0f*q1*(2.0f*(0.5 - q1q1 - q2q2) - az)    +   _4bz*q3*(_4bx*(0.5 - q2q2 - q3q3) + _4bz*(q1q3 - q0q2) - mx)   + (_4bx*q2+_4bz*q0)*(_4bx*(q1q2 - q0q3) + _4bz*(q0q1 + q2q3) - my)   +   (_4bx*q3-_8bz*q1)*(_4bx*(q0q2 + q1q3) + _4bz*(0.5 - q1q1 - q2q2) - mz);             
				s2= -_2q0*(2.0f*(q1q3 - q0q2) - ax)    +     _2q3*(2.0f*(q0q1 + q2q3) - ay)   +   (-4.0f*q2)*(2.0f*(0.5 - q1q1 - q2q2) - az) +   (-_8bx*q2-_4bz*q0)*(_4bx*(0.5 - q2q2 - q3q3) + _4bz*(q1q3 - q0q2) - mx)+(_4bx*q1+_4bz*q3)*(_4bx*(q1q2 - q0q3) + _4bz*(q0q1 + q2q3) - my)+(_4bx*q0-_8bz*q2)*(_4bx*(q0q2 + q1q3) + _4bz*(0.5 - q1q1 - q2q2) - mz);
				s3= _2q1*(2.0f*(q1q3 - q0q2) - ax) +   _2q2*(2.0f*(q0q1 + q2q3) - ay)+(-_8bx*q3+_4bz*q1)*(_4bx*(0.5 - q2q2 - q3q3) + _4bz*(q1q3 - q0q2) - mx)+(-_4bx*q0+_4bz*q2)*(_4bx*(q1q2 - q0q3) + _4bz*(q0q1 + q2q3) - my)+(_4bx*q1)*(_4bx*(q0q2 + q1q3) + _4bz*(0.5 - q1q1 - q2q2) - mz);
				recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
        s0 *= recipNorm;
        s1 *= recipNorm;
        s2 *= recipNorm;
        s3 *= recipNorm;

        // Apply feedback step
        qDot1 -= beta * s0;
        qDot2 -= beta * s1;
        qDot3 -= beta * s2;
        qDot4 -= beta * s3;
    }

    // Integrate rate of change of quaternion to yield quaternion
    q0 += qDot1 * invSampleFreq;
    q1 += qDot2 * invSampleFreq;
    q2 += qDot3 * invSampleFreq;
    q3 += qDot4 * invSampleFreq;

    // Normalise quaternion
    recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
    q0 *= recipNorm;
    q1 *= recipNorm;
    q2 *= recipNorm;
    q3 *= recipNorm;
    anglesComputed = 0;
}

//-------------------------------------------------------------------------------------------
// IMU algorithm update

void Madgwick::updateIMU(float gx, float gy, float gz, float ax, float ay, float az) {
    float recipNorm;
    float s0, s1, s2, s3;
    float qDot1, qDot2, qDot3, qDot4;
    float _2q0, _2q1, _2q2, _2q3, _4q0, _4q1, _4q2 ,_8q1, _8q2, q0q0, q1q1, q2q2, q3q3;

    // Convert gyroscope degrees/sec to radians/sec
    gx *= 0.0174533f;
    gy *= 0.0174533f;
    gz *= 0.0174533f;

    // Rate of change of quaternion from gyroscope
    qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
    qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
    qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
    qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);

    // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
    if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {

        // Normalise accelerometer measurement
        recipNorm = invSqrt(ax * ax + ay * ay + az * az);
        ax *= recipNorm;
        ay *= recipNorm;
        az *= recipNorm;

        // Auxiliary variables to avoid repeated arithmetic
        _2q0 = 2.0f * q0;
        _2q1 = 2.0f * q1;
        _2q2 = 2.0f * q2;
        _2q3 = 2.0f * q3;
        _4q0 = 4.0f * q0;
        _4q1 = 4.0f * q1;
        _4q2 = 4.0f * q2;
        _8q1 = 8.0f * q1;
        _8q2 = 8.0f * q2;
        q0q0 = q0 * q0;
        q1q1 = q1 * q1;
        q2q2 = q2 * q2;
        q3q3 = q3 * q3;

        // Gradient decent algorithm corrective step
        s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay;
        s1 = _4q1 * q3q3 - _2q3 * ax + 4.0f * q0q0 * q1 - _2q0 * ay - _4q1 + _8q1 * q1q1 + _8q1 * q2q2 + _4q1 * az;
        s2 = 4.0f * q0q0 * q2 + _2q0 * ax + _4q2 * q3q3 - _2q3 * ay - _4q2 + _8q2 * q1q1 + _8q2 * q2q2 + _4q2 * az;
        s3 = 4.0f * q1q1 * q3 - _2q1 * ax + 4.0f * q2q2 * q3 - _2q2 * ay;
        recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
        s0 *= recipNorm;
        s1 *= recipNorm;
        s2 *= recipNorm;
        s3 *= recipNorm;

        // Apply feedback step
        qDot1 -= beta * s0;
        qDot2 -= beta * s1;
        qDot3 -= beta * s2;
        qDot4 -= beta * s3;
    }

    // Integrate rate of change of quaternion to yield quaternion
    q0 += qDot1 * invSampleFreq;
    q1 += qDot2 * invSampleFreq;
    q2 += qDot3 * invSampleFreq;
    q3 += qDot4 * invSampleFreq;

    // Normalise quaternion
    recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
    q0 *= recipNorm;
    q1 *= recipNorm;
    q2 *= recipNorm;
    q3 *= recipNorm;
    anglesComputed = 0;
}

//-------------------------------------------------------------------------------------------
// Fast inverse square-root
// See: http://en.wikipedia.org/wiki/Fast_inverse_square_root

/*float Madgwick::invSqrt(float x) {
    float halfx = 0.5f * x;
    float y = x;
    long i = *(long*)&y;
    i = 0x5f3759df - (i>>1);
    y = *(float*)&i;
    y = y * (1.5f - (halfx * y * y));
    y = y * (1.5f - (halfx * y * y));
    return y;
} 

float Madgwick::invSqrt(float x){
   unsigned int i = 0x5F1F1412 - (*(unsigned int*)&x >> 1);
   float tmp = *(float*)&i;
   return tmp * (1.69000231f - 0.714158168f * x * tmp * tmp);
}
*/
float Madgwick::invSqrt(float x) {
		float tmp = 1/(sqrt(x));
		return tmp;
}

//-------------------------------------------------------------------------------------------

void Madgwick::computeAngles()
{
    roll = atan2f(q0*q1 + q2*q3, 0.5f - q1*q1 - q2*q2);
    pitch = asinf(-2.0f * (q1*q3 - q0*q2));
    yaw = atan2f(q1*q2 + q0*q3, 0.5f - q2*q2 - q3*q3);
    anglesComputed = 1;
}