hal_tick.h changed for the L432KC target in TARGET/../device/ in order to reassign the system ticker from TIM2 to TIM7, since TIM2 was needed as a 32bit encoder counter.
Dependents: Nucleo_L432KC_Quadrature_Decoder_with_ADC_and_DAC
Fork of mbed-dev by
targets/TARGET_NXP/TARGET_LPC43XX/serial_api.c
- Committer:
- tonnyleonard
- Date:
- 2017-05-27
- Revision:
- 161:bd0311f1ad86
- Parent:
- 149:156823d33999
File content as of revision 161:bd0311f1ad86:
/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Ported to NXP LPC43XX by Micromint USA <support@micromint.com> */ // math.h required for floating point operations for baud rate calculation #include <math.h> #include <string.h> #include <stdlib.h> #include "serial_api.h" #include "cmsis.h" #include "pinmap.h" #include "mbed_error.h" #include "gpio_api.h" /****************************************************************************** * INITIALIZATION ******************************************************************************/ #define UART_NUM 4 // SCU mode for UART pins #define SCU_PINIO_UART_TX SCU_MODE_PULLDOWN #define SCU_PINIO_UART_RX SCU_PINIO_PULLNONE static const PinMap PinMap_UART_TX[] = { {P1_13, UART_1, (SCU_PINIO_UART_TX | 1)}, {P1_15, UART_2, (SCU_PINIO_UART_TX | 1)}, {P2_0, UART_0, (SCU_PINIO_UART_TX | 1)}, {P2_3, UART_3, (SCU_PINIO_UART_TX | 2)}, {P2_10, UART_2, (SCU_PINIO_UART_TX | 2)}, {P3_4, UART_1, (SCU_PINIO_UART_TX | 4)}, {P4_1, UART_3, (SCU_PINIO_UART_TX | 6)}, {P5_6, UART_1, (SCU_PINIO_UART_TX | 4)}, {P6_4, UART_0, (SCU_PINIO_UART_TX | 2)}, {P7_1, UART_2, (SCU_PINIO_UART_TX | 6)}, {P9_3, UART_3, (SCU_PINIO_UART_TX | 7)}, {P9_5, UART_0, (SCU_PINIO_UART_TX | 7)}, {PA_1, UART_2, (SCU_PINIO_UART_TX | 3)}, {PC_13, UART_1, (SCU_PINIO_UART_TX | 2)}, {PE_11, UART_1, (SCU_PINIO_UART_TX | 2)}, {PF_2, UART_3, (SCU_PINIO_UART_TX | 1)}, {PF_10, UART_0, (SCU_PINIO_UART_TX | 1)}, {NC, NC, 0} }; static const PinMap PinMap_UART_RX[] = { {P1_14, UART_1, (SCU_PINIO_UART_RX | 1)}, {P1_16, UART_2, (SCU_PINIO_UART_RX | 1)}, {P2_1, UART_0, (SCU_PINIO_UART_RX | 1)}, {P2_4, UART_3, (SCU_PINIO_UART_RX | 2)}, {P2_11, UART_2, (SCU_PINIO_UART_RX | 2)}, {P3_5, UART_1, (SCU_PINIO_UART_RX | 4)}, {P4_2, UART_3, (SCU_PINIO_UART_RX | 6)}, {P5_7, UART_1, (SCU_PINIO_UART_RX | 4)}, {P6_5, UART_0, (SCU_PINIO_UART_RX | 2)}, {P7_2, UART_2, (SCU_PINIO_UART_RX | 6)}, {P9_4, UART_3, (SCU_PINIO_UART_RX | 7)}, {P9_6, UART_0, (SCU_PINIO_UART_RX | 7)}, {PA_2, UART_2, (SCU_PINIO_UART_RX | 3)}, {PC_14, UART_1, (SCU_PINIO_UART_RX | 2)}, {PE_12, UART_1, (SCU_PINIO_UART_RX | 2)}, {PF_3, UART_3, (SCU_PINIO_UART_RX | 1)}, {PF_11, UART_0, (SCU_PINIO_UART_RX | 1)}, {NC, NC, 0} }; #if (DEVICE_SERIAL_FC) // RTS/CTS PinMap for flow control static const PinMap PinMap_UART_RTS[] = { {P1_9, UART_1, (SCU_PINIO_FAST | 1)}, {P5_2, UART_1, (SCU_PINIO_FAST | 4)}, {PC_3, UART_1, (SCU_PINIO_FAST | 2)}, {PE_5, UART_1, (SCU_PINIO_FAST | 2)}, {NC, NC, 0} }; static const PinMap PinMap_UART_CTS[] = { {P1_11, UART_1, (SCU_PINIO_FAST | 1)}, {P5_4, UART_1, (SCU_PINIO_FAST | 4), {PC_2, UART_1, (SCU_PINIO_FAST | 2)}, {PE_7, UART_1, (SCU_PINIO_FAST | 2)}, {NC, NC, 0} }; #endif static uart_irq_handler irq_handler; int stdio_uart_inited = 0; serial_t stdio_uart; struct serial_global_data_s { uint32_t serial_irq_id; gpio_t sw_rts, sw_cts; uint8_t count, rx_irq_set_flow, rx_irq_set_api; }; static struct serial_global_data_s uart_data[UART_NUM]; void serial_init(serial_t *obj, PinName tx, PinName rx) { int is_stdio_uart = 0; // determine the UART to use UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX); UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX); UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx); if ((int)uart == NC) { error("Serial pinout mapping failed"); } obj->uart = (LPC_USART_T *)uart; // enable fifos and default rx trigger level obj->uart->FCR = 1 << 0 // FIFO Enable - 0 = Disables, 1 = Enabled | 0 << 1 // Rx Fifo Reset | 0 << 2 // Tx Fifo Reset | 0 << 6; // Rx irq trigger level - 0 = 1 char, 1 = 4 chars, 2 = 8 chars, 3 = 14 chars // disable irqs obj->uart->IER = 0 << 0 // Rx Data available irq enable | 0 << 1 // Tx Fifo empty irq enable | 0 << 2; // Rx Line Status irq enable // set default baud rate and format serial_baud (obj, 9600); serial_format(obj, 8, ParityNone, 1); // pinout the chosen uart pinmap_pinout(tx, PinMap_UART_TX); pinmap_pinout(rx, PinMap_UART_RX); // set rx/tx pins in PullUp mode if (tx != NC) { pin_mode(tx, PullUp); } if (rx != NC) { pin_mode(rx, PullUp); } switch (uart) { case UART_0: obj->index = 0; break; case UART_1: obj->index = 1; break; case UART_2: obj->index = 2; break; case UART_3: obj->index = 3; break; } uart_data[obj->index].sw_rts.pin = NC; uart_data[obj->index].sw_cts.pin = NC; serial_set_flow_control(obj, FlowControlNone, NC, NC); is_stdio_uart = (uart == STDIO_UART) ? (1) : (0); if (is_stdio_uart) { stdio_uart_inited = 1; serial_baud (obj, STDIO_BAUD); memcpy(&stdio_uart, obj, sizeof(serial_t)); } } void serial_free(serial_t *obj) { uart_data[obj->index].serial_irq_id = 0; } // serial_baud // set the baud rate, taking in to account the current SystemFrequency void serial_baud(serial_t *obj, int baudrate) { uint32_t PCLK = SystemCoreClock; // First we check to see if the basic divide with no DivAddVal/MulVal // ratio gives us an integer result. If it does, we set DivAddVal = 0, // MulVal = 1. Otherwise, we search the valid ratio value range to find // the closest match. This could be more elegant, using search methods // and/or lookup tables, but the brute force method is not that much // slower, and is more maintainable. uint16_t DL = PCLK / (16 * baudrate); uint8_t DivAddVal = 0; uint8_t MulVal = 1; int hit = 0; uint16_t dlv; uint8_t mv, dav; if ((PCLK % (16 * baudrate)) != 0) { // Checking for zero remainder int err_best = baudrate, b; for (mv = 1; mv < 16 && !hit; mv++) { for (dav = 0; dav < mv; dav++) { // baudrate = PCLK / (16 * dlv * (1 + (DivAdd / Mul)) // solving for dlv, we get dlv = mul * PCLK / (16 * baudrate * (divadd + mul)) // mul has 4 bits, PCLK has 27 so we have 1 bit headroom which can be used for rounding // for many values of mul and PCLK we have 2 or more bits of headroom which can be used to improve precision // note: X / 32 doesn't round correctly. Instead, we use ((X / 16) + 1) / 2 for correct rounding if ((mv * PCLK * 2) & 0x80000000) // 1 bit headroom dlv = ((((2 * mv * PCLK) / (baudrate * (dav + mv))) / 16) + 1) / 2; else // 2 bits headroom, use more precision dlv = ((((4 * mv * PCLK) / (baudrate * (dav + mv))) / 32) + 1) / 2; // datasheet says if DLL==DLM==0, then 1 is used instead since divide by zero is ungood if (dlv == 0) dlv = 1; // datasheet says if dav > 0 then DL must be >= 2 if ((dav > 0) && (dlv < 2)) dlv = 2; // integer rearrangement of the baudrate equation (with rounding) b = ((PCLK * mv / (dlv * (dav + mv) * 8)) + 1) / 2; // check to see how we went b = abs(b - baudrate); if (b < err_best) { err_best = b; DL = dlv; MulVal = mv; DivAddVal = dav; if (b == baudrate) { hit = 1; break; } } } } } // set LCR[DLAB] to enable writing to divider registers obj->uart->LCR |= (1 << 7); // set divider values obj->uart->DLM = (DL >> 8) & 0xFF; obj->uart->DLL = (DL >> 0) & 0xFF; obj->uart->FDR = (uint32_t) DivAddVal << 0 | (uint32_t) MulVal << 4; // clear LCR[DLAB] obj->uart->LCR &= ~(1 << 7); } void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { // 0: 1 stop bits, 1: 2 stop bits if (stop_bits != 1 && stop_bits != 2) { error("Invalid stop bits specified"); } stop_bits -= 1; // 0: 5 data bits ... 3: 8 data bits if (data_bits < 5 || data_bits > 8) { error("Invalid number of bits (%d) in serial format, should be 5..8", data_bits); } data_bits -= 5; int parity_enable, parity_select; switch (parity) { case ParityNone: parity_enable = 0; parity_select = 0; break; case ParityOdd : parity_enable = 1; parity_select = 0; break; case ParityEven: parity_enable = 1; parity_select = 1; break; case ParityForced1: parity_enable = 1; parity_select = 2; break; case ParityForced0: parity_enable = 1; parity_select = 3; break; default: error("Invalid serial parity setting"); return; } obj->uart->LCR = data_bits << 0 | stop_bits << 2 | parity_enable << 3 | parity_select << 4; } /****************************************************************************** * INTERRUPTS HANDLING ******************************************************************************/ static inline void uart_irq(uint32_t iir, uint32_t index, LPC_USART_T *puart) { // [Chapter 14] LPC17xx UART0/2/3: UARTn Interrupt Handling SerialIrq irq_type; switch (iir) { case 1: irq_type = TxIrq; break; case 2: irq_type = RxIrq; break; default: return; } if ((RxIrq == irq_type) && (NC != uart_data[index].sw_rts.pin)) { gpio_write(&uart_data[index].sw_rts, 1); // Disable interrupt if it wasn't enabled by other part of the application if (!uart_data[index].rx_irq_set_api) puart->IER &= ~(1 << RxIrq); } if (uart_data[index].serial_irq_id != 0) if ((irq_type != RxIrq) || (uart_data[index].rx_irq_set_api)) irq_handler(uart_data[index].serial_irq_id, irq_type); } void uart0_irq() {uart_irq((LPC_USART0->IIR >> 1) & 0x7, 0, (LPC_USART_T*)LPC_USART0);} void uart1_irq() {uart_irq((LPC_UART1->IIR >> 1) & 0x7, 1, (LPC_USART_T*)LPC_UART1);} void uart2_irq() {uart_irq((LPC_USART2->IIR >> 1) & 0x7, 2, (LPC_USART_T*)LPC_USART2);} void uart3_irq() {uart_irq((LPC_USART3->IIR >> 1) & 0x7, 3, (LPC_USART_T*)LPC_USART3);} void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { irq_handler = handler; uart_data[obj->index].serial_irq_id = id; } static void serial_irq_set_internal(serial_t *obj, SerialIrq irq, uint32_t enable) { IRQn_Type irq_n = (IRQn_Type)0; uint32_t vector = 0; switch ((int)obj->uart) { case UART_0: irq_n=USART0_IRQn; vector = (uint32_t)&uart0_irq; break; case UART_1: irq_n=UART1_IRQn; vector = (uint32_t)&uart1_irq; break; case UART_2: irq_n=USART2_IRQn; vector = (uint32_t)&uart2_irq; break; case UART_3: irq_n=USART3_IRQn; vector = (uint32_t)&uart3_irq; break; } if (enable) { obj->uart->IER |= 1 << irq; NVIC_SetVector(irq_n, vector); NVIC_EnableIRQ(irq_n); } else if ((TxIrq == irq) || (uart_data[obj->index].rx_irq_set_api + uart_data[obj->index].rx_irq_set_flow == 0)) { // disable int all_disabled = 0; SerialIrq other_irq = (irq == RxIrq) ? (TxIrq) : (RxIrq); obj->uart->IER &= ~(1 << irq); all_disabled = (obj->uart->IER & (1 << other_irq)) == 0; if (all_disabled) NVIC_DisableIRQ(irq_n); } } void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) { if (RxIrq == irq) uart_data[obj->index].rx_irq_set_api = enable; serial_irq_set_internal(obj, irq, enable); } #if (DEVICE_SERIAL_FC) static void serial_flow_irq_set(serial_t *obj, uint32_t enable) { uart_data[obj->index].rx_irq_set_flow = enable; serial_irq_set_internal(obj, RxIrq, enable); } #endif /****************************************************************************** * READ/WRITE ******************************************************************************/ int serial_getc(serial_t *obj) { while (!serial_readable(obj)); int data = obj->uart->RBR; if (NC != uart_data[obj->index].sw_rts.pin) { gpio_write(&uart_data[obj->index].sw_rts, 0); obj->uart->IER |= 1 << RxIrq; } return data; } void serial_putc(serial_t *obj, int c) { while (!serial_writable(obj)); obj->uart->THR = c; uart_data[obj->index].count++; } int serial_readable(serial_t *obj) { return obj->uart->LSR & 0x01; } int serial_writable(serial_t *obj) { int isWritable = 1; if (NC != uart_data[obj->index].sw_cts.pin) isWritable = (gpio_read(&uart_data[obj->index].sw_cts) == 0) && (obj->uart->LSR & 0x40); //If flow control: writable if CTS low + UART done else { if (obj->uart->LSR & 0x20) uart_data[obj->index].count = 0; else if (uart_data[obj->index].count >= 16) isWritable = 0; } return isWritable; } void serial_clear(serial_t *obj) { obj->uart->FCR = 1 << 0 // FIFO Enable - 0 = Disables, 1 = Enabled | 1 << 1 // rx FIFO reset | 1 << 2 // tx FIFO reset | 0 << 6; // interrupt depth } void serial_pinout_tx(PinName tx) { pinmap_pinout(tx, PinMap_UART_TX); } void serial_break_set(serial_t *obj) { obj->uart->LCR |= (1 << 6); } void serial_break_clear(serial_t *obj) { obj->uart->LCR &= ~(1 << 6); } void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow) { #if (DEVICE_SERIAL_FC) #endif }