A program to monitor some parameters for a motor
Dependencies: mbed-dev BufferSerial
Thanks to David Lowe for https://developer.mbed.org/users/gregeric/code/Nucleo_Hello_Encoder/ which I adapted for the use of TIM2 32bit timer as an encoder reader on the Nucleo L432KC board.
main.cpp
- Committer:
- tonnyleonard
- Date:
- 2017-06-22
- Revision:
- 23:5cd74e296f59
- Parent:
- 22:9bba1417e4a4
File content as of revision 23:5cd74e296f59:
/*
* Nucleo STM32F4(or L4) quadrature decoder, ADCs and DACs
* with serial communication over the USB virtual serial port
* Developed for Elliptec X15 piezoelectric motor control, on a L432KC board
*
* Using STM32's counter peripherals to interface rotary encoders.
* Encoders are supported on F4xx's TIM1,2,3,4,5. TIM2 & TIM5 have 32bit count,
* others 16bit.
* Take into account that on F4xx Mbed uses TIM5 for system timer, SPI needs TIM1,
* others are used for PWM.
* Check your platform's PeripheralPins.c & PeripheralNames.h if you need
* both PWM & encoders. This project does not use PWM.
*
* On L432KC, for example, only TIM2 has 32bit count, others have 16bit.
* However, mbed has TIM2 assigned by default to the system ticker
* For L432KC to work with TIM2 encoder input one needs to reassign
* the system ticker from TIM2 to TIM7, for example,
* in mbed-dev/targets/TARGET_STM/TARGET_STM32L4/TARGET_STM32L432xC/device/hal_tick.h
*
* Edit HAL_TIM_Encoder_MspInitFx(Lx).cpp to suit your mcu & board's available
* pinouts & pullups/downs.
*
* Thanks to:
* David Lowe (for the quadrature encoder code)
* https://developer.mbed.org/users/gregeric/code/Nucleo_Hello_Encoder/
*
* And Frederic Blanc
* https://developer.mbed.org/users/fblanc/code/AnalogIn_Diff/
*
* And Eric Lewiston / STM32L4xx_HAL_Driver
* https://developer.mbed.org/users/EricLew/code/STM32L4xx_HAL_Driver/docs/tip/group__ADC__LL__EF__Configuration__Channels.html
*
* References:
* http://www.st.com/resource/en/datasheet/stm32l432kc.pdf
* https://developer.mbed.org/platforms/ST-Nucleo-L432KC/
* http://www.st.com/web/en/resource/technical/document/application_note/DM00042534.pdf
* http://www.st.com/web/en/resource/technical/document/datasheet/DM00102166.pdf
*
* Tonny-Leonard Farauanu, 2017
*/
#include "mbed.h"
#include "Encoder.h"
//Defining the timer and its coresponding encoder
TIM_HandleTypeDef timer2;
TIM_Encoder_InitTypeDef encoder1;
//Timer to be used for the speed computation function
Timer timer1;
//The input for the encoder's index channel
InterruptIn event(PA_8);
//LED1 to signal USB serial RX interrupt reading
DigitalOut led1(LED1);
//LED2 to signal the encoder's index impulses
//only for feedback, to calibrate the position
//of the AVAGO encoder with respect to the shaft
DigitalOut led2(PB_4);
//Relay port to power on and off the Digitally Controlled Power Source (DCPS)
DigitalOut relay1(PB_5);
//Defining the ADCs
//For reading the Phase Comparator output
AnalogIn adc1(PA_3); //ADC1_IN8
//For reading the DCPS output
AnalogIn adc2(PA_4); //ADC1_IN9
//For reading the current value from the shunt monitor
AnalogIn adc3(PA_6); //ADC1_IN11
//Defining the DAC for the input of DCPS
//(DCPS - Digitally Controlled Power Source)
//DAC1_OUT2 on pin PA_5 is at least twices as fast as DAC1_OUT1 on pin PA_4
AnalogOut dac1(PA_5); // DAC1_OUT2
//Defining the serial object to be used for communicating with Raspi
Serial raspi(USBTX, USBRX);
//Counter for the absolute position from start
int32_t count1 = 0;
//Counter for the index passes
volatile int32_t count2 = 0;
//Records the wheel offset position to the index
volatile int32_t count3 = 0;
//Counter recording absolute position at last index pulse
volatile int32_t count4 = 0;
//Used to filter the first index pulse, so that the offset position
//to the index may be recorded
volatile bool adjustOffset = false;
//Last data written to dac1 (using subunitary values)
float dac_val = 0.0;
//Array with adc1, adc2 & adc3 correction addition,
//experimentally determined (hardware offset voltage dependent)
const float adc_corr[] = { 0, 0.022f, 0.022f, 0.022f};
//Enable ADC reading and printing to the serial interface
bool adc_en = true;
//Enables speed computing and printing to the serial interface
bool speed_en = true;
//Enable position reading and printing to the serial interface
bool pos_en = true;
//Enable alternative position computation and printing to the serial interface,
//relative to the encoder index pulses counter
bool posIndex_en = true;
//Function invoked by the encoder's index interrupt pulses
//It counts the index pulses, incrementing or decrementing the number,
//and registers the offset position of the wheel at start in count3;
//The index counter is used to correct possible reading errors of the
//encoder's counter
//led2 is used for visual feedback.
void atint()
{
count4 =__HAL_TIM_GET_COUNTER(&timer2);
if (__HAL_TIM_IS_TIM_COUNTING_DOWN(&timer2)) {
if (count2 == 0 && adjustOffset == false) { //catch first index pulse
count3 = count4;
adjustOffset = true;
}
count2--;
led2 =!led2;
} else {
if (count2 == 0 && adjustOffset == false) { //catch first index pulse
count3 = count4;
adjustOffset = true;
}
count2++;
led2 =!led2;
}
}
//Function for adaptive speed computation
float speedRead()
{
//counter for the waiting time window
uint16_t i = 0;
//sample time for speed computation
uint32_t deltaT;
//Computer speed
float speed;
//First and second registered position
int32_t pos1;
int32_t pos2;
//position difference to be used for speed computation
int32_t pos;
//Direction of rotation, read from the encoder, for the first
//and the second registered positions
int8_t sens1;
int8_t sens2;
timer1.start();
pos1=__HAL_TIM_GET_COUNTER(&timer2);
sens1 = __HAL_TIM_IS_TIM_COUNTING_DOWN(&timer2);
//Minumum waiting time for this project would be 100 microseconds,
//for 10 kHz quadrature frequency. We will set it 100 times longer
//wait_ms(10);
// Avoiding wait(), since it uses interrupts and timing here
// is not critical. This takes 10 ms, if not interrupted
for (uint32_t j=0; j<199950; j++) {}
pos2=__HAL_TIM_GET_COUNTER(&timer2);
sens2 = __HAL_TIM_IS_TIM_COUNTING_DOWN(&timer2);
//The speed computation method adapts to slow/fast speeds, in order to
//optimize the rapport between computation precision and time windows size
while (pos2 == pos1 && i<9) { // The accepted max delay time is 0.1 seconds
//wait_ms(10);
// Avoiding wait(), since it uses interrupts and timing here
// is not critical. This takes 10 ms, if not interrupted
for (uint32_t j=0; j<199950; j++) {}
i++;
pos2=__HAL_TIM_GET_COUNTER(&timer2);
sens2 = __HAL_TIM_IS_TIM_COUNTING_DOWN(&timer2);
}
pos2=__HAL_TIM_GET_COUNTER(&timer2);
sens2 = __HAL_TIM_IS_TIM_COUNTING_DOWN(&timer2);
timer1.stop();
deltaT = timer1.read_us();
timer1.reset();
if (sens1 == sens2) {
pos = pos2 - pos1;
} else {
printf("E:Speed computation error, change of direction between readings!\n");
}
if (deltaT > 0) {
//speed computation in rot/s
speed = ((float) pos)*125.f/((float) deltaT); // (pulses/us)*1000000/8000 -> rot/s
} else {
printf("E:Error, time interval not greater than zero, speed not calculated!\n");
}
return speed;
}
//Function attached to the serial RX interrupt event, it parses
//the serial messages and invoques the corresponding commands
void readData(void)
{
led1 = 1;
char message[15];
if (raspi.readable()) {
// Signalling the beginning of serial read
int i = 0;
bool rx = true;
while(rx && i<14) {
message[i] = raspi.getc();
if (message[i] == '\r') {
message[i] = NULL;
rx = false;
}
i++;
}
//Message received printed for debugging
//printf("M:%d %s\n", strlen(message), message);
int p1 = 0;
if (strcmp(message, "adcOn") == 0) {
adc_en = true;
printf("M:ADC true\n");
} else if (strcmp(message, "adcOff") == 0) {
adc_en = false;
printf("M:ADC false\n");
} else if (p1=strstr(message, "v=") != NULL) {
//Writing the dac1 value read from serial
//The DCPS has 1V offset, so we have to remove it
dac_val = (atof(message+p1+1)-1.f)/15.51;
dac1.write(dac_val);
} else if (strcmp(message, "reset") == 0) {
//encoder related counters reset command
TIM2->CNT = 0x0000;
count1 = 0;
count2 = 0;
count3 = 0;
count4 = 0;
adjustOffset = false;
printf("M:Encoder counters reset!\n");
} else if (strcmp(message, "powerOn") == 0) {
//command to power on the DCPS
relay1.write(1);
printf("M:DCPS on\n");
} else if (strcmp(message, "powerOff") == 0) {
//command to power off the DCPS
relay1.write(0);
printf("M:DCPS off\n");
} else if (strcmp(message, "posOn") == 0) {
//command to enable the encoder position notification
pos_en = true;
printf("M:Position notification enabled\n");
} else if (strcmp(message, "posOff") == 0) {
//command to disable the encoder position notification
pos_en = false;
printf("M:Position notification disabled\n");
} else if (strcmp(message, "posIndexOn") == 0) {
//command to enable the index related encoder position notification
posIndex_en = true;
printf("M:Index related position notification enabled\n");
} else if (strcmp(message, "posIndexOff") == 0) {
//command to disable the index related encoder position notification
posIndex_en = false;
printf("M:Index related position notification disabled\n");
} else if (strcmp(message, "speedOn") == 0) {
//command to enable speed computation and notification
speed_en = true;
printf("M:Speed enabled\n");
} else if (strcmp(message, "speedOff") == 0) {
//command to disable speed computation and notification
speed_en = false;
printf("M:Speed disabled\n");
}
}
//Signalling the end of searial read
led1 = 0;
}
//Function to compute the average of 1000 ADC readings
//Current intensity measurement should be as precise
//as possible, the time delay introduced my multiplying
//the readings is tolerable for this project
float ADC_read(AnalogIn adc)
{
float Voltage;
float Voltage_total = 0.0;
// Voltage is summed then averaged
for (int i=0; i<1000; i++) { // do 1000 readings
Voltage = adc.read();
Voltage_total = Voltage_total+ Voltage;
}
Voltage = Voltage_total/1000.f;
return Voltage;
}
//The main function
int main()
{
//Make sure the DCPS is off
relay1.write(0);
//Set the DCPS output to (0.32x3.3)x4.7+1 = ~6V
//These parameters are set for DCPS on load
dac1.write(0.32);
//counting on both A&B inputs (A at PA0, B at PA1), 4 ticks per cycle,
//full 32-bit count
//For L432KC to work with TIM2 one needs to reassign the system ticker
//from TIM2 to TIM7 in TARGET/../device/hal_tick.h\
//Initialise encoder
EncoderInit(&encoder1, &timer2, TIM2, 0xffffffff, TIM_ENCODERMODE_TI12);
//Define function to call for interrupt event rise
//This is triggered by the encoder's index pulses
//and it resets the encoder counter
event.rise(&atint);
//Set serial baud rate
raspi.baud(921600);
//Attach functin to call for serial interrupt event
//The wait() function ensures that not false serial RX
//interrupt is triggered at power up, because of initial
//serial port install by the Raspi OS
wait(1);
raspi.attach(&readData, Serial::RxIrq);
//Message to mark the initialisation of the program
printf("M:STM HAL encoder with ADC and DAC\n");
printf("M:Running at %u MHz\n", HAL_RCC_GetSysClockFreq()/1000000);
//The main loop
while(1) {
//Variable for the direction of the counter
int8_t dir1;
//Prints the timestamp in miliseconds
printf("T:%u", us_ticker_read()/1000);
if (pos_en) {
//It gets the position and the direction of the encoder
count1=__HAL_TIM_GET_COUNTER(&timer2);
dir1 = __HAL_TIM_IS_TIM_COUNTING_DOWN(&timer2);
printf("P:%ldD:%sC:%d", count1, dir1==0 ? "+":"-", count2);
if (posIndex_en) {
if (count2 > 1) {
printf("Pi:%ld", (count1-count4) + (count2-1)*8000 + count3);
} else if (count2 < -1) {
printf("Pi:%ld", (count1-count4) + (count2+1)*8000 + count3);
} else {
printf("Pi:%ld", (count1-count4) + count3);
}
}
}
if (speed_en) {
//Print speed in rot/s
printf("S:%.3f%", speedRead());
}
if (adc_en) {
//Print phase shift in Degrees, DCPS output voltage in Volts
// and current intensity in Ampers
// The dividing factors are hardware dependant
printf("F:%3.3fU:%3.3fI:%3.3f", (3.3f*ADC_read(adc1)+adc_corr[1])*125.62f,
(3.3f*ADC_read(adc2)+adc_corr[2])/0.207f,
3.3f*ADC_read(adc3)+adc_corr[3]);
}
printf("\n");
wait(0.005);
}
}