5.2.1 - Updated I2C files
Dependents: mbed-TFT-example-NCS36510 mbed-Accelerometer-example-NCS36510 mbed-Accelerometer-example-NCS36510
targets/TARGET_NUVOTON/TARGET_M451/spi_api.c@1:f30bdcd2b33b, 2017-02-27 (annotated)
- Committer:
- jacobjohnson
- Date:
- Mon Feb 27 17:45:05 2017 +0000
- Revision:
- 1:f30bdcd2b33b
- Parent:
- 0:098463de4c5d
changed the inputscale from 1 to 7 in analogin_api.c. This will need to be changed later, and accessed from the main level, but for now this allows the adc to read a value from 0 to 3.7V, instead of just up to 1V.;
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
group-onsemi | 0:098463de4c5d | 1 | /* mbed Microcontroller Library |
group-onsemi | 0:098463de4c5d | 2 | * Copyright (c) 2015-2016 Nuvoton |
group-onsemi | 0:098463de4c5d | 3 | * |
group-onsemi | 0:098463de4c5d | 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
group-onsemi | 0:098463de4c5d | 5 | * you may not use this file except in compliance with the License. |
group-onsemi | 0:098463de4c5d | 6 | * You may obtain a copy of the License at |
group-onsemi | 0:098463de4c5d | 7 | * |
group-onsemi | 0:098463de4c5d | 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
group-onsemi | 0:098463de4c5d | 9 | * |
group-onsemi | 0:098463de4c5d | 10 | * Unless required by applicable law or agreed to in writing, software |
group-onsemi | 0:098463de4c5d | 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
group-onsemi | 0:098463de4c5d | 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
group-onsemi | 0:098463de4c5d | 13 | * See the License for the specific language governing permissions and |
group-onsemi | 0:098463de4c5d | 14 | * limitations under the License. |
group-onsemi | 0:098463de4c5d | 15 | */ |
group-onsemi | 0:098463de4c5d | 16 | |
group-onsemi | 0:098463de4c5d | 17 | #include "spi_api.h" |
group-onsemi | 0:098463de4c5d | 18 | |
group-onsemi | 0:098463de4c5d | 19 | #if DEVICE_SPI |
group-onsemi | 0:098463de4c5d | 20 | |
group-onsemi | 0:098463de4c5d | 21 | #include "cmsis.h" |
group-onsemi | 0:098463de4c5d | 22 | #include "pinmap.h" |
group-onsemi | 0:098463de4c5d | 23 | #include "PeripheralPins.h" |
group-onsemi | 0:098463de4c5d | 24 | #include "nu_modutil.h" |
group-onsemi | 0:098463de4c5d | 25 | #include "nu_miscutil.h" |
group-onsemi | 0:098463de4c5d | 26 | #include "nu_bitutil.h" |
group-onsemi | 0:098463de4c5d | 27 | |
group-onsemi | 0:098463de4c5d | 28 | #if DEVICE_SPI_ASYNCH |
group-onsemi | 0:098463de4c5d | 29 | #include "dma_api.h" |
group-onsemi | 0:098463de4c5d | 30 | #include "dma.h" |
group-onsemi | 0:098463de4c5d | 31 | #endif |
group-onsemi | 0:098463de4c5d | 32 | |
group-onsemi | 0:098463de4c5d | 33 | #define NU_SPI_FRAME_MIN 8 |
group-onsemi | 0:098463de4c5d | 34 | #define NU_SPI_FRAME_MAX 32 |
group-onsemi | 0:098463de4c5d | 35 | #define NU_SPI_FIFO_DEPTH 8 |
group-onsemi | 0:098463de4c5d | 36 | |
group-onsemi | 0:098463de4c5d | 37 | struct nu_spi_var { |
group-onsemi | 0:098463de4c5d | 38 | #if DEVICE_SPI_ASYNCH |
group-onsemi | 0:098463de4c5d | 39 | uint8_t pdma_perp_tx; |
group-onsemi | 0:098463de4c5d | 40 | uint8_t pdma_perp_rx; |
group-onsemi | 0:098463de4c5d | 41 | #endif |
group-onsemi | 0:098463de4c5d | 42 | }; |
group-onsemi | 0:098463de4c5d | 43 | |
group-onsemi | 0:098463de4c5d | 44 | static struct nu_spi_var spi0_var = { |
group-onsemi | 0:098463de4c5d | 45 | #if DEVICE_SPI_ASYNCH |
group-onsemi | 0:098463de4c5d | 46 | .pdma_perp_tx = PDMA_SPI0_TX, |
group-onsemi | 0:098463de4c5d | 47 | .pdma_perp_rx = PDMA_SPI0_RX |
group-onsemi | 0:098463de4c5d | 48 | #endif |
group-onsemi | 0:098463de4c5d | 49 | }; |
group-onsemi | 0:098463de4c5d | 50 | static struct nu_spi_var spi1_var = { |
group-onsemi | 0:098463de4c5d | 51 | #if DEVICE_SPI_ASYNCH |
group-onsemi | 0:098463de4c5d | 52 | .pdma_perp_tx = PDMA_SPI1_TX, |
group-onsemi | 0:098463de4c5d | 53 | .pdma_perp_rx = PDMA_SPI1_RX |
group-onsemi | 0:098463de4c5d | 54 | #endif |
group-onsemi | 0:098463de4c5d | 55 | }; |
group-onsemi | 0:098463de4c5d | 56 | static struct nu_spi_var spi2_var = { |
group-onsemi | 0:098463de4c5d | 57 | #if DEVICE_SPI_ASYNCH |
group-onsemi | 0:098463de4c5d | 58 | .pdma_perp_tx = PDMA_SPI2_TX, |
group-onsemi | 0:098463de4c5d | 59 | .pdma_perp_rx = PDMA_SPI2_RX |
group-onsemi | 0:098463de4c5d | 60 | #endif |
group-onsemi | 0:098463de4c5d | 61 | }; |
group-onsemi | 0:098463de4c5d | 62 | |
group-onsemi | 0:098463de4c5d | 63 | #if DEVICE_SPI_ASYNCH |
group-onsemi | 0:098463de4c5d | 64 | static void spi_enable_vector_interrupt(spi_t *obj, uint32_t handler, uint8_t enable); |
group-onsemi | 0:098463de4c5d | 65 | static void spi_master_enable_interrupt(spi_t *obj, uint8_t enable); |
group-onsemi | 0:098463de4c5d | 66 | static uint32_t spi_master_write_asynch(spi_t *obj, uint32_t tx_limit); |
group-onsemi | 0:098463de4c5d | 67 | static uint32_t spi_master_read_asynch(spi_t *obj); |
group-onsemi | 0:098463de4c5d | 68 | static uint32_t spi_event_check(spi_t *obj); |
group-onsemi | 0:098463de4c5d | 69 | static void spi_enable_event(spi_t *obj, uint32_t event, uint8_t enable); |
group-onsemi | 0:098463de4c5d | 70 | static void spi_buffer_set(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length); |
group-onsemi | 0:098463de4c5d | 71 | static void spi_check_dma_usage(DMAUsage *dma_usage, int *dma_ch_tx, int *dma_ch_rx); |
group-onsemi | 0:098463de4c5d | 72 | static uint8_t spi_get_data_width(spi_t *obj); |
group-onsemi | 0:098463de4c5d | 73 | static int spi_is_tx_complete(spi_t *obj); |
group-onsemi | 0:098463de4c5d | 74 | static int spi_is_rx_complete(spi_t *obj); |
group-onsemi | 0:098463de4c5d | 75 | static int spi_writeable(spi_t * obj); |
group-onsemi | 0:098463de4c5d | 76 | static int spi_readable(spi_t * obj); |
group-onsemi | 0:098463de4c5d | 77 | static void spi_dma_handler_tx(uint32_t id, uint32_t event_dma); |
group-onsemi | 0:098463de4c5d | 78 | static void spi_dma_handler_rx(uint32_t id, uint32_t event_dma); |
group-onsemi | 0:098463de4c5d | 79 | #endif |
group-onsemi | 0:098463de4c5d | 80 | |
group-onsemi | 0:098463de4c5d | 81 | static uint32_t spi_modinit_mask = 0; |
group-onsemi | 0:098463de4c5d | 82 | |
group-onsemi | 0:098463de4c5d | 83 | static const struct nu_modinit_s spi_modinit_tab[] = { |
group-onsemi | 0:098463de4c5d | 84 | {SPI_0, SPI0_MODULE, CLK_CLKSEL2_SPI0SEL_PCLK0, MODULE_NoMsk, SPI0_RST, SPI0_IRQn, &spi0_var}, |
group-onsemi | 0:098463de4c5d | 85 | {SPI_1, SPI1_MODULE, CLK_CLKSEL2_SPI1SEL_PCLK1, MODULE_NoMsk, SPI1_RST, SPI1_IRQn, &spi1_var}, |
group-onsemi | 0:098463de4c5d | 86 | {SPI_2, SPI2_MODULE, CLK_CLKSEL2_SPI2SEL_PCLK0, MODULE_NoMsk, SPI2_RST, SPI2_IRQn, &spi2_var}, |
group-onsemi | 0:098463de4c5d | 87 | |
group-onsemi | 0:098463de4c5d | 88 | {NC, 0, 0, 0, 0, (IRQn_Type) 0, NULL} |
group-onsemi | 0:098463de4c5d | 89 | }; |
group-onsemi | 0:098463de4c5d | 90 | |
group-onsemi | 0:098463de4c5d | 91 | void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) { |
group-onsemi | 0:098463de4c5d | 92 | // Determine which SPI_x the pins are used for |
group-onsemi | 0:098463de4c5d | 93 | uint32_t spi_mosi = pinmap_peripheral(mosi, PinMap_SPI_MOSI); |
group-onsemi | 0:098463de4c5d | 94 | uint32_t spi_miso = pinmap_peripheral(miso, PinMap_SPI_MISO); |
group-onsemi | 0:098463de4c5d | 95 | uint32_t spi_sclk = pinmap_peripheral(sclk, PinMap_SPI_SCLK); |
group-onsemi | 0:098463de4c5d | 96 | uint32_t spi_ssel = pinmap_peripheral(ssel, PinMap_SPI_SSEL); |
group-onsemi | 0:098463de4c5d | 97 | uint32_t spi_data = pinmap_merge(spi_mosi, spi_miso); |
group-onsemi | 0:098463de4c5d | 98 | uint32_t spi_cntl = pinmap_merge(spi_sclk, spi_ssel); |
group-onsemi | 0:098463de4c5d | 99 | obj->spi.spi = (SPIName) pinmap_merge(spi_data, spi_cntl); |
group-onsemi | 0:098463de4c5d | 100 | MBED_ASSERT((int)obj->spi.spi != NC); |
group-onsemi | 0:098463de4c5d | 101 | |
group-onsemi | 0:098463de4c5d | 102 | const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); |
group-onsemi | 0:098463de4c5d | 103 | MBED_ASSERT(modinit != NULL); |
group-onsemi | 0:098463de4c5d | 104 | MBED_ASSERT(modinit->modname == obj->spi.spi); |
group-onsemi | 0:098463de4c5d | 105 | |
group-onsemi | 0:098463de4c5d | 106 | // Reset this module |
group-onsemi | 0:098463de4c5d | 107 | SYS_ResetModule(modinit->rsetidx); |
group-onsemi | 0:098463de4c5d | 108 | |
group-onsemi | 0:098463de4c5d | 109 | // Select IP clock source |
group-onsemi | 0:098463de4c5d | 110 | CLK_SetModuleClock(modinit->clkidx, modinit->clksrc, modinit->clkdiv); |
group-onsemi | 0:098463de4c5d | 111 | // Enable IP clock |
group-onsemi | 0:098463de4c5d | 112 | CLK_EnableModuleClock(modinit->clkidx); |
group-onsemi | 0:098463de4c5d | 113 | |
group-onsemi | 0:098463de4c5d | 114 | //SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
group-onsemi | 0:098463de4c5d | 115 | |
group-onsemi | 0:098463de4c5d | 116 | pinmap_pinout(mosi, PinMap_SPI_MOSI); |
group-onsemi | 0:098463de4c5d | 117 | pinmap_pinout(miso, PinMap_SPI_MISO); |
group-onsemi | 0:098463de4c5d | 118 | pinmap_pinout(sclk, PinMap_SPI_SCLK); |
group-onsemi | 0:098463de4c5d | 119 | pinmap_pinout(ssel, PinMap_SPI_SSEL); |
group-onsemi | 0:098463de4c5d | 120 | |
group-onsemi | 0:098463de4c5d | 121 | obj->spi.pin_mosi = mosi; |
group-onsemi | 0:098463de4c5d | 122 | obj->spi.pin_miso = miso; |
group-onsemi | 0:098463de4c5d | 123 | obj->spi.pin_sclk = sclk; |
group-onsemi | 0:098463de4c5d | 124 | obj->spi.pin_ssel = ssel; |
group-onsemi | 0:098463de4c5d | 125 | |
group-onsemi | 0:098463de4c5d | 126 | |
group-onsemi | 0:098463de4c5d | 127 | // Configure the SPI data format and frequency |
group-onsemi | 0:098463de4c5d | 128 | //spi_format(obj, 8, 0, SPI_MSB); // 8 bits, mode 0 |
group-onsemi | 0:098463de4c5d | 129 | //spi_frequency(obj, 1000000); |
group-onsemi | 0:098463de4c5d | 130 | |
group-onsemi | 0:098463de4c5d | 131 | #if DEVICE_SPI_ASYNCH |
group-onsemi | 0:098463de4c5d | 132 | obj->spi.dma_usage = DMA_USAGE_NEVER; |
group-onsemi | 0:098463de4c5d | 133 | obj->spi.event = 0; |
group-onsemi | 0:098463de4c5d | 134 | obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS; |
group-onsemi | 0:098463de4c5d | 135 | obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS; |
group-onsemi | 0:098463de4c5d | 136 | #endif |
group-onsemi | 0:098463de4c5d | 137 | |
group-onsemi | 0:098463de4c5d | 138 | // Mark this module to be inited. |
group-onsemi | 0:098463de4c5d | 139 | int i = modinit - spi_modinit_tab; |
group-onsemi | 0:098463de4c5d | 140 | spi_modinit_mask |= 1 << i; |
group-onsemi | 0:098463de4c5d | 141 | } |
group-onsemi | 0:098463de4c5d | 142 | |
group-onsemi | 0:098463de4c5d | 143 | void spi_free(spi_t *obj) |
group-onsemi | 0:098463de4c5d | 144 | { |
group-onsemi | 0:098463de4c5d | 145 | #if DEVICE_SPI_ASYNCH |
group-onsemi | 0:098463de4c5d | 146 | if (obj->spi.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) { |
group-onsemi | 0:098463de4c5d | 147 | dma_channel_free(obj->spi.dma_chn_id_tx); |
group-onsemi | 0:098463de4c5d | 148 | obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS; |
group-onsemi | 0:098463de4c5d | 149 | } |
group-onsemi | 0:098463de4c5d | 150 | if (obj->spi.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) { |
group-onsemi | 0:098463de4c5d | 151 | dma_channel_free(obj->spi.dma_chn_id_rx); |
group-onsemi | 0:098463de4c5d | 152 | obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS; |
group-onsemi | 0:098463de4c5d | 153 | } |
group-onsemi | 0:098463de4c5d | 154 | #endif |
group-onsemi | 0:098463de4c5d | 155 | |
group-onsemi | 0:098463de4c5d | 156 | SPI_Close((SPI_T *) NU_MODBASE(obj->spi.spi)); |
group-onsemi | 0:098463de4c5d | 157 | |
group-onsemi | 0:098463de4c5d | 158 | const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); |
group-onsemi | 0:098463de4c5d | 159 | MBED_ASSERT(modinit != NULL); |
group-onsemi | 0:098463de4c5d | 160 | MBED_ASSERT(modinit->modname == obj->spi.spi); |
group-onsemi | 0:098463de4c5d | 161 | |
group-onsemi | 0:098463de4c5d | 162 | SPI_DisableInt(((SPI_T *) NU_MODBASE(obj->spi.spi)), (SPI_FIFO_RXOV_INT_MASK | SPI_FIFO_RXTH_INT_MASK | SPI_FIFO_TXTH_INT_MASK)); |
group-onsemi | 0:098463de4c5d | 163 | NVIC_DisableIRQ(modinit->irq_n); |
group-onsemi | 0:098463de4c5d | 164 | |
group-onsemi | 0:098463de4c5d | 165 | // Disable IP clock |
group-onsemi | 0:098463de4c5d | 166 | CLK_DisableModuleClock(modinit->clkidx); |
group-onsemi | 0:098463de4c5d | 167 | |
group-onsemi | 0:098463de4c5d | 168 | //((struct nu_spi_var *) modinit->var)->obj = NULL; |
group-onsemi | 0:098463de4c5d | 169 | |
group-onsemi | 0:098463de4c5d | 170 | // Mark this module to be deinited. |
group-onsemi | 0:098463de4c5d | 171 | int i = modinit - spi_modinit_tab; |
group-onsemi | 0:098463de4c5d | 172 | spi_modinit_mask &= ~(1 << i); |
group-onsemi | 0:098463de4c5d | 173 | } |
group-onsemi | 0:098463de4c5d | 174 | void spi_format(spi_t *obj, int bits, int mode, int slave) |
group-onsemi | 0:098463de4c5d | 175 | { |
group-onsemi | 0:098463de4c5d | 176 | MBED_ASSERT(bits >= NU_SPI_FRAME_MIN && bits <= NU_SPI_FRAME_MAX); |
group-onsemi | 0:098463de4c5d | 177 | |
group-onsemi | 0:098463de4c5d | 178 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
group-onsemi | 0:098463de4c5d | 179 | |
group-onsemi | 0:098463de4c5d | 180 | // NOTE 1: All configurations should be ready before enabling SPI peripheral. |
group-onsemi | 0:098463de4c5d | 181 | // NOTE 2: Re-configuration is allowed only as SPI peripheral is idle. |
group-onsemi | 0:098463de4c5d | 182 | while (SPI_IS_BUSY(spi_base)); |
group-onsemi | 0:098463de4c5d | 183 | SPI_DISABLE(spi_base); |
group-onsemi | 0:098463de4c5d | 184 | |
group-onsemi | 0:098463de4c5d | 185 | SPI_Open(spi_base, |
group-onsemi | 0:098463de4c5d | 186 | slave ? SPI_SLAVE : SPI_MASTER, |
group-onsemi | 0:098463de4c5d | 187 | (mode == 0) ? SPI_MODE_0 : (mode == 1) ? SPI_MODE_1 : (mode == 2) ? SPI_MODE_2 : SPI_MODE_3, |
group-onsemi | 0:098463de4c5d | 188 | bits, |
group-onsemi | 0:098463de4c5d | 189 | SPI_GetBusClock(spi_base)); |
group-onsemi | 0:098463de4c5d | 190 | // NOTE: Hardcode to be MSB first. |
group-onsemi | 0:098463de4c5d | 191 | SPI_SET_MSB_FIRST(spi_base); |
group-onsemi | 0:098463de4c5d | 192 | |
group-onsemi | 0:098463de4c5d | 193 | if (! slave) { |
group-onsemi | 0:098463de4c5d | 194 | // Master |
group-onsemi | 0:098463de4c5d | 195 | if (obj->spi.pin_ssel != NC) { |
group-onsemi | 0:098463de4c5d | 196 | // Configure SS as low active. |
group-onsemi | 0:098463de4c5d | 197 | SPI_EnableAutoSS(spi_base, SPI_SS, SPI_SS_ACTIVE_LOW); |
group-onsemi | 0:098463de4c5d | 198 | } |
group-onsemi | 0:098463de4c5d | 199 | else { |
group-onsemi | 0:098463de4c5d | 200 | SPI_DisableAutoSS(spi_base); |
group-onsemi | 0:098463de4c5d | 201 | } |
group-onsemi | 0:098463de4c5d | 202 | } |
group-onsemi | 0:098463de4c5d | 203 | else { |
group-onsemi | 0:098463de4c5d | 204 | // Slave |
group-onsemi | 0:098463de4c5d | 205 | // Configure SS as low active. |
group-onsemi | 0:098463de4c5d | 206 | spi_base->SSCTL &= ~SPI_SSCTL_SSACTPOL_Msk; |
group-onsemi | 0:098463de4c5d | 207 | } |
group-onsemi | 0:098463de4c5d | 208 | |
group-onsemi | 0:098463de4c5d | 209 | // NOTE: M451's SPI_Open() will enable SPI transfer (SPI_CTL_SPIEN_Msk). This will violate judgement of spi_active(). Disable it. |
group-onsemi | 0:098463de4c5d | 210 | SPI_DISABLE(spi_base); |
group-onsemi | 0:098463de4c5d | 211 | } |
group-onsemi | 0:098463de4c5d | 212 | |
group-onsemi | 0:098463de4c5d | 213 | void spi_frequency(spi_t *obj, int hz) |
group-onsemi | 0:098463de4c5d | 214 | { |
group-onsemi | 0:098463de4c5d | 215 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
group-onsemi | 0:098463de4c5d | 216 | |
group-onsemi | 0:098463de4c5d | 217 | while (SPI_IS_BUSY(spi_base)); |
group-onsemi | 0:098463de4c5d | 218 | SPI_DISABLE(spi_base); |
group-onsemi | 0:098463de4c5d | 219 | |
group-onsemi | 0:098463de4c5d | 220 | SPI_SetBusClock((SPI_T *) NU_MODBASE(obj->spi.spi), hz); |
group-onsemi | 0:098463de4c5d | 221 | } |
group-onsemi | 0:098463de4c5d | 222 | |
group-onsemi | 0:098463de4c5d | 223 | |
group-onsemi | 0:098463de4c5d | 224 | int spi_master_write(spi_t *obj, int value) |
group-onsemi | 0:098463de4c5d | 225 | { |
group-onsemi | 0:098463de4c5d | 226 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
group-onsemi | 0:098463de4c5d | 227 | |
group-onsemi | 0:098463de4c5d | 228 | // NOTE: Data in receive FIFO can be read out via ICE. |
group-onsemi | 0:098463de4c5d | 229 | SPI_ENABLE(spi_base); |
group-onsemi | 0:098463de4c5d | 230 | |
group-onsemi | 0:098463de4c5d | 231 | // Wait for tx buffer empty |
group-onsemi | 0:098463de4c5d | 232 | while(! spi_writeable(obj)); |
group-onsemi | 0:098463de4c5d | 233 | SPI_WRITE_TX(spi_base, value); |
group-onsemi | 0:098463de4c5d | 234 | |
group-onsemi | 0:098463de4c5d | 235 | // Wait for rx buffer full |
group-onsemi | 0:098463de4c5d | 236 | while (! spi_readable(obj)); |
group-onsemi | 0:098463de4c5d | 237 | int value2 = SPI_READ_RX(spi_base); |
group-onsemi | 0:098463de4c5d | 238 | |
group-onsemi | 0:098463de4c5d | 239 | SPI_DISABLE(spi_base); |
group-onsemi | 0:098463de4c5d | 240 | |
group-onsemi | 0:098463de4c5d | 241 | return value2; |
group-onsemi | 0:098463de4c5d | 242 | } |
group-onsemi | 0:098463de4c5d | 243 | |
group-onsemi | 0:098463de4c5d | 244 | #if DEVICE_SPISLAVE |
group-onsemi | 0:098463de4c5d | 245 | int spi_slave_receive(spi_t *obj) |
group-onsemi | 0:098463de4c5d | 246 | { |
group-onsemi | 0:098463de4c5d | 247 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
group-onsemi | 0:098463de4c5d | 248 | |
group-onsemi | 0:098463de4c5d | 249 | SPI_ENABLE(spi_base); |
group-onsemi | 0:098463de4c5d | 250 | |
group-onsemi | 0:098463de4c5d | 251 | return spi_readable(obj); |
group-onsemi | 0:098463de4c5d | 252 | }; |
group-onsemi | 0:098463de4c5d | 253 | |
group-onsemi | 0:098463de4c5d | 254 | int spi_slave_read(spi_t *obj) |
group-onsemi | 0:098463de4c5d | 255 | { |
group-onsemi | 0:098463de4c5d | 256 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
group-onsemi | 0:098463de4c5d | 257 | |
group-onsemi | 0:098463de4c5d | 258 | SPI_ENABLE(spi_base); |
group-onsemi | 0:098463de4c5d | 259 | |
group-onsemi | 0:098463de4c5d | 260 | // Wait for rx buffer full |
group-onsemi | 0:098463de4c5d | 261 | while (! spi_readable(obj)); |
group-onsemi | 0:098463de4c5d | 262 | int value = SPI_READ_RX(spi_base); |
group-onsemi | 0:098463de4c5d | 263 | return value; |
group-onsemi | 0:098463de4c5d | 264 | } |
group-onsemi | 0:098463de4c5d | 265 | |
group-onsemi | 0:098463de4c5d | 266 | void spi_slave_write(spi_t *obj, int value) |
group-onsemi | 0:098463de4c5d | 267 | { |
group-onsemi | 0:098463de4c5d | 268 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
group-onsemi | 0:098463de4c5d | 269 | |
group-onsemi | 0:098463de4c5d | 270 | SPI_ENABLE(spi_base); |
group-onsemi | 0:098463de4c5d | 271 | |
group-onsemi | 0:098463de4c5d | 272 | // Wait for tx buffer empty |
group-onsemi | 0:098463de4c5d | 273 | while(! spi_writeable(obj)); |
group-onsemi | 0:098463de4c5d | 274 | SPI_WRITE_TX(spi_base, value); |
group-onsemi | 0:098463de4c5d | 275 | } |
group-onsemi | 0:098463de4c5d | 276 | #endif |
group-onsemi | 0:098463de4c5d | 277 | |
group-onsemi | 0:098463de4c5d | 278 | #if DEVICE_SPI_ASYNCH |
group-onsemi | 0:098463de4c5d | 279 | void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint) |
group-onsemi | 0:098463de4c5d | 280 | { |
group-onsemi | 0:098463de4c5d | 281 | //MBED_ASSERT(bits >= NU_SPI_FRAME_MIN && bits <= NU_SPI_FRAME_MAX); |
group-onsemi | 0:098463de4c5d | 282 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
group-onsemi | 0:098463de4c5d | 283 | SPI_SET_DATA_WIDTH(spi_base, bit_width); |
group-onsemi | 0:098463de4c5d | 284 | |
group-onsemi | 0:098463de4c5d | 285 | obj->spi.dma_usage = hint; |
group-onsemi | 0:098463de4c5d | 286 | spi_check_dma_usage(&obj->spi.dma_usage, &obj->spi.dma_chn_id_tx, &obj->spi.dma_chn_id_rx); |
group-onsemi | 0:098463de4c5d | 287 | uint32_t data_width = spi_get_data_width(obj); |
group-onsemi | 0:098463de4c5d | 288 | // Conditions to go DMA way: |
group-onsemi | 0:098463de4c5d | 289 | // (1) No DMA support for non-8 multiple data width. |
group-onsemi | 0:098463de4c5d | 290 | // (2) tx length >= rx length. Otherwise, as tx DMA is done, no bus activity for remaining rx. |
group-onsemi | 0:098463de4c5d | 291 | if ((data_width % 8) || |
group-onsemi | 0:098463de4c5d | 292 | (tx_length < rx_length)) { |
group-onsemi | 0:098463de4c5d | 293 | obj->spi.dma_usage = DMA_USAGE_NEVER; |
group-onsemi | 0:098463de4c5d | 294 | dma_channel_free(obj->spi.dma_chn_id_tx); |
group-onsemi | 0:098463de4c5d | 295 | obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS; |
group-onsemi | 0:098463de4c5d | 296 | dma_channel_free(obj->spi.dma_chn_id_rx); |
group-onsemi | 0:098463de4c5d | 297 | obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS; |
group-onsemi | 0:098463de4c5d | 298 | } |
group-onsemi | 0:098463de4c5d | 299 | |
group-onsemi | 0:098463de4c5d | 300 | // SPI IRQ is necessary for both interrupt way and DMA way |
group-onsemi | 0:098463de4c5d | 301 | spi_enable_event(obj, event, 1); |
group-onsemi | 0:098463de4c5d | 302 | spi_buffer_set(obj, tx, tx_length, rx, rx_length); |
group-onsemi | 0:098463de4c5d | 303 | |
group-onsemi | 0:098463de4c5d | 304 | SPI_ENABLE(spi_base); |
group-onsemi | 0:098463de4c5d | 305 | |
group-onsemi | 0:098463de4c5d | 306 | if (obj->spi.dma_usage == DMA_USAGE_NEVER) { |
group-onsemi | 0:098463de4c5d | 307 | // Interrupt way |
group-onsemi | 0:098463de4c5d | 308 | spi_master_write_asynch(obj, NU_SPI_FIFO_DEPTH / 2); |
group-onsemi | 0:098463de4c5d | 309 | spi_enable_vector_interrupt(obj, handler, 1); |
group-onsemi | 0:098463de4c5d | 310 | spi_master_enable_interrupt(obj, 1); |
group-onsemi | 0:098463de4c5d | 311 | } else { |
group-onsemi | 0:098463de4c5d | 312 | // DMA way |
group-onsemi | 0:098463de4c5d | 313 | const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); |
group-onsemi | 0:098463de4c5d | 314 | MBED_ASSERT(modinit != NULL); |
group-onsemi | 0:098463de4c5d | 315 | MBED_ASSERT(modinit->modname == obj->spi.spi); |
group-onsemi | 0:098463de4c5d | 316 | |
group-onsemi | 0:098463de4c5d | 317 | // Configure tx DMA |
group-onsemi | 0:098463de4c5d | 318 | PDMA->CHCTL |= 1 << obj->spi.dma_chn_id_tx; // Enable this DMA channel |
group-onsemi | 0:098463de4c5d | 319 | PDMA_SetTransferMode(obj->spi.dma_chn_id_tx, |
group-onsemi | 0:098463de4c5d | 320 | ((struct nu_spi_var *) modinit->var)->pdma_perp_tx, // Peripheral connected to this PDMA |
group-onsemi | 0:098463de4c5d | 321 | 0, // Scatter-gather disabled |
group-onsemi | 0:098463de4c5d | 322 | 0); // Scatter-gather descriptor address |
group-onsemi | 0:098463de4c5d | 323 | PDMA_SetTransferCnt(obj->spi.dma_chn_id_tx, |
group-onsemi | 0:098463de4c5d | 324 | (data_width == 8) ? PDMA_WIDTH_8 : (data_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32, |
group-onsemi | 0:098463de4c5d | 325 | tx_length); |
group-onsemi | 0:098463de4c5d | 326 | PDMA_SetTransferAddr(obj->spi.dma_chn_id_tx, |
group-onsemi | 0:098463de4c5d | 327 | (uint32_t) tx, // NOTE: |
group-onsemi | 0:098463de4c5d | 328 | // NUC472: End of source address |
group-onsemi | 0:098463de4c5d | 329 | // M451: Start of source address |
group-onsemi | 0:098463de4c5d | 330 | PDMA_SAR_INC, // Source address incremental |
group-onsemi | 0:098463de4c5d | 331 | (uint32_t) &spi_base->TX, // Destination address |
group-onsemi | 0:098463de4c5d | 332 | PDMA_DAR_FIX); // Destination address fixed |
group-onsemi | 0:098463de4c5d | 333 | PDMA_SetBurstType(obj->spi.dma_chn_id_tx, |
group-onsemi | 0:098463de4c5d | 334 | PDMA_REQ_SINGLE, // Single mode |
group-onsemi | 0:098463de4c5d | 335 | 0); // Burst size |
group-onsemi | 0:098463de4c5d | 336 | PDMA_EnableInt(obj->spi.dma_chn_id_tx, |
group-onsemi | 0:098463de4c5d | 337 | PDMA_INT_TRANS_DONE); // Interrupt type |
group-onsemi | 0:098463de4c5d | 338 | // Register DMA event handler |
group-onsemi | 0:098463de4c5d | 339 | dma_set_handler(obj->spi.dma_chn_id_tx, (uint32_t) spi_dma_handler_tx, (uint32_t) obj, DMA_EVENT_ALL); |
group-onsemi | 0:098463de4c5d | 340 | |
group-onsemi | 0:098463de4c5d | 341 | // Configure rx DMA |
group-onsemi | 0:098463de4c5d | 342 | PDMA->CHCTL |= 1 << obj->spi.dma_chn_id_rx; // Enable this DMA channel |
group-onsemi | 0:098463de4c5d | 343 | PDMA_SetTransferMode(obj->spi.dma_chn_id_rx, |
group-onsemi | 0:098463de4c5d | 344 | ((struct nu_spi_var *) modinit->var)->pdma_perp_rx, // Peripheral connected to this PDMA |
group-onsemi | 0:098463de4c5d | 345 | 0, // Scatter-gather disabled |
group-onsemi | 0:098463de4c5d | 346 | 0); // Scatter-gather descriptor address |
group-onsemi | 0:098463de4c5d | 347 | PDMA_SetTransferCnt(obj->spi.dma_chn_id_rx, |
group-onsemi | 0:098463de4c5d | 348 | (data_width == 8) ? PDMA_WIDTH_8 : (data_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32, |
group-onsemi | 0:098463de4c5d | 349 | rx_length); |
group-onsemi | 0:098463de4c5d | 350 | PDMA_SetTransferAddr(obj->spi.dma_chn_id_rx, |
group-onsemi | 0:098463de4c5d | 351 | (uint32_t) &spi_base->RX, // Source address |
group-onsemi | 0:098463de4c5d | 352 | PDMA_SAR_FIX, // Source address fixed |
group-onsemi | 0:098463de4c5d | 353 | (uint32_t) rx, // NOTE: |
group-onsemi | 0:098463de4c5d | 354 | // NUC472: End of destination address |
group-onsemi | 0:098463de4c5d | 355 | // M451: Start of destination address |
group-onsemi | 0:098463de4c5d | 356 | PDMA_DAR_INC); // Destination address incremental |
group-onsemi | 0:098463de4c5d | 357 | PDMA_SetBurstType(obj->spi.dma_chn_id_rx, |
group-onsemi | 0:098463de4c5d | 358 | PDMA_REQ_SINGLE, // Single mode |
group-onsemi | 0:098463de4c5d | 359 | 0); // Burst size |
group-onsemi | 0:098463de4c5d | 360 | PDMA_EnableInt(obj->spi.dma_chn_id_rx, |
group-onsemi | 0:098463de4c5d | 361 | PDMA_INT_TRANS_DONE); // Interrupt type |
group-onsemi | 0:098463de4c5d | 362 | // Register DMA event handler |
group-onsemi | 0:098463de4c5d | 363 | dma_set_handler(obj->spi.dma_chn_id_rx, (uint32_t) spi_dma_handler_rx, (uint32_t) obj, DMA_EVENT_ALL); |
group-onsemi | 0:098463de4c5d | 364 | |
group-onsemi | 0:098463de4c5d | 365 | // Start tx/rx DMA transfer |
group-onsemi | 0:098463de4c5d | 366 | spi_enable_vector_interrupt(obj, handler, 1); |
group-onsemi | 0:098463de4c5d | 367 | // NOTE: It is safer to start rx DMA first and then tx DMA. Otherwise, receive FIFO is subject to overflow by tx DMA. |
group-onsemi | 0:098463de4c5d | 368 | SPI_TRIGGER_RX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi))); |
group-onsemi | 0:098463de4c5d | 369 | SPI_TRIGGER_TX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi))); |
group-onsemi | 0:098463de4c5d | 370 | spi_master_enable_interrupt(obj, 1); |
group-onsemi | 0:098463de4c5d | 371 | } |
group-onsemi | 0:098463de4c5d | 372 | } |
group-onsemi | 0:098463de4c5d | 373 | |
group-onsemi | 0:098463de4c5d | 374 | /** |
group-onsemi | 0:098463de4c5d | 375 | * Abort an SPI transfer |
group-onsemi | 0:098463de4c5d | 376 | * This is a helper function for event handling. When any of the events listed occurs, the HAL will abort any ongoing |
group-onsemi | 0:098463de4c5d | 377 | * transfers |
group-onsemi | 0:098463de4c5d | 378 | * @param[in] obj The SPI peripheral to stop |
group-onsemi | 0:098463de4c5d | 379 | */ |
group-onsemi | 0:098463de4c5d | 380 | void spi_abort_asynch(spi_t *obj) |
group-onsemi | 0:098463de4c5d | 381 | { |
group-onsemi | 0:098463de4c5d | 382 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
group-onsemi | 0:098463de4c5d | 383 | |
group-onsemi | 0:098463de4c5d | 384 | if (obj->spi.dma_usage != DMA_USAGE_NEVER) { |
group-onsemi | 0:098463de4c5d | 385 | // Receive FIFO Overrun in case of tx length > rx length on DMA way |
group-onsemi | 0:098463de4c5d | 386 | if (spi_base->STATUS & SPI_STATUS_RXOVIF_Msk) { |
group-onsemi | 0:098463de4c5d | 387 | spi_base->STATUS = SPI_STATUS_RXOVIF_Msk; |
group-onsemi | 0:098463de4c5d | 388 | } |
group-onsemi | 0:098463de4c5d | 389 | |
group-onsemi | 0:098463de4c5d | 390 | if (obj->spi.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) { |
group-onsemi | 0:098463de4c5d | 391 | PDMA_DisableInt(obj->spi.dma_chn_id_tx, 0); |
group-onsemi | 0:098463de4c5d | 392 | // FIXME: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown. |
group-onsemi | 0:098463de4c5d | 393 | //PDMA_STOP(obj->spi.dma_chn_id_tx); |
group-onsemi | 0:098463de4c5d | 394 | PDMA->CHCTL &= ~(1 << obj->spi.dma_chn_id_tx); |
group-onsemi | 0:098463de4c5d | 395 | } |
group-onsemi | 0:098463de4c5d | 396 | SPI_DISABLE_TX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi))); |
group-onsemi | 0:098463de4c5d | 397 | |
group-onsemi | 0:098463de4c5d | 398 | if (obj->spi.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) { |
group-onsemi | 0:098463de4c5d | 399 | PDMA_DisableInt(obj->spi.dma_chn_id_rx, 0); |
group-onsemi | 0:098463de4c5d | 400 | // FIXME: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown. |
group-onsemi | 0:098463de4c5d | 401 | //PDMA_STOP(obj->spi.dma_chn_id_rx); |
group-onsemi | 0:098463de4c5d | 402 | PDMA->CHCTL &= ~(1 << obj->spi.dma_chn_id_rx); |
group-onsemi | 0:098463de4c5d | 403 | } |
group-onsemi | 0:098463de4c5d | 404 | SPI_DISABLE_RX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi))); |
group-onsemi | 0:098463de4c5d | 405 | } |
group-onsemi | 0:098463de4c5d | 406 | |
group-onsemi | 0:098463de4c5d | 407 | // Necessary for both interrupt way and DMA way |
group-onsemi | 0:098463de4c5d | 408 | spi_enable_vector_interrupt(obj, 0, 0); |
group-onsemi | 0:098463de4c5d | 409 | spi_master_enable_interrupt(obj, 0); |
group-onsemi | 0:098463de4c5d | 410 | |
group-onsemi | 0:098463de4c5d | 411 | // FIXME: SPI H/W may get out of state without the busy check. |
group-onsemi | 0:098463de4c5d | 412 | while (SPI_IS_BUSY(spi_base)); |
group-onsemi | 0:098463de4c5d | 413 | SPI_DISABLE(spi_base); |
group-onsemi | 0:098463de4c5d | 414 | |
group-onsemi | 0:098463de4c5d | 415 | SPI_ClearRxFIFO(spi_base); |
group-onsemi | 0:098463de4c5d | 416 | SPI_ClearTxFIFO(spi_base); |
group-onsemi | 0:098463de4c5d | 417 | } |
group-onsemi | 0:098463de4c5d | 418 | |
group-onsemi | 0:098463de4c5d | 419 | /** |
group-onsemi | 0:098463de4c5d | 420 | * Handle the SPI interrupt |
group-onsemi | 0:098463de4c5d | 421 | * Read frames until the RX FIFO is empty. Write at most as many frames as were read. This way, |
group-onsemi | 0:098463de4c5d | 422 | * it is unlikely that the RX FIFO will overflow. |
group-onsemi | 0:098463de4c5d | 423 | * @param[in] obj The SPI peripheral that generated the interrupt |
group-onsemi | 0:098463de4c5d | 424 | * @return |
group-onsemi | 0:098463de4c5d | 425 | */ |
group-onsemi | 0:098463de4c5d | 426 | uint32_t spi_irq_handler_asynch(spi_t *obj) |
group-onsemi | 0:098463de4c5d | 427 | { |
group-onsemi | 0:098463de4c5d | 428 | // Check for SPI events |
group-onsemi | 0:098463de4c5d | 429 | uint32_t event = spi_event_check(obj); |
group-onsemi | 0:098463de4c5d | 430 | if (event) { |
group-onsemi | 0:098463de4c5d | 431 | spi_abort_asynch(obj); |
group-onsemi | 0:098463de4c5d | 432 | } |
group-onsemi | 0:098463de4c5d | 433 | |
group-onsemi | 0:098463de4c5d | 434 | return (obj->spi.event & event) | ((event & SPI_EVENT_COMPLETE) ? SPI_EVENT_INTERNAL_TRANSFER_COMPLETE : 0); |
group-onsemi | 0:098463de4c5d | 435 | } |
group-onsemi | 0:098463de4c5d | 436 | |
group-onsemi | 0:098463de4c5d | 437 | uint8_t spi_active(spi_t *obj) |
group-onsemi | 0:098463de4c5d | 438 | { |
group-onsemi | 0:098463de4c5d | 439 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
group-onsemi | 0:098463de4c5d | 440 | // FIXME |
group-onsemi | 0:098463de4c5d | 441 | /* |
group-onsemi | 0:098463de4c5d | 442 | if ((obj->rx_buff.buffer && obj->rx_buff.pos < obj->rx_buff.length) |
group-onsemi | 0:098463de4c5d | 443 | || (obj->tx_buff.buffer && obj->tx_buff.pos < obj->tx_buff.length) ){ |
group-onsemi | 0:098463de4c5d | 444 | return 1; |
group-onsemi | 0:098463de4c5d | 445 | } else { |
group-onsemi | 0:098463de4c5d | 446 | // interrupts are disabled, all transaction have been completed |
group-onsemi | 0:098463de4c5d | 447 | // TODO: checking rx fifo, it reports data eventhough RFDF is not set |
group-onsemi | 0:098463de4c5d | 448 | return DSPI_HAL_GetIntMode(obj->spi.address, kDspiRxFifoDrainRequest); |
group-onsemi | 0:098463de4c5d | 449 | }*/ |
group-onsemi | 0:098463de4c5d | 450 | |
group-onsemi | 0:098463de4c5d | 451 | //return SPI_IS_BUSY(spi_base); |
group-onsemi | 0:098463de4c5d | 452 | return (spi_base->CTL & SPI_CTL_SPIEN_Msk); |
group-onsemi | 0:098463de4c5d | 453 | } |
group-onsemi | 0:098463de4c5d | 454 | |
group-onsemi | 0:098463de4c5d | 455 | int spi_allow_powerdown(void) |
group-onsemi | 0:098463de4c5d | 456 | { |
group-onsemi | 0:098463de4c5d | 457 | uint32_t modinit_mask = spi_modinit_mask; |
group-onsemi | 0:098463de4c5d | 458 | while (modinit_mask) { |
group-onsemi | 0:098463de4c5d | 459 | int spi_idx = nu_ctz(modinit_mask); |
group-onsemi | 0:098463de4c5d | 460 | const struct nu_modinit_s *modinit = spi_modinit_tab + spi_idx; |
group-onsemi | 0:098463de4c5d | 461 | if (modinit->modname != NC) { |
group-onsemi | 0:098463de4c5d | 462 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(modinit->modname); |
group-onsemi | 0:098463de4c5d | 463 | // Disallow entering power-down mode if SPI transfer is enabled. |
group-onsemi | 0:098463de4c5d | 464 | if (spi_base->CTL & SPI_CTL_SPIEN_Msk) { |
group-onsemi | 0:098463de4c5d | 465 | return 0; |
group-onsemi | 0:098463de4c5d | 466 | } |
group-onsemi | 0:098463de4c5d | 467 | } |
group-onsemi | 0:098463de4c5d | 468 | modinit_mask &= ~(1 << spi_idx); |
group-onsemi | 0:098463de4c5d | 469 | } |
group-onsemi | 0:098463de4c5d | 470 | |
group-onsemi | 0:098463de4c5d | 471 | return 1; |
group-onsemi | 0:098463de4c5d | 472 | } |
group-onsemi | 0:098463de4c5d | 473 | |
group-onsemi | 0:098463de4c5d | 474 | static int spi_writeable(spi_t * obj) |
group-onsemi | 0:098463de4c5d | 475 | { |
group-onsemi | 0:098463de4c5d | 476 | // Receive FIFO must not be full to avoid receive FIFO overflow on next transmit/receive |
group-onsemi | 0:098463de4c5d | 477 | //return (! SPI_GET_TX_FIFO_FULL_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi)))) && (SPI_GET_RX_FIFO_COUNT(((SPI_T *) NU_MODBASE(obj->spi.spi))) < NU_SPI_FIFO_DEPTH); |
group-onsemi | 0:098463de4c5d | 478 | return (! SPI_GET_TX_FIFO_FULL_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi)))); |
group-onsemi | 0:098463de4c5d | 479 | } |
group-onsemi | 0:098463de4c5d | 480 | |
group-onsemi | 0:098463de4c5d | 481 | static int spi_readable(spi_t * obj) |
group-onsemi | 0:098463de4c5d | 482 | { |
group-onsemi | 0:098463de4c5d | 483 | return ! SPI_GET_RX_FIFO_EMPTY_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi))); |
group-onsemi | 0:098463de4c5d | 484 | } |
group-onsemi | 0:098463de4c5d | 485 | |
group-onsemi | 0:098463de4c5d | 486 | static void spi_enable_event(spi_t *obj, uint32_t event, uint8_t enable) |
group-onsemi | 0:098463de4c5d | 487 | { |
group-onsemi | 0:098463de4c5d | 488 | obj->spi.event &= ~SPI_EVENT_ALL; |
group-onsemi | 0:098463de4c5d | 489 | obj->spi.event |= (event & SPI_EVENT_ALL); |
group-onsemi | 0:098463de4c5d | 490 | if (event & SPI_EVENT_RX_OVERFLOW) { |
group-onsemi | 0:098463de4c5d | 491 | SPI_EnableInt((SPI_T *) NU_MODBASE(obj->spi.spi), SPI_FIFO_RXOV_INT_MASK); |
group-onsemi | 0:098463de4c5d | 492 | } |
group-onsemi | 0:098463de4c5d | 493 | } |
group-onsemi | 0:098463de4c5d | 494 | |
group-onsemi | 0:098463de4c5d | 495 | static void spi_enable_vector_interrupt(spi_t *obj, uint32_t handler, uint8_t enable) |
group-onsemi | 0:098463de4c5d | 496 | { |
group-onsemi | 0:098463de4c5d | 497 | const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); |
group-onsemi | 0:098463de4c5d | 498 | MBED_ASSERT(modinit != NULL); |
group-onsemi | 0:098463de4c5d | 499 | MBED_ASSERT(modinit->modname == obj->spi.spi); |
group-onsemi | 0:098463de4c5d | 500 | |
group-onsemi | 0:098463de4c5d | 501 | if (enable) { |
group-onsemi | 0:098463de4c5d | 502 | NVIC_SetVector(modinit->irq_n, handler); |
group-onsemi | 0:098463de4c5d | 503 | NVIC_EnableIRQ(modinit->irq_n); |
group-onsemi | 0:098463de4c5d | 504 | } |
group-onsemi | 0:098463de4c5d | 505 | else { |
group-onsemi | 0:098463de4c5d | 506 | //NVIC_SetVector(modinit->irq_n, handler); |
group-onsemi | 0:098463de4c5d | 507 | NVIC_DisableIRQ(modinit->irq_n); |
group-onsemi | 0:098463de4c5d | 508 | } |
group-onsemi | 0:098463de4c5d | 509 | } |
group-onsemi | 0:098463de4c5d | 510 | |
group-onsemi | 0:098463de4c5d | 511 | static void spi_master_enable_interrupt(spi_t *obj, uint8_t enable) |
group-onsemi | 0:098463de4c5d | 512 | { |
group-onsemi | 0:098463de4c5d | 513 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
group-onsemi | 0:098463de4c5d | 514 | |
group-onsemi | 0:098463de4c5d | 515 | if (enable) { |
group-onsemi | 0:098463de4c5d | 516 | // For SPI0, it could be 0 ~ 7. For SPI1 and SPI2, it could be 0 ~ 3. |
group-onsemi | 0:098463de4c5d | 517 | if (spi_base == (SPI_T *) SPI0_BASE) { |
group-onsemi | 0:098463de4c5d | 518 | SPI_SetFIFO(spi_base, 4, 4); |
group-onsemi | 0:098463de4c5d | 519 | } |
group-onsemi | 0:098463de4c5d | 520 | else { |
group-onsemi | 0:098463de4c5d | 521 | SPI_SetFIFO(spi_base, 2, 2); |
group-onsemi | 0:098463de4c5d | 522 | } |
group-onsemi | 0:098463de4c5d | 523 | //SPI_SET_SUSPEND_CYCLE(spi_base, 4); |
group-onsemi | 0:098463de4c5d | 524 | // Enable tx/rx FIFO threshold interrupt |
group-onsemi | 0:098463de4c5d | 525 | SPI_EnableInt(spi_base, SPI_FIFO_RXTH_INT_MASK | SPI_FIFO_TXTH_INT_MASK); |
group-onsemi | 0:098463de4c5d | 526 | } |
group-onsemi | 0:098463de4c5d | 527 | else { |
group-onsemi | 0:098463de4c5d | 528 | SPI_DisableInt(spi_base, SPI_FIFO_RXTH_INT_MASK | SPI_FIFO_TXTH_INT_MASK); |
group-onsemi | 0:098463de4c5d | 529 | } |
group-onsemi | 0:098463de4c5d | 530 | } |
group-onsemi | 0:098463de4c5d | 531 | |
group-onsemi | 0:098463de4c5d | 532 | static uint32_t spi_event_check(spi_t *obj) |
group-onsemi | 0:098463de4c5d | 533 | { |
group-onsemi | 0:098463de4c5d | 534 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
group-onsemi | 0:098463de4c5d | 535 | uint32_t event = 0; |
group-onsemi | 0:098463de4c5d | 536 | |
group-onsemi | 0:098463de4c5d | 537 | if (obj->spi.dma_usage == DMA_USAGE_NEVER) { |
group-onsemi | 0:098463de4c5d | 538 | uint32_t n_rec = spi_master_read_asynch(obj); |
group-onsemi | 0:098463de4c5d | 539 | spi_master_write_asynch(obj, n_rec); |
group-onsemi | 0:098463de4c5d | 540 | } |
group-onsemi | 0:098463de4c5d | 541 | |
group-onsemi | 0:098463de4c5d | 542 | if (spi_is_tx_complete(obj) && spi_is_rx_complete(obj)) { |
group-onsemi | 0:098463de4c5d | 543 | event |= SPI_EVENT_COMPLETE; |
group-onsemi | 0:098463de4c5d | 544 | } |
group-onsemi | 0:098463de4c5d | 545 | |
group-onsemi | 0:098463de4c5d | 546 | // Receive FIFO Overrun |
group-onsemi | 0:098463de4c5d | 547 | if (spi_base->STATUS & SPI_STATUS_RXOVIF_Msk) { |
group-onsemi | 0:098463de4c5d | 548 | spi_base->STATUS = SPI_STATUS_RXOVIF_Msk; |
group-onsemi | 0:098463de4c5d | 549 | // In case of tx length > rx length on DMA way |
group-onsemi | 0:098463de4c5d | 550 | if (obj->spi.dma_usage == DMA_USAGE_NEVER) { |
group-onsemi | 0:098463de4c5d | 551 | event |= SPI_EVENT_RX_OVERFLOW; |
group-onsemi | 0:098463de4c5d | 552 | } |
group-onsemi | 0:098463de4c5d | 553 | } |
group-onsemi | 0:098463de4c5d | 554 | |
group-onsemi | 0:098463de4c5d | 555 | // Receive Time-Out |
group-onsemi | 0:098463de4c5d | 556 | if (spi_base->STATUS & SPI_STATUS_RXTOIF_Msk) { |
group-onsemi | 0:098463de4c5d | 557 | spi_base->STATUS = SPI_STATUS_RXTOIF_Msk; |
group-onsemi | 0:098463de4c5d | 558 | //event |= SPI_EVENT_ERROR; |
group-onsemi | 0:098463de4c5d | 559 | } |
group-onsemi | 0:098463de4c5d | 560 | // Transmit FIFO Under-Run |
group-onsemi | 0:098463de4c5d | 561 | if (spi_base->STATUS & SPI_STATUS_TXUFIF_Msk) { |
group-onsemi | 0:098463de4c5d | 562 | spi_base->STATUS = SPI_STATUS_TXUFIF_Msk; |
group-onsemi | 0:098463de4c5d | 563 | event |= SPI_EVENT_ERROR; |
group-onsemi | 0:098463de4c5d | 564 | } |
group-onsemi | 0:098463de4c5d | 565 | |
group-onsemi | 0:098463de4c5d | 566 | return event; |
group-onsemi | 0:098463de4c5d | 567 | } |
group-onsemi | 0:098463de4c5d | 568 | |
group-onsemi | 0:098463de4c5d | 569 | /** |
group-onsemi | 0:098463de4c5d | 570 | * Send words from the SPI TX buffer until the send limit is reached or the TX FIFO is full |
group-onsemi | 0:098463de4c5d | 571 | * tx_limit is provided to ensure that the number of SPI frames (words) in flight can be managed. |
group-onsemi | 0:098463de4c5d | 572 | * @param[in] obj The SPI object on which to operate |
group-onsemi | 0:098463de4c5d | 573 | * @param[in] tx_limit The maximum number of words to send |
group-onsemi | 0:098463de4c5d | 574 | * @return The number of SPI words that have been transfered |
group-onsemi | 0:098463de4c5d | 575 | */ |
group-onsemi | 0:098463de4c5d | 576 | static uint32_t spi_master_write_asynch(spi_t *obj, uint32_t tx_limit) |
group-onsemi | 0:098463de4c5d | 577 | { |
group-onsemi | 0:098463de4c5d | 578 | uint32_t n_words = 0; |
group-onsemi | 0:098463de4c5d | 579 | uint32_t tx_rmn = obj->tx_buff.length - obj->tx_buff.pos; |
group-onsemi | 0:098463de4c5d | 580 | uint32_t rx_rmn = obj->rx_buff.length - obj->rx_buff.pos; |
group-onsemi | 0:098463de4c5d | 581 | uint32_t max_tx = NU_MAX(tx_rmn, rx_rmn); |
group-onsemi | 0:098463de4c5d | 582 | max_tx = NU_MIN(max_tx, tx_limit); |
group-onsemi | 0:098463de4c5d | 583 | uint8_t data_width = spi_get_data_width(obj); |
group-onsemi | 0:098463de4c5d | 584 | uint8_t bytes_per_word = (data_width + 7) / 8; |
group-onsemi | 0:098463de4c5d | 585 | uint8_t *tx = (uint8_t *)(obj->tx_buff.buffer) + bytes_per_word * obj->tx_buff.pos; |
group-onsemi | 0:098463de4c5d | 586 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
group-onsemi | 0:098463de4c5d | 587 | |
group-onsemi | 0:098463de4c5d | 588 | while ((n_words < max_tx) && spi_writeable(obj)) { |
group-onsemi | 0:098463de4c5d | 589 | if (spi_is_tx_complete(obj)) { |
group-onsemi | 0:098463de4c5d | 590 | // Transmit dummy as transmit buffer is empty |
group-onsemi | 0:098463de4c5d | 591 | SPI_WRITE_TX(spi_base, 0); |
group-onsemi | 0:098463de4c5d | 592 | } |
group-onsemi | 0:098463de4c5d | 593 | else { |
group-onsemi | 0:098463de4c5d | 594 | switch (bytes_per_word) { |
group-onsemi | 0:098463de4c5d | 595 | case 4: |
group-onsemi | 0:098463de4c5d | 596 | SPI_WRITE_TX(spi_base, nu_get32_le(tx)); |
group-onsemi | 0:098463de4c5d | 597 | tx += 4; |
group-onsemi | 0:098463de4c5d | 598 | break; |
group-onsemi | 0:098463de4c5d | 599 | case 2: |
group-onsemi | 0:098463de4c5d | 600 | SPI_WRITE_TX(spi_base, nu_get16_le(tx)); |
group-onsemi | 0:098463de4c5d | 601 | tx += 2; |
group-onsemi | 0:098463de4c5d | 602 | break; |
group-onsemi | 0:098463de4c5d | 603 | case 1: |
group-onsemi | 0:098463de4c5d | 604 | SPI_WRITE_TX(spi_base, *((uint8_t *) tx)); |
group-onsemi | 0:098463de4c5d | 605 | tx += 1; |
group-onsemi | 0:098463de4c5d | 606 | break; |
group-onsemi | 0:098463de4c5d | 607 | } |
group-onsemi | 0:098463de4c5d | 608 | |
group-onsemi | 0:098463de4c5d | 609 | obj->tx_buff.pos ++; |
group-onsemi | 0:098463de4c5d | 610 | } |
group-onsemi | 0:098463de4c5d | 611 | n_words ++; |
group-onsemi | 0:098463de4c5d | 612 | } |
group-onsemi | 0:098463de4c5d | 613 | |
group-onsemi | 0:098463de4c5d | 614 | //Return the number of words that have been sent |
group-onsemi | 0:098463de4c5d | 615 | return n_words; |
group-onsemi | 0:098463de4c5d | 616 | } |
group-onsemi | 0:098463de4c5d | 617 | |
group-onsemi | 0:098463de4c5d | 618 | /** |
group-onsemi | 0:098463de4c5d | 619 | * Read SPI words out of the RX FIFO |
group-onsemi | 0:098463de4c5d | 620 | * Continues reading words out of the RX FIFO until the following condition is met: |
group-onsemi | 0:098463de4c5d | 621 | * o There are no more words in the FIFO |
group-onsemi | 0:098463de4c5d | 622 | * OR BOTH OF: |
group-onsemi | 0:098463de4c5d | 623 | * o At least as many words as the TX buffer have been received |
group-onsemi | 0:098463de4c5d | 624 | * o At least as many words as the RX buffer have been received |
group-onsemi | 0:098463de4c5d | 625 | * This way, RX overflows are not generated when the TX buffer size exceeds the RX buffer size |
group-onsemi | 0:098463de4c5d | 626 | * @param[in] obj The SPI object on which to operate |
group-onsemi | 0:098463de4c5d | 627 | * @return Returns the number of words extracted from the RX FIFO |
group-onsemi | 0:098463de4c5d | 628 | */ |
group-onsemi | 0:098463de4c5d | 629 | static uint32_t spi_master_read_asynch(spi_t *obj) |
group-onsemi | 0:098463de4c5d | 630 | { |
group-onsemi | 0:098463de4c5d | 631 | uint32_t n_words = 0; |
group-onsemi | 0:098463de4c5d | 632 | uint32_t tx_rmn = obj->tx_buff.length - obj->tx_buff.pos; |
group-onsemi | 0:098463de4c5d | 633 | uint32_t rx_rmn = obj->rx_buff.length - obj->rx_buff.pos; |
group-onsemi | 0:098463de4c5d | 634 | uint32_t max_rx = NU_MAX(tx_rmn, rx_rmn); |
group-onsemi | 0:098463de4c5d | 635 | uint8_t data_width = spi_get_data_width(obj); |
group-onsemi | 0:098463de4c5d | 636 | uint8_t bytes_per_word = (data_width + 7) / 8; |
group-onsemi | 0:098463de4c5d | 637 | uint8_t *rx = (uint8_t *)(obj->rx_buff.buffer) + bytes_per_word * obj->rx_buff.pos; |
group-onsemi | 0:098463de4c5d | 638 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
group-onsemi | 0:098463de4c5d | 639 | |
group-onsemi | 0:098463de4c5d | 640 | while ((n_words < max_rx) && spi_readable(obj)) { |
group-onsemi | 0:098463de4c5d | 641 | if (spi_is_rx_complete(obj)) { |
group-onsemi | 0:098463de4c5d | 642 | // Disregard as receive buffer is full |
group-onsemi | 0:098463de4c5d | 643 | SPI_READ_RX(spi_base); |
group-onsemi | 0:098463de4c5d | 644 | } |
group-onsemi | 0:098463de4c5d | 645 | else { |
group-onsemi | 0:098463de4c5d | 646 | switch (bytes_per_word) { |
group-onsemi | 0:098463de4c5d | 647 | case 4: { |
group-onsemi | 0:098463de4c5d | 648 | uint32_t val = SPI_READ_RX(spi_base); |
group-onsemi | 0:098463de4c5d | 649 | nu_set32_le(rx, val); |
group-onsemi | 0:098463de4c5d | 650 | rx += 4; |
group-onsemi | 0:098463de4c5d | 651 | break; |
group-onsemi | 0:098463de4c5d | 652 | } |
group-onsemi | 0:098463de4c5d | 653 | case 2: { |
group-onsemi | 0:098463de4c5d | 654 | uint16_t val = SPI_READ_RX(spi_base); |
group-onsemi | 0:098463de4c5d | 655 | nu_set16_le(rx, val); |
group-onsemi | 0:098463de4c5d | 656 | rx += 2; |
group-onsemi | 0:098463de4c5d | 657 | break; |
group-onsemi | 0:098463de4c5d | 658 | } |
group-onsemi | 0:098463de4c5d | 659 | case 1: |
group-onsemi | 0:098463de4c5d | 660 | *rx ++ = SPI_READ_RX(spi_base); |
group-onsemi | 0:098463de4c5d | 661 | break; |
group-onsemi | 0:098463de4c5d | 662 | } |
group-onsemi | 0:098463de4c5d | 663 | |
group-onsemi | 0:098463de4c5d | 664 | obj->rx_buff.pos ++; |
group-onsemi | 0:098463de4c5d | 665 | } |
group-onsemi | 0:098463de4c5d | 666 | n_words ++; |
group-onsemi | 0:098463de4c5d | 667 | } |
group-onsemi | 0:098463de4c5d | 668 | |
group-onsemi | 0:098463de4c5d | 669 | // Return the number of words received |
group-onsemi | 0:098463de4c5d | 670 | return n_words; |
group-onsemi | 0:098463de4c5d | 671 | } |
group-onsemi | 0:098463de4c5d | 672 | |
group-onsemi | 0:098463de4c5d | 673 | static void spi_buffer_set(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length) |
group-onsemi | 0:098463de4c5d | 674 | { |
group-onsemi | 0:098463de4c5d | 675 | obj->tx_buff.buffer = (void *) tx; |
group-onsemi | 0:098463de4c5d | 676 | obj->tx_buff.length = tx_length; |
group-onsemi | 0:098463de4c5d | 677 | obj->tx_buff.pos = 0; |
group-onsemi | 0:098463de4c5d | 678 | obj->tx_buff.width = spi_get_data_width(obj); |
group-onsemi | 0:098463de4c5d | 679 | obj->rx_buff.buffer = rx; |
group-onsemi | 0:098463de4c5d | 680 | obj->rx_buff.length = rx_length; |
group-onsemi | 0:098463de4c5d | 681 | obj->rx_buff.pos = 0; |
group-onsemi | 0:098463de4c5d | 682 | obj->rx_buff.width = spi_get_data_width(obj); |
group-onsemi | 0:098463de4c5d | 683 | } |
group-onsemi | 0:098463de4c5d | 684 | |
group-onsemi | 0:098463de4c5d | 685 | static void spi_check_dma_usage(DMAUsage *dma_usage, int *dma_ch_tx, int *dma_ch_rx) |
group-onsemi | 0:098463de4c5d | 686 | { |
group-onsemi | 0:098463de4c5d | 687 | if (*dma_usage != DMA_USAGE_NEVER) { |
group-onsemi | 0:098463de4c5d | 688 | if (*dma_ch_tx == DMA_ERROR_OUT_OF_CHANNELS) { |
group-onsemi | 0:098463de4c5d | 689 | *dma_ch_tx = dma_channel_allocate(DMA_CAP_NONE); |
group-onsemi | 0:098463de4c5d | 690 | } |
group-onsemi | 0:098463de4c5d | 691 | if (*dma_ch_rx == DMA_ERROR_OUT_OF_CHANNELS) { |
group-onsemi | 0:098463de4c5d | 692 | *dma_ch_rx = dma_channel_allocate(DMA_CAP_NONE); |
group-onsemi | 0:098463de4c5d | 693 | } |
group-onsemi | 0:098463de4c5d | 694 | |
group-onsemi | 0:098463de4c5d | 695 | if (*dma_ch_tx == DMA_ERROR_OUT_OF_CHANNELS || *dma_ch_rx == DMA_ERROR_OUT_OF_CHANNELS) { |
group-onsemi | 0:098463de4c5d | 696 | *dma_usage = DMA_USAGE_NEVER; |
group-onsemi | 0:098463de4c5d | 697 | } |
group-onsemi | 0:098463de4c5d | 698 | } |
group-onsemi | 0:098463de4c5d | 699 | |
group-onsemi | 0:098463de4c5d | 700 | if (*dma_usage == DMA_USAGE_NEVER) { |
group-onsemi | 0:098463de4c5d | 701 | dma_channel_free(*dma_ch_tx); |
group-onsemi | 0:098463de4c5d | 702 | *dma_ch_tx = DMA_ERROR_OUT_OF_CHANNELS; |
group-onsemi | 0:098463de4c5d | 703 | dma_channel_free(*dma_ch_rx); |
group-onsemi | 0:098463de4c5d | 704 | *dma_ch_rx = DMA_ERROR_OUT_OF_CHANNELS; |
group-onsemi | 0:098463de4c5d | 705 | } |
group-onsemi | 0:098463de4c5d | 706 | } |
group-onsemi | 0:098463de4c5d | 707 | |
group-onsemi | 0:098463de4c5d | 708 | static uint8_t spi_get_data_width(spi_t *obj) |
group-onsemi | 0:098463de4c5d | 709 | { |
group-onsemi | 0:098463de4c5d | 710 | SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi); |
group-onsemi | 0:098463de4c5d | 711 | |
group-onsemi | 0:098463de4c5d | 712 | uint32_t data_width = ((spi_base->CTL & SPI_CTL_DWIDTH_Msk) >> SPI_CTL_DWIDTH_Pos); |
group-onsemi | 0:098463de4c5d | 713 | if (data_width == 0) { |
group-onsemi | 0:098463de4c5d | 714 | data_width = 32; |
group-onsemi | 0:098463de4c5d | 715 | } |
group-onsemi | 0:098463de4c5d | 716 | |
group-onsemi | 0:098463de4c5d | 717 | return data_width; |
group-onsemi | 0:098463de4c5d | 718 | } |
group-onsemi | 0:098463de4c5d | 719 | |
group-onsemi | 0:098463de4c5d | 720 | static int spi_is_tx_complete(spi_t *obj) |
group-onsemi | 0:098463de4c5d | 721 | { |
group-onsemi | 0:098463de4c5d | 722 | // ???: Exclude tx fifo empty check due to no such interrupt on DMA way |
group-onsemi | 0:098463de4c5d | 723 | return (obj->tx_buff.pos == obj->tx_buff.length); |
group-onsemi | 0:098463de4c5d | 724 | //return (obj->tx_buff.pos == obj->tx_buff.length && SPI_GET_TX_FIFO_EMPTY_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi)))); |
group-onsemi | 0:098463de4c5d | 725 | } |
group-onsemi | 0:098463de4c5d | 726 | |
group-onsemi | 0:098463de4c5d | 727 | static int spi_is_rx_complete(spi_t *obj) |
group-onsemi | 0:098463de4c5d | 728 | { |
group-onsemi | 0:098463de4c5d | 729 | return (obj->rx_buff.pos == obj->rx_buff.length); |
group-onsemi | 0:098463de4c5d | 730 | } |
group-onsemi | 0:098463de4c5d | 731 | |
group-onsemi | 0:098463de4c5d | 732 | static void spi_dma_handler_tx(uint32_t id, uint32_t event_dma) |
group-onsemi | 0:098463de4c5d | 733 | { |
group-onsemi | 0:098463de4c5d | 734 | spi_t *obj = (spi_t *) id; |
group-onsemi | 0:098463de4c5d | 735 | |
group-onsemi | 0:098463de4c5d | 736 | // FIXME: Pass this error to caller |
group-onsemi | 0:098463de4c5d | 737 | if (event_dma & DMA_EVENT_ABORT) { |
group-onsemi | 0:098463de4c5d | 738 | } |
group-onsemi | 0:098463de4c5d | 739 | // Expect SPI IRQ will catch this transfer done event |
group-onsemi | 0:098463de4c5d | 740 | if (event_dma & DMA_EVENT_TRANSFER_DONE) { |
group-onsemi | 0:098463de4c5d | 741 | obj->tx_buff.pos = obj->tx_buff.length; |
group-onsemi | 0:098463de4c5d | 742 | } |
group-onsemi | 0:098463de4c5d | 743 | // FIXME: Pass this error to caller |
group-onsemi | 0:098463de4c5d | 744 | if (event_dma & DMA_EVENT_TIMEOUT) { |
group-onsemi | 0:098463de4c5d | 745 | } |
group-onsemi | 0:098463de4c5d | 746 | |
group-onsemi | 0:098463de4c5d | 747 | const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); |
group-onsemi | 0:098463de4c5d | 748 | MBED_ASSERT(modinit != NULL); |
group-onsemi | 0:098463de4c5d | 749 | MBED_ASSERT(modinit->modname == obj->spi.spi); |
group-onsemi | 0:098463de4c5d | 750 | |
group-onsemi | 0:098463de4c5d | 751 | void (*vec)(void) = (void (*)(void)) NVIC_GetVector(modinit->irq_n); |
group-onsemi | 0:098463de4c5d | 752 | vec(); |
group-onsemi | 0:098463de4c5d | 753 | } |
group-onsemi | 0:098463de4c5d | 754 | |
group-onsemi | 0:098463de4c5d | 755 | static void spi_dma_handler_rx(uint32_t id, uint32_t event_dma) |
group-onsemi | 0:098463de4c5d | 756 | { |
group-onsemi | 0:098463de4c5d | 757 | spi_t *obj = (spi_t *) id; |
group-onsemi | 0:098463de4c5d | 758 | |
group-onsemi | 0:098463de4c5d | 759 | // FIXME: Pass this error to caller |
group-onsemi | 0:098463de4c5d | 760 | if (event_dma & DMA_EVENT_ABORT) { |
group-onsemi | 0:098463de4c5d | 761 | } |
group-onsemi | 0:098463de4c5d | 762 | // Expect SPI IRQ will catch this transfer done event |
group-onsemi | 0:098463de4c5d | 763 | if (event_dma & DMA_EVENT_TRANSFER_DONE) { |
group-onsemi | 0:098463de4c5d | 764 | obj->rx_buff.pos = obj->rx_buff.length; |
group-onsemi | 0:098463de4c5d | 765 | } |
group-onsemi | 0:098463de4c5d | 766 | // FIXME: Pass this error to caller |
group-onsemi | 0:098463de4c5d | 767 | if (event_dma & DMA_EVENT_TIMEOUT) { |
group-onsemi | 0:098463de4c5d | 768 | } |
group-onsemi | 0:098463de4c5d | 769 | |
group-onsemi | 0:098463de4c5d | 770 | const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab); |
group-onsemi | 0:098463de4c5d | 771 | MBED_ASSERT(modinit != NULL); |
group-onsemi | 0:098463de4c5d | 772 | MBED_ASSERT(modinit->modname == obj->spi.spi); |
group-onsemi | 0:098463de4c5d | 773 | |
group-onsemi | 0:098463de4c5d | 774 | void (*vec)(void) = (void (*)(void)) NVIC_GetVector(modinit->irq_n); |
group-onsemi | 0:098463de4c5d | 775 | vec(); |
group-onsemi | 0:098463de4c5d | 776 | } |
group-onsemi | 0:098463de4c5d | 777 | |
group-onsemi | 0:098463de4c5d | 778 | #endif |
group-onsemi | 0:098463de4c5d | 779 | |
group-onsemi | 0:098463de4c5d | 780 | #endif |