The Cayenne MQTT mbed Library provides functions to easily connect to the Cayenne IoT project builder.
Dependents: Cayenne-ESP8266Interface Cayenne-WIZnet_Library Cayenne-WIZnetInterface Cayenne-X-NUCLEO-IDW01M1 ... more
src/CayenneMQTTClient/MQTTClient.h
- Committer:
- jburhenn
- Date:
- 2017-01-25
- Branch:
- feature/multivalue
- Revision:
- 22:0dbabcc6e7b2
- Parent:
- 0:09ef59d2d0f7
File content as of revision 22:0dbabcc6e7b2:
/******************************************************************************* * Copyright (c) 2014, 2015 IBM Corp. * * All rights reserved. This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * and Eclipse Distribution License v1.0 which accompany this distribution. * * The Eclipse Public License is available at * http://www.eclipse.org/legal/epl-v10.html * and the Eclipse Distribution License is available at * http://www.eclipse.org/org/documents/edl-v10.php. * * Contributors: * Ian Craggs - initial API and implementation and/or initial documentation * Ian Craggs - fix for bug 458512 - QoS 2 messages * Ian Craggs - fix for bug 460389 - send loop uses wrong length * Ian Craggs - fix for bug 464169 - clearing subscriptions * Ian Craggs - fix for bug 464551 - enums and ints can be different size * Mark Sonnentag - fix for bug 475204 - inefficient instantiation of Timer * Ian Craggs - fix for bug 475749 - packetid modified twice *******************************************************************************/ #if !defined(MQTTCLIENT_H) #define MQTTCLIENT_H #include "FP.h" #include "MQTTPacket.h" #include "stdio.h" #include "MQTTLogging.h" #if !defined(MQTTCLIENT_QOS1) #define MQTTCLIENT_QOS1 1 #endif #if !defined(MQTTCLIENT_QOS2) #define MQTTCLIENT_QOS2 0 #endif namespace MQTT { enum QoS { QOS0, QOS1, QOS2 }; // all failure return codes must be negative enum returnCode { BUFFER_OVERFLOW = -2, FAILURE = -1, SUCCESS = 0 }; struct Message { enum QoS qos; bool retained; bool dup; unsigned short id; void *payload; size_t payloadlen; }; struct MessageData { MessageData(MQTTString &aTopicName, struct Message &aMessage) : message(aMessage), topicName(aTopicName) { } struct Message &message; MQTTString &topicName; }; class PacketId { public: PacketId() { next = 0; } int getNext() { return next = (next == MAX_PACKET_ID) ? 1 : next + 1; } private: static const int MAX_PACKET_ID = 65535; int next; }; /** * @class Client * @brief blocking, non-threaded MQTT client API * * This version of the API blocks on all method calls, until they are complete. This means that only one * MQTT request can be in process at any one time. * @param Network a network class with the methods: read, write. See NetworkInterface.h for function definitions. * @param Timer a timer class with the methods: countdown_ms, countdown, left_ms, expired. See TimerInterface.h for function definitions. */ template<class Network, class Timer, int MAX_MQTT_PACKET_SIZE = 100, int MAX_MESSAGE_HANDLERS = 5> class Client { public: typedef void (*messageHandler)(MessageData&); /** Construct the client * @param network - pointer to an instance of the Network class - must be connected to the endpoint * before calling MQTT connect * @param limits an instance of the Limit class - to alter limits as required */ Client(Network& network, unsigned int command_timeout_ms = 30000); /** Set the default message handling callback - used for any message which does not match a subscription message handler * @param mh - pointer to the callback function */ void setDefaultMessageHandler(messageHandler mh) { defaultMessageHandler.attach(mh); } /** Set the default message handling callback - used for any message which does not match a subscription message handler * @param time - address of initialized object * @param mh - pointer to the callback function */ template<class T> void setDefaultMessageHandler(T *item, void (T::*method)(MessageData&)) { defaultMessageHandler.attach(item, method); } /** MQTT Connect - send an MQTT connect packet down the network and wait for a Connack * The nework object must be connected to the network endpoint before calling this * Default connect options are used * @return success code - */ int connect(); /** MQTT Connect - send an MQTT connect packet down the network and wait for a Connack * The nework object must be connected to the network endpoint before calling this * @param options - connect options * @return success code - */ int connect(MQTTPacket_connectData& options); /** MQTT Publish - send an MQTT publish packet and wait for all acks to complete for all QoSs * @param topic - the topic to publish to * @param message - the message to send * @return success code - */ int publish(const char* topicName, Message& message); /** MQTT Publish - send an MQTT publish packet and wait for all acks to complete for all QoSs * @param topic - the topic to publish to * @param payload - the data to send * @param payloadlen - the length of the data * @param qos - the QoS to send the publish at * @param retained - whether the message should be retained * @return success code - */ int publish(const char* topicName, void* payload, size_t payloadlen, enum QoS qos = QOS0, bool retained = false); /** MQTT Publish - send an MQTT publish packet and wait for all acks to complete for all QoSs * @param topic - the topic to publish to * @param payload - the data to send * @param payloadlen - the length of the data * @param id - the packet id used - returned * @param qos - the QoS to send the publish at * @param retained - whether the message should be retained * @return success code - */ int publish(const char* topicName, void* payload, size_t payloadlen, unsigned short& id, enum QoS qos = QOS1, bool retained = false); /** MQTT Subscribe - send an MQTT subscribe packet and wait for the suback * @param topicFilter - a topic pattern which can include wildcards * @param qos - the MQTT QoS to subscribe at * @param mh - the callback function to be invoked when a message is received for this subscription * @return success code - */ int subscribe(const char* topicFilter, enum QoS qos, messageHandler mh); /** MQTT Unsubscribe - send an MQTT unsubscribe packet and wait for the unsuback * @param topicFilter - a topic pattern which can include wildcards * @return success code - */ int unsubscribe(const char* topicFilter); /** MQTT Disconnect - send an MQTT disconnect packet, and clean up any state * @return success code - */ int disconnect(); /** A call to this API must be made within the keepAlive interval to keep the MQTT connection alive * yield can be called if no other MQTT operation is needed. This will also allow messages to be * received. * @param timeout_ms the time to wait, in milliseconds * @return success code - on failure, this means the client has disconnected */ int yield(unsigned long timeout_ms = 1000L); /** Is the client connected? * @return flag - is the client connected or not? */ bool isConnected() { return isconnected; } private: void cleanSession(); int cycle(Timer& timer); int waitfor(int packet_type, Timer& timer); int keepalive(); int publish(int len, Timer& timer, enum QoS qos); int decodePacket(int* value, int timeout); int readPacket(Timer& timer); int sendPacket(int length, Timer& timer); int deliverMessage(MQTTString& topicName, Message& message); bool isTopicMatched(char* topicFilter, MQTTString& topicName); Network& ipstack; unsigned long command_timeout_ms; unsigned char sendbuf[MAX_MQTT_PACKET_SIZE]; unsigned char readbuf[MAX_MQTT_PACKET_SIZE]; Timer last_sent, last_received, ping_response; unsigned int keepAliveInterval; bool ping_outstanding; bool cleansession; PacketId packetid; struct MessageHandlers { const char* topicFilter; FP<void, MessageData&> fp; } messageHandlers[MAX_MESSAGE_HANDLERS]; // Message handlers are indexed by subscription topic FP<void, MessageData&> defaultMessageHandler; bool isconnected; bool connAckReceived; bool subAckReceived; bool unsubAckReceived; bool pubAckReceived; bool pubCompReceived; #if MQTTCLIENT_QOS1 || MQTTCLIENT_QOS2 unsigned char pubbuf[MAX_MQTT_PACKET_SIZE]; // store the last publish for sending on reconnect int inflightLen; unsigned short inflightMsgid; enum QoS inflightQoS; #endif #if MQTTCLIENT_QOS2 bool pubrel; #if !defined(MAX_INCOMING_QOS2_MESSAGES) #define MAX_INCOMING_QOS2_MESSAGES 10 #endif unsigned short incomingQoS2messages[MAX_INCOMING_QOS2_MESSAGES]; bool isQoS2msgidFree(unsigned short id); bool useQoS2msgid(unsigned short id); void freeQoS2msgid(unsigned short id); #endif }; } template<class Network, class Timer, int a, int MAX_MESSAGE_HANDLERS> void MQTT::Client<Network, Timer, a, MAX_MESSAGE_HANDLERS>::cleanSession() { ping_outstanding = false; for (int i = 0; i < MAX_MESSAGE_HANDLERS; ++i) messageHandlers[i].topicFilter = 0; isconnected = false; connAckReceived = false; subAckReceived = false; unsubAckReceived = false; pubAckReceived = false; pubCompReceived = false; #if MQTTCLIENT_QOS1 || MQTTCLIENT_QOS2 inflightMsgid = 0; inflightQoS = QOS0; #endif #if MQTTCLIENT_QOS2 pubrel = false; for (int i = 0; i < MAX_INCOMING_QOS2_MESSAGES; ++i) incomingQoS2messages[i] = 0; #endif } template<class Network, class Timer, int a, int MAX_MESSAGE_HANDLERS> MQTT::Client<Network, Timer, a, MAX_MESSAGE_HANDLERS>::Client(Network& network, unsigned int command_timeout_ms) : ipstack(network), packetid() { this->command_timeout_ms = command_timeout_ms; cleanSession(); } #if MQTTCLIENT_QOS2 template<class Network, class Timer, int a, int b> bool MQTT::Client<Network, Timer, a, b>::isQoS2msgidFree(unsigned short id) { for (int i = 0; i < MAX_INCOMING_QOS2_MESSAGES; ++i) { if (incomingQoS2messages[i] == id) return false; } return true; } template<class Network, class Timer, int a, int b> bool MQTT::Client<Network, Timer, a, b>::useQoS2msgid(unsigned short id) { for (int i = 0; i < MAX_INCOMING_QOS2_MESSAGES; ++i) { if (incomingQoS2messages[i] == 0) { incomingQoS2messages[i] = id; return true; } } return false; } template<class Network, class Timer, int a, int b> void MQTT::Client<Network, Timer, a, b>::freeQoS2msgid(unsigned short id) { for (int i = 0; i < MAX_INCOMING_QOS2_MESSAGES; ++i) { if (incomingQoS2messages[i] == id) { incomingQoS2messages[i] = 0; return; } } } #endif template<class Network, class Timer, int a, int b> int MQTT::Client<Network, Timer, a, b>::sendPacket(int length, Timer& timer) { int rc = FAILURE, sent = 0; while (sent < length && !timer.expired()) { rc = ipstack.write(&sendbuf[sent], length - sent, timer.left_ms()); if (rc < 0) // there was an error writing the data break; sent += rc; } if (sent == length) { if (this->keepAliveInterval > 0) last_sent.countdown(this->keepAliveInterval); // record the fact that we have successfully sent the packet rc = SUCCESS; } else rc = FAILURE; #if defined(MQTT_DEBUG) char printbuf[150]; DEBUG("Rc %d from sending packet %s\n", rc, MQTTFormat_toServerString(printbuf, sizeof(printbuf), sendbuf, length)); #endif return rc; } template<class Network, class Timer, int a, int b> int MQTT::Client<Network, Timer, a, b>::decodePacket(int* value, int timeout) { unsigned char c; int multiplier = 1; int len = 0; const int MAX_NO_OF_REMAINING_LENGTH_BYTES = 4; *value = 0; do { int rc = MQTTPACKET_READ_ERROR; if (++len > MAX_NO_OF_REMAINING_LENGTH_BYTES) { rc = MQTTPACKET_READ_ERROR; /* bad data */ goto exit; } rc = ipstack.read(&c, 1, timeout); if (rc != 1) goto exit; *value += (c & 127) * multiplier; multiplier *= 128; } while ((c & 128) != 0); exit: return len; } /** * If any read fails in this method, then we should disconnect from the network, as on reconnect * the packets can be retried. * @param timeout the max time to wait for the packet read to complete, in milliseconds * @return the MQTT packet type, or -1 if none */ template<class Network, class Timer, int MAX_MQTT_PACKET_SIZE, int b> int MQTT::Client<Network, Timer, MAX_MQTT_PACKET_SIZE, b>::readPacket(Timer& timer) { int rc = FAILURE; MQTTHeader header = {0}; int len = 0; int rem_len = 0; /* 1. read the header byte. This has the packet type in it */ if (ipstack.read(readbuf, 1, timer.left_ms()) != 1) goto exit; len = 1; /* 2. read the remaining length. This is variable in itself */ decodePacket(&rem_len, timer.left_ms()); len += MQTTPacket_encode(readbuf + 1, rem_len); /* put the original remaining length into the buffer */ if (rem_len > (MAX_MQTT_PACKET_SIZE - len)) { rc = BUFFER_OVERFLOW; goto exit; } /* 3. read the rest of the buffer using a callback to supply the rest of the data */ if (rem_len > 0 && (ipstack.read(readbuf + len, rem_len, timer.left_ms()) != rem_len)) goto exit; header.byte = readbuf[0]; rc = header.bits.type; if (this->keepAliveInterval > 0) last_received.countdown(this->keepAliveInterval); // record the fact that we have successfully received a packet exit: #if defined(MQTT_DEBUG) if (rc >= 0) { char printbuf[50]; DEBUG("Rc %d from receiving packet %s\n", rc, MQTTFormat_toClientString(printbuf, sizeof(printbuf), readbuf, len)); } #endif return rc; } // assume topic filter and name is in correct format // # can only be at end // + and # can only be next to separator template<class Network, class Timer, int a, int b> bool MQTT::Client<Network, Timer, a, b>::isTopicMatched(char* topicFilter, MQTTString& topicName) { char* curf = topicFilter; char* curn = topicName.lenstring.data; char* curn_end = curn + topicName.lenstring.len; while (*curf && curn < curn_end) { if (*curn == '/' && *curf != '/') break; if (*curf != '+' && *curf != '#' && *curf != *curn) break; if (*curf == '+') { // skip until we meet the next separator, or end of string char* nextpos = curn + 1; while (nextpos < curn_end && *nextpos != '/') nextpos = ++curn + 1; } else if (*curf == '#') curn = curn_end - 1; // skip until end of string curf++; curn++; }; return (curn == curn_end) && (*curf == '\0'); } template<class Network, class Timer, int a, int MAX_MESSAGE_HANDLERS> int MQTT::Client<Network, Timer, a, MAX_MESSAGE_HANDLERS>::deliverMessage(MQTTString& topicName, Message& message) { int rc = FAILURE; // we have to find the right message handler - indexed by topic for (int i = 0; i < MAX_MESSAGE_HANDLERS; ++i) { if (messageHandlers[i].topicFilter != 0 && (MQTTPacket_equals(&topicName, (char*)messageHandlers[i].topicFilter) || isTopicMatched((char*)messageHandlers[i].topicFilter, topicName))) { if (messageHandlers[i].fp.attached()) { MessageData md(topicName, message); messageHandlers[i].fp(md); rc = SUCCESS; } } } if (rc == FAILURE && defaultMessageHandler.attached()) { MessageData md(topicName, message); defaultMessageHandler(md); rc = SUCCESS; } return rc; } template<class Network, class Timer, int a, int b> int MQTT::Client<Network, Timer, a, b>::yield(unsigned long timeout_ms) { int rc = SUCCESS; Timer timer; timer.countdown_ms(timeout_ms); while (!timer.expired()) { if (cycle(timer) < 0) { rc = FAILURE; break; } } return rc; } template<class Network, class Timer, int MAX_MQTT_PACKET_SIZE, int b> int MQTT::Client<Network, Timer, MAX_MQTT_PACKET_SIZE, b>::cycle(Timer& timer) { /* get one piece of work off the wire and one pass through */ // read the socket, see what work is due int packet_type = readPacket(timer); int len = 0, rc = SUCCESS; switch (packet_type) { case FAILURE: case BUFFER_OVERFLOW: rc = packet_type; break; case CONNACK_MSG: connAckReceived = true; break; case PUBACK_MSG: pubAckReceived = true; break; case SUBACK_MSG: subAckReceived = true; break; case UNSUBACK_MSG: unsubAckReceived = true; break; case PUBLISH_MSG: { MQTTString topicName = MQTTString_initializer; Message msg; int intQoS; if (MQTTDeserialize_publish((unsigned char*)&msg.dup, &intQoS, (unsigned char*)&msg.retained, (unsigned short*)&msg.id, &topicName, (unsigned char**)&msg.payload, &msg.payloadlen, readbuf, MAX_MQTT_PACKET_SIZE) != 1) goto exit; msg.qos = (enum QoS)intQoS; #if MQTTCLIENT_QOS2 if (msg.qos != QOS2) #endif deliverMessage(topicName, msg); #if MQTTCLIENT_QOS2 else if (isQoS2msgidFree(msg.id)) { if (useQoS2msgid(msg.id)) deliverMessage(topicName, msg); else WARN("Maximum number of incoming QoS2 messages exceeded"); } #endif #if MQTTCLIENT_QOS1 || MQTTCLIENT_QOS2 if (msg.qos != QOS0) { if (msg.qos == QOS1) len = MQTTSerialize_ack(sendbuf, MAX_MQTT_PACKET_SIZE, PUBACK_MSG, 0, msg.id); else if (msg.qos == QOS2) len = MQTTSerialize_ack(sendbuf, MAX_MQTT_PACKET_SIZE, PUBREC_MSG, 0, msg.id); if (len <= 0) rc = FAILURE; else rc = sendPacket(len, timer); if (rc == FAILURE) goto exit; // there was a problem } break; #endif } #if MQTTCLIENT_QOS2 case PUBREC_MSG: case PUBREL_MSG: unsigned short mypacketid; unsigned char dup, type; if (MQTTDeserialize_ack(&type, &dup, &mypacketid, readbuf, MAX_MQTT_PACKET_SIZE) != 1) rc = FAILURE; else if ((len = MQTTSerialize_ack(sendbuf, MAX_MQTT_PACKET_SIZE, (packet_type == PUBREC_MSG) ? PUBREL_MSG : PUBCOMP_MSG, 0, mypacketid)) <= 0) rc = FAILURE; else if ((rc = sendPacket(len, timer)) != SUCCESS) // send the PUBREL_MSG packet rc = FAILURE; // there was a problem if (rc == FAILURE) goto exit; // there was a problem if (packet_type == PUBREL_MSG) freeQoS2msgid(mypacketid); break; case PUBCOMP_MSG: pubCompReceived = true; break; #endif case PINGRESP_MSG: ping_outstanding = false; break; } keepalive(); exit: if (rc == SUCCESS) rc = packet_type; return rc; } template<class Network, class Timer, int MAX_MQTT_PACKET_SIZE, int b> int MQTT::Client<Network, Timer, MAX_MQTT_PACKET_SIZE, b>::keepalive() { int rc = FAILURE; if (keepAliveInterval == 0) { rc = SUCCESS; goto exit; } if (last_sent.expired() || last_received.expired()) { if (!ping_outstanding) { Timer timer(1000); int len = MQTTSerialize_pingreq(sendbuf, MAX_MQTT_PACKET_SIZE); if (len > 0 && (rc = sendPacket(len, timer)) == SUCCESS) // send the ping packet { ping_response.countdown(this->keepAliveInterval); ping_outstanding = true; } } else if(ping_response.expired()) { isconnected = false; } } exit: return rc; } // only used in single-threaded mode where one command at a time is in process template<class Network, class Timer, int a, int b> int MQTT::Client<Network, Timer, a, b>::waitfor(int packet_type, Timer& timer) { int rc = FAILURE; // Use bool values to determine if a packet type has been received. This only works if waitfor is // called once at a time per type. However, it can be called with a different type at the same // time, for instance, while waiting for a subscription acknowledgement (SUBACK_MSG) we could // publish a QoS1 message and wait for the acknowledgement (PUBACK_MSG). switch(packet_type) { case CONNACK_MSG: connAckReceived = false; break; case SUBACK_MSG: subAckReceived = false; break; case UNSUBACK_MSG: unsubAckReceived = false; break; case PUBACK_MSG: pubAckReceived = false; break; case PUBCOMP_MSG: pubCompReceived = false; break; } do { switch(packet_type) { case CONNACK_MSG: if(connAckReceived) { connAckReceived = false; return packet_type; } break; case SUBACK_MSG: if(subAckReceived) { subAckReceived = false; return packet_type; } break; case UNSUBACK_MSG: if(unsubAckReceived) { unsubAckReceived = false; return packet_type; } break; case PUBACK_MSG: if(pubAckReceived) { pubAckReceived = false; return packet_type; } break; case PUBCOMP_MSG: if(pubCompReceived) { pubCompReceived = false; return packet_type; } break; } if (timer.expired()) break; // we timed out cycle(timer); } while (true); return rc; } template<class Network, class Timer, int MAX_MQTT_PACKET_SIZE, int b> int MQTT::Client<Network, Timer, MAX_MQTT_PACKET_SIZE, b>::connect(MQTTPacket_connectData& options) { Timer connect_timer(command_timeout_ms); int rc = FAILURE; int len = 0; if (isconnected) // don't send connect packet again if we are already connected goto exit; this->keepAliveInterval = options.keepAliveInterval; this->cleansession = (options.cleansession != 0); if ((len = MQTTSerialize_connect(sendbuf, MAX_MQTT_PACKET_SIZE, &options)) <= 0) goto exit; if ((rc = sendPacket(len, connect_timer)) != SUCCESS) // send the connect packet goto exit; // there was a problem if (this->keepAliveInterval > 0) last_received.countdown(this->keepAliveInterval); // this will be a blocking call, wait for the connack if (waitfor(CONNACK_MSG, connect_timer) == CONNACK_MSG) { unsigned char connack_rc = 255; bool sessionPresent = false; if (MQTTDeserialize_connack((unsigned char*)&sessionPresent, &connack_rc, readbuf, MAX_MQTT_PACKET_SIZE) == 1) rc = connack_rc; else rc = FAILURE; } else rc = FAILURE; #if MQTTCLIENT_QOS2 // resend any inflight publish if (inflightMsgid > 0 && inflightQoS == QOS2 && pubrel) { if ((len = MQTTSerialize_ack(sendbuf, MAX_MQTT_PACKET_SIZE, PUBREL_MSG, 0, inflightMsgid)) <= 0) rc = FAILURE; else rc = publish(len, connect_timer, inflightQoS); } else #endif #if MQTTCLIENT_QOS1 || MQTTCLIENT_QOS2 if (inflightMsgid > 0) { memcpy(sendbuf, pubbuf, MAX_MQTT_PACKET_SIZE); rc = publish(inflightLen, connect_timer, inflightQoS); } #endif exit: if (rc == SUCCESS) isconnected = true; return rc; } template<class Network, class Timer, int MAX_MQTT_PACKET_SIZE, int b> int MQTT::Client<Network, Timer, MAX_MQTT_PACKET_SIZE, b>::connect() { MQTTPacket_connectData default_options = MQTTPacket_connectData_initializer; return connect(default_options); } template<class Network, class Timer, int MAX_MQTT_PACKET_SIZE, int MAX_MESSAGE_HANDLERS> int MQTT::Client<Network, Timer, MAX_MQTT_PACKET_SIZE, MAX_MESSAGE_HANDLERS>::subscribe(const char* topicFilter, enum QoS qos, messageHandler messageHandler) { int rc = FAILURE; Timer timer(command_timeout_ms); int len = 0; MQTTString topic = {(char*)topicFilter, {0, 0}}; if (!isconnected) goto exit; len = MQTTSerialize_subscribe(sendbuf, MAX_MQTT_PACKET_SIZE, 0, packetid.getNext(), 1, &topic, (int*)&qos); if (len <= 0) goto exit; if ((rc = sendPacket(len, timer)) != SUCCESS) // send the subscribe packet goto exit; // there was a problem if (waitfor(SUBACK_MSG, timer) == SUBACK_MSG) // wait for suback { int count = 0, grantedQoS = -1; unsigned short mypacketid; if (MQTTDeserialize_suback(&mypacketid, 1, &count, &grantedQoS, readbuf, MAX_MQTT_PACKET_SIZE) == 1) rc = grantedQoS; // 0, 1, 2 or 0x80 if (rc != 0x80) { for (int i = 0; i < MAX_MESSAGE_HANDLERS; ++i) { if (messageHandlers[i].topicFilter == 0) { messageHandlers[i].topicFilter = topicFilter; messageHandlers[i].fp.attach(messageHandler); rc = 0; break; } } } } else rc = FAILURE; exit: if (rc != SUCCESS) cleanSession(); return rc; } template<class Network, class Timer, int MAX_MQTT_PACKET_SIZE, int MAX_MESSAGE_HANDLERS> int MQTT::Client<Network, Timer, MAX_MQTT_PACKET_SIZE, MAX_MESSAGE_HANDLERS>::unsubscribe(const char* topicFilter) { int rc = FAILURE; Timer timer(command_timeout_ms); MQTTString topic = {(char*)topicFilter, {0, 0}}; int len = 0; if (!isconnected) goto exit; if ((len = MQTTSerialize_unsubscribe(sendbuf, MAX_MQTT_PACKET_SIZE, 0, packetid.getNext(), 1, &topic)) <= 0) goto exit; if ((rc = sendPacket(len, timer)) != SUCCESS) // send the unsubscribe packet goto exit; // there was a problem if (waitfor(UNSUBACK_MSG, timer) == UNSUBACK_MSG) { unsigned short mypacketid; // should be the same as the packetid above if (MQTTDeserialize_unsuback(&mypacketid, readbuf, MAX_MQTT_PACKET_SIZE) == 1) { rc = 0; // remove the subscription message handler associated with this topic, if there is one for (int i = 0; i < MAX_MESSAGE_HANDLERS; ++i) { if (messageHandlers[i].topicFilter != 0 && strcmp(messageHandlers[i].topicFilter, topicFilter) == 0) { messageHandlers[i].topicFilter = 0; break; } } } } else rc = FAILURE; exit: if (rc != SUCCESS) cleanSession(); return rc; } template<class Network, class Timer, int MAX_MQTT_PACKET_SIZE, int b> int MQTT::Client<Network, Timer, MAX_MQTT_PACKET_SIZE, b>::publish(int len, Timer& timer, enum QoS qos) { int rc; if ((rc = sendPacket(len, timer)) != SUCCESS) // send the publish packet goto exit; // there was a problem #if MQTTCLIENT_QOS1 if (qos == QOS1) { if (waitfor(PUBACK_MSG, timer) == PUBACK_MSG) { unsigned short mypacketid; unsigned char dup, type; if (MQTTDeserialize_ack(&type, &dup, &mypacketid, readbuf, MAX_MQTT_PACKET_SIZE) != 1) rc = FAILURE; else if (inflightMsgid == mypacketid) inflightMsgid = 0; } else rc = FAILURE; } #endif #if MQTTCLIENT_QOS2 if (qos == QOS2) { if (waitfor(PUBCOMP_MSG, timer) == PUBCOMP_MSG) { unsigned short mypacketid; unsigned char dup, type; if (MQTTDeserialize_ack(&type, &dup, &mypacketid, readbuf, MAX_MQTT_PACKET_SIZE) != 1) rc = FAILURE; else if (inflightMsgid == mypacketid) inflightMsgid = 0; } else rc = FAILURE; } #endif exit: if (rc != SUCCESS) cleanSession(); return rc; } template<class Network, class Timer, int MAX_MQTT_PACKET_SIZE, int b> int MQTT::Client<Network, Timer, MAX_MQTT_PACKET_SIZE, b>::publish(const char* topicName, void* payload, size_t payloadlen, unsigned short& id, enum QoS qos, bool retained) { int rc = FAILURE; Timer timer(command_timeout_ms); MQTTString topicString = MQTTString_initializer; int len = 0; if (!isconnected) goto exit; topicString.cstring = (char*)topicName; #if MQTTCLIENT_QOS1 || MQTTCLIENT_QOS2 if (qos == QOS1 || qos == QOS2) id = packetid.getNext(); #endif len = MQTTSerialize_publish(sendbuf, MAX_MQTT_PACKET_SIZE, 0, qos, retained, id, topicString, (unsigned char*)payload, payloadlen); if (len <= 0) goto exit; #if MQTTCLIENT_QOS1 || MQTTCLIENT_QOS2 if (!cleansession) { memcpy(pubbuf, sendbuf, len); inflightMsgid = id; inflightLen = len; inflightQoS = qos; #if MQTTCLIENT_QOS2 pubrel = false; #endif } #endif rc = publish(len, timer, qos); exit: return rc; } template<class Network, class Timer, int MAX_MQTT_PACKET_SIZE, int b> int MQTT::Client<Network, Timer, MAX_MQTT_PACKET_SIZE, b>::publish(const char* topicName, void* payload, size_t payloadlen, enum QoS qos, bool retained) { unsigned short id = 0; // dummy - not used for anything return publish(topicName, payload, payloadlen, id, qos, retained); } template<class Network, class Timer, int MAX_MQTT_PACKET_SIZE, int b> int MQTT::Client<Network, Timer, MAX_MQTT_PACKET_SIZE, b>::publish(const char* topicName, Message& message) { return publish(topicName, message.payload, message.payloadlen, message.qos, message.retained); } template<class Network, class Timer, int MAX_MQTT_PACKET_SIZE, int b> int MQTT::Client<Network, Timer, MAX_MQTT_PACKET_SIZE, b>::disconnect() { int rc = FAILURE; Timer timer(command_timeout_ms); // we might wait for incomplete incoming publishes to complete int len = MQTTSerialize_disconnect(sendbuf, MAX_MQTT_PACKET_SIZE); if (len > 0) rc = sendPacket(len, timer); // send the disconnect packet if (cleansession) cleanSession(); else isconnected = false; return rc; } #endif