This is a simple mbed client example demonstrating, registration of a device with mbed Device Connector and reading and writing values as well as deregistering on different Network Interfaces including Ethernet, WiFi, 6LoWPAN ND and Thread respectively.

Getting started with mbed Client on mbed OS

This is the mbed Client example for mbed OS. It demonstrates how to register a device with mbed Device Connector, how to read and write values, and how to deregister. If you are unfamiliar with mbed Device Connector, we recommend that you read the introduction to the data model first.

The application:

  • Connects to network with WiFi, Ethernet, 6LoWPAN ND or Thread connection.
  • Registers with mbed Device Connector.
  • Gives mbed Device Connector access to its resources (read and write).
  • Records the number of clicks on the device’s button and sends the number to mbed Device Connector.
  • Lets you control the blink pattern of the LED on the device (through mbed Device Connector).

Required hardware

  • K64F board.
  • 1-2 micro-USB cables.
  • mbed 6LoWPAN gateway router for 6LoWPAN ND and Thread.
  • mbed 6LoWPAN shield (AT86RF212B/AT86RF233 for 6LoWPAN ND and Thread.
  • Ethernet cable and connection to the internet.

Requirements for non K64F board

This example application is primarily designed for FRDM-K64F board but you can also use other mbed OS supported boards to run this example application , with some minor modifications for setup.

  • To get the application registering successfully on non K64F boards , you need Edit the mbed_app.json file to add NULL_ENTROPY feature for mbedTLS:

""macros": ["MBEDTLS_USER_CONFIG_FILE=\"mbedtls_mbed_client_config.h\"",
            "MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES",
            "MBEDTLS_TEST_NULL_ENTROPY"],
  • On non K64F boards, there is no unregistration functionality and button press is simulated through timer ticks incrementing every 15 seconds.

Application setup

To configure the example application, please check following:

Connection type

The application uses Ethernet as the default connection type. To change the connection type, set one of them in mbed_app.json. For example, to enable 6LoWPAN ND mode:

    "network-interface": {
        "help": "options are ETHERNET,WIFI,MESH_LOWPAN_ND,MESH_THREAD.",
        "value": "MESH_LOWPAN_ND"
    }

Client credentials

To register the application to the Connector service, you need to create and set the client side certificate.

  • Go to mbed Device Connector and log in with your mbed account.
  • On mbed Device Connector, go to My Devices > Security credentials and click the Get my device security credentials button to get new credentials for your device.
  • Replace the contents in `security.h` of this project's directory with content copied above.

6LoWPAN ND and Thread settings

First you need to select the RF driver to be used by 6LoWPAN/Thread stack.

For example Atmel AT86RF233/212B driver is located in https://github.com/ARMmbed/atmel-rf-driver

To add that driver to you application , import library from following URL:

https://github.com/ARMmbed/atmel-rf-driver

Then you need to enable the IPV6 functionality as the 6LoWPAN and Thread are part of IPv6 stack. Edit the mbed_app.json file to add IPV6 feature:

"target.features_add": ["CLIENT", "IPV6", "COMMON_PAL"],

6LoWPAN ND and Thread use IPv6 for connectivity. Therefore, you need to verify first that you have a working IPv6 connection. To do that, ping the Connector IPv6 address 2607:f0d0:2601:52::20 from your network.

mbed gateway

To connect the example application in 6LoWPAN ND or Thread mode to Connector, you need to set up an mbed 6LoWPAN gateway router as follows:

  • Use an Ethernet cable to connect the mbed 6LoWPAN gateway router to the internet.
  • Use a micro-USB cable to connect the mbed 6LoWPAN gateway router to your computer. The computer will list the router as removable storage.
  • The firmware for the gateway is located in the `GW_Binary` folder in the root of this example. Select the binary matching your application bootstrap mode:
  • For the 6LoWPAN ND bootstrap, use `gateway6LoWPANDynamic.bin`.
  • For the Thread bootstrap, use `gatewayThreadDynamic.bin`.

The dynamic binaries use IPv6 autoconfiguration and enable the client to connect to the Connector service. The static binaries create a site-local IPv6 network and packets cannot be routed outside.

  • Copy the gateway binary file to the mbed 6LoWPAN gateway router to flash the device. The device reboots automatically after flashing. If that does not happen, press the Reset button on the board.

You can view debug traces from the gateway with a serial port monitor. The gateway uses baud rate 460800. The gateway IPv6 address is correctly configured when the following trace is visible: `Eth bootstrap ready, IP=XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX`.

Channel settings

The default 2.4GHz channel settings are already defined by the mbed-mesh-api to match the mbed gateway settings. The application can override these settings by adding them to the mbed_app.json file in the main project directory. For example:

    "target_overrides": {
        "*": {
            "mbed-mesh-api.6lowpan-nd-channel-page": 0,
            "mbed-mesh-api.6lowpan-nd-channel": 12,
            "mbed-mesh-api.thread-config-channel-page": 0,
            "mbed-mesh-api.thread-config-channel": 12
        }
    }

For sub-GHz shields (AT86RF212B) use the following overrides, 6LoWPAN ND only:

"mbed-mesh-api.6lowpan-nd-channel-page": 2,
"mbed-mesh-api.6lowpan-nd-channel": 1

For more information about the radio shields, see [the related documentation](docs/radio_module_identify.md). All the configurable settings can be found in the mbed-os-example-client/mbed-os/features/FEATURE_IPV6/mbed-mesh-api/mbed_lib.json file.

Thread-specific settings

With Thread, you can change the operating mode of the client from the default router mode to a sleepy end device by adding the following override to the `mbed_app.json` file:

    "mbed-mesh-api.thread-device-type": "MESH_DEVICE_TYPE_THREAD_SLEEPY_END_DEVICE"

Ethernet settings

For running the example application using Ethernet, you need:

  • An Ethernet cable.
  • An Ethernet connection to the internet.

Wi-Fi settings

The example application uses ESP8266 WiFi Interface for managing the wireless connectivity. To run this application using WiFi, you need:

    "network-interface": {
        "help": "options are ETHERNET,WIFI,MESH_LOWPAN_ND,MESH_THREAD.",
        "value": "WIFI"
    }

Provide your WiFi SSID and password here and leave `\"` in the beginning and end of your SSID and password (as shown in the example below). Otherwise, the example cannot pick up the SSID and password in correct format.

    "wifi-ssid": {
        "help": "WiFi SSID",
        "value": "\"SSID\""
    },
    "wifi-password": {
        "help": "WiFi Password",
        "value": "\"Password\""
    }

IP address setup

This example uses IPv4 to communicate with the mbed Device Connector Server except for 6LoWPAN ND and Thread. The example program should automatically get an IPv4 address from the router when connected over Ethernet.

If your network does not have DHCP enabled, you have to manually assign a static IP address to the board. We recommend having DHCP enabled to make everything run smoothly.

Changing socket type

Your device can connect to mbed Device Connector via UDP or TCP binding mode. The default is UDP. The binding mode cannot be changed in 6LoWPAN ND or Thread mode.

To change the binding mode:

  • In the `simpleclient.h` file, find the parameter `SOCKET_MODE`. The default is `M2MInterface::UDP`.
  • To switch to TCP, change it to `M2MInterface::TCP`.
  • Rebuild and flash the application.

Tip: The instructions in this document remain the same, irrespective of the socket mode you select.

Monitoring the application

The application prints debug messages over the serial port, so you can monitor its activity with a serial port monitor. The application uses baud rate 115200.

SerialPC

After connecting, you should see messages about connecting to mbed Device Connector:

In app_start()
IP address 10.2.15.222
Device name 6868df22-d353-4150-b90a-a878130859d9

When you click the `SW2` button on your board you should see messages about the value changes:

handle_button_click, new value of counter is 1

Testing the application

  • Flash the application.
  • Verify that the registration succeeded. You should see `Registered object successfully!` printed to the serial port.
  • On mbed Device Connector, go to My devices > Connected devices. Your device should be listed here.
  • Press the `SW2` button on the device a number of times (make a note of how many times you did that).
  • Go to Device Connector > API Console.
  • Enter https://api.connector.mbed.com/endpoints/DEVICE_NAME/3200/0/5501 in the URI field and click TEST API. Replace DEVICE_NAME with your actual endpoint name. The device name can be found in the security.h file, see variable MBED_ENDPOINT_NAME or it can be found from the traces.
  • The number of times you pressed SW2 is shown.
  • Press the SW3 button to unregister from mbed Device Connector. You should see Unregistered Object Successfully printed to the serial port and the LED starts blinking. This will also stop your application. Press the `RESET` button to run the program again.

For more methods check the mbed Device Connector Quick Start.

Application resources

The application exposes three resources:

  • 3200/0/5501. Number of presses of SW2 (GET).
  • 3201/0/5850. Blink function, blinks LED1 when executed (POST).
  • 3201/0/5853. Blink pattern, used by the blink function to determine how to blink. In the format of 1000:500:1000:500:1000:500 (PUT).

For information on how to get notifications when resource 1 changes, or how to use resources 2 and 3, take a look at the mbed Device Connector Quick Start.

Building this example

Building with mbed CLI

If you'd like to use mbed CLI to build this, then you should follow the instructions in the Handbook TODO - new link. The instructions here relate to using the developer.mbed.org Online Compiler

If you'd like to use the online Compiler, then you can Import this code into your compiler, select your platform from the top right, compile the code using the compile button, load it onto your board, press the reset button on the board and you code will run. See the client go online!

More instructions for using the mbed Online Compiler can be found at TODO - update this

Revisions of README.md

Revision Date Message Actions
164:4ec747895c33 2019-01-08 Merge pull request #422 from ARMmbed/deprecation File  Diff  Annotate
153:bfdc9d467a90 2018-06-16 Merge pull request #408 from ARMmbed/mbed-os-5.9.0-oob File  Diff  Annotate
152:59bae3ff7738 2018-06-12 Merge pull request #407 from jeromecoutant/PR_ISM File  Diff  Annotate
147:676be4975fbd 2018-05-04 README - remove RTL8195AM issue 5626 File  Diff  Annotate
145:01c7ac05a049 2018-05-03 Fix #391. Remove broken link. File  Diff  Annotate
143:8a1caea4632e 2018-04-18 Legacy Notice (#396) File  Diff  Annotate
139:dc64bda4c6b0 2018-03-19 README - Ublox wifi broken (5.7.4 -> 5.7.x) File  Diff  Annotate
137:d7f841718a55 2018-03-09 README - RTL8195AM - remove some fixed issues (#386) File  Diff  Annotate
135:d11773b9e099 2018-02-27 Remove configs/wifi_ism43362-ignore (no more needed) + update Readme accordingly File  Diff  Annotate
129:d145697eb0de 2018-01-19 Merge pull request #375 from ARMmbed/remove_mbedignore_dependency File  Diff  Annotate
126:630503b1047e 2018-01-12 Remove exclusion of TLS/Entropy File  Diff  Annotate
124:fdc95f8d423d 2017-12-29 Add Table of Contents to README.md File  Diff  Annotate
123:6b11bfd9dcae 2017-12-20 Merge Mbed OS 5.7.0 OOB to master (#363) File  Diff  Annotate
120:1f3dd60107dd 2017-12-09 README.md -t <TOOLCHAIN> File  Diff  Annotate
115:45399116b171 2017-11-24 Merge pull request #327 from betzw/betzw_x_nucleo_wb File  Diff  Annotate
112:6e06a534b348 2017-11-13 Changing mbed->Mbed and developer.mbed.com os.mbed.com File  Diff  Annotate
106:32aa8e01992d 2017-09-27 Merge pull request #317 from ARMmbed/OOB-fixes-for-MbedOS5.6.0 File  Diff  Annotate
91:60ecc29f2ba1 2017-06-20 Merge pull request #254 from ARMmbed/mbedos55-oob File  Diff  Annotate
87:5092f48bb68c 2017-05-11 Merge pull request #246 from ARMmbed/easy-ipvx File  Diff  Annotate
83:a8ec73b59031 2017-05-04 Merge pull request #239 from ARMmbed/anttiylitokola-patch-1 File  Diff  Annotate
77:e0618756b84e 2017-03-28 Doc update thr (#214) File  Diff  Annotate
76:29e676124b6c 2017-03-24 Merge pull request #207 from ARMmbed/readme_restruct File  Diff  Annotate
74:2a6c17db52ea 2017-03-20 Add Nucleo F429ZI to known issues list File  Diff  Annotate
72:d0c254f237c4 2017-03-13 Add platform NUCLEO-F429ZI & RF expansion board X-NUCLEO-IDS01A4 (#188) File  Diff  Annotate
71:ec259c9b02ea 2017-03-13 Add STM32 Nucleo & Spirit1 RF File  Diff  Annotate
70:23c95e43feb9 2017-03-09 Merge pull request #190 from ARMmbed/oob_test_mbed-os-5.4 File  Diff  Annotate
69:64f9214729ae 2017-03-09 Merge pull request #202 from ARMmbed/SeppoTakalo-patch-1 File  Diff  Annotate
68:1a8e13b21e7e 2017-03-09 Merge pull request #197 from ARMmbed/doc_fix File  Diff  Annotate
63:c73f78fd7982 2017-02-15 Integrate easy-connect, fix serial, fix warning (#176) File  Diff  Annotate
62:077cbce2bd10 2017-02-02 UBLOX_EVK_ODIN_W2 ethernet support File  Diff  Annotate
58:e5468bc5bf9a 2017-01-26 README.md - Ublox tested on WiFi File  Diff  Annotate
53:2e40e7d6aed6 2017-01-05 Editorial changes. File  Diff  Annotate
52:957eff5f0ee9 2017-01-05 README.md - compilation issue (#161) File  Diff  Annotate
45:b150e0aa009c 2016-12-13 configs/*.json based configurations (#140) File  Diff  Annotate
37:9a9428fc4b26 2016-12-02 Switch the default transport-mode to TCP File  Diff  Annotate
22:e39e09d79a63 2016-10-24 Merge pull request #97 from ARMmbed/fix_readme_oob File  Diff  Annotate
21:b88cdeb5b302 2016-10-21 Merge branch 'oob_change' File  Diff  Annotate
13:c44e318674db 2016-08-05 Merge pull request #71 from geky/wifi-config-pins File  Diff  Annotate
12:7da135488950 2016-08-04 Merge pull request #70 from hasnainvirk/master File  Diff  Annotate
9:dcc4b552c03a 2016-08-03 Merge pull request #64 from hasnainvirk/master File  Diff  Annotate
7:9a1ee269650b 2016-08-02 Merge pull request #63 from ARMmbed/null_entropy_update File  Diff  Annotate
6:8fff223f3f84 2016-08-02 Merge pull request #60 from hasnainvirk/master File  Diff  Annotate
5:b7d7ca715fdb 2016-08-01 Merge pull request #59 from ARMmbed/README-update File  Diff  Annotate
1:e06e899acba6 2016-07-27 IPv6 depedency removed, udpated README and mbed_app.json File  Diff  Annotate
0:7d5ec759888b 2016-07-25 Update example home repo at https://github.com/ARMmbed/mbed-os-example-client File  Diff  Annotate