This is a simple mbed client example demonstrating, registration of a device with mbed Device Connector and reading and writing values as well as deregistering on different Network Interfaces including Ethernet, WiFi, 6LoWPAN ND and Thread respectively.

Getting started with mbed Client on mbed OS

This is the mbed Client example for mbed OS. It demonstrates how to register a device with mbed Device Connector, how to read and write values, and how to deregister. If you are unfamiliar with mbed Device Connector, we recommend that you read the introduction to the data model first.

The application:

  • Connects to network with WiFi, Ethernet, 6LoWPAN ND or Thread connection.
  • Registers with mbed Device Connector.
  • Gives mbed Device Connector access to its resources (read and write).
  • Records the number of clicks on the device’s button and sends the number to mbed Device Connector.
  • Lets you control the blink pattern of the LED on the device (through mbed Device Connector).

Required hardware

  • K64F board.
  • 1-2 micro-USB cables.
  • mbed 6LoWPAN gateway router for 6LoWPAN ND and Thread.
  • mbed 6LoWPAN shield (AT86RF212B/AT86RF233 for 6LoWPAN ND and Thread.
  • Ethernet cable and connection to the internet.

Requirements for non K64F board

This example application is primarily designed for FRDM-K64F board but you can also use other mbed OS supported boards to run this example application , with some minor modifications for setup.

  • To get the application registering successfully on non K64F boards , you need Edit the mbed_app.json file to add NULL_ENTROPY feature for mbedTLS:

""macros": ["MBEDTLS_USER_CONFIG_FILE=\"mbedtls_mbed_client_config.h\"",
            "MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES",
            "MBEDTLS_TEST_NULL_ENTROPY"],
  • On non K64F boards, there is no unregistration functionality and button press is simulated through timer ticks incrementing every 15 seconds.

Application setup

To configure the example application, please check following:

Connection type

The application uses Ethernet as the default connection type. To change the connection type, set one of them in mbed_app.json. For example, to enable 6LoWPAN ND mode:

    "network-interface": {
        "help": "options are ETHERNET,WIFI,MESH_LOWPAN_ND,MESH_THREAD.",
        "value": "MESH_LOWPAN_ND"
    }

Client credentials

To register the application to the Connector service, you need to create and set the client side certificate.

  • Go to mbed Device Connector and log in with your mbed account.
  • On mbed Device Connector, go to My Devices > Security credentials and click the Get my device security credentials button to get new credentials for your device.
  • Replace the contents in `security.h` of this project's directory with content copied above.

6LoWPAN ND and Thread settings

First you need to select the RF driver to be used by 6LoWPAN/Thread stack.

For example Atmel AT86RF233/212B driver is located in https://github.com/ARMmbed/atmel-rf-driver

To add that driver to you application , import library from following URL:

https://github.com/ARMmbed/atmel-rf-driver

Then you need to enable the IPV6 functionality as the 6LoWPAN and Thread are part of IPv6 stack. Edit the mbed_app.json file to add IPV6 feature:

"target.features_add": ["CLIENT", "IPV6", "COMMON_PAL"],

6LoWPAN ND and Thread use IPv6 for connectivity. Therefore, you need to verify first that you have a working IPv6 connection. To do that, ping the Connector IPv6 address 2607:f0d0:2601:52::20 from your network.

mbed gateway

To connect the example application in 6LoWPAN ND or Thread mode to Connector, you need to set up an mbed 6LoWPAN gateway router as follows:

  • Use an Ethernet cable to connect the mbed 6LoWPAN gateway router to the internet.
  • Use a micro-USB cable to connect the mbed 6LoWPAN gateway router to your computer. The computer will list the router as removable storage.
  • The firmware for the gateway is located in the `GW_Binary` folder in the root of this example. Select the binary matching your application bootstrap mode:
  • For the 6LoWPAN ND bootstrap, use `gateway6LoWPANDynamic.bin`.
  • For the Thread bootstrap, use `gatewayThreadDynamic.bin`.

The dynamic binaries use IPv6 autoconfiguration and enable the client to connect to the Connector service. The static binaries create a site-local IPv6 network and packets cannot be routed outside.

  • Copy the gateway binary file to the mbed 6LoWPAN gateway router to flash the device. The device reboots automatically after flashing. If that does not happen, press the Reset button on the board.

You can view debug traces from the gateway with a serial port monitor. The gateway uses baud rate 460800. The gateway IPv6 address is correctly configured when the following trace is visible: `Eth bootstrap ready, IP=XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX`.

Channel settings

The default 2.4GHz channel settings are already defined by the mbed-mesh-api to match the mbed gateway settings. The application can override these settings by adding them to the mbed_app.json file in the main project directory. For example:

    "target_overrides": {
        "*": {
            "mbed-mesh-api.6lowpan-nd-channel-page": 0,
            "mbed-mesh-api.6lowpan-nd-channel": 12,
            "mbed-mesh-api.thread-config-channel-page": 0,
            "mbed-mesh-api.thread-config-channel": 12
        }
    }

For sub-GHz shields (AT86RF212B) use the following overrides, 6LoWPAN ND only:

"mbed-mesh-api.6lowpan-nd-channel-page": 2,
"mbed-mesh-api.6lowpan-nd-channel": 1

For more information about the radio shields, see [the related documentation](docs/radio_module_identify.md). All the configurable settings can be found in the mbed-os-example-client/mbed-os/features/FEATURE_IPV6/mbed-mesh-api/mbed_lib.json file.

Thread-specific settings

With Thread, you can change the operating mode of the client from the default router mode to a sleepy end device by adding the following override to the `mbed_app.json` file:

    "mbed-mesh-api.thread-device-type": "MESH_DEVICE_TYPE_THREAD_SLEEPY_END_DEVICE"

Ethernet settings

For running the example application using Ethernet, you need:

  • An Ethernet cable.
  • An Ethernet connection to the internet.

Wi-Fi settings

The example application uses ESP8266 WiFi Interface for managing the wireless connectivity. To run this application using WiFi, you need:

    "network-interface": {
        "help": "options are ETHERNET,WIFI,MESH_LOWPAN_ND,MESH_THREAD.",
        "value": "WIFI"
    }

Provide your WiFi SSID and password here and leave `\"` in the beginning and end of your SSID and password (as shown in the example below). Otherwise, the example cannot pick up the SSID and password in correct format.

    "wifi-ssid": {
        "help": "WiFi SSID",
        "value": "\"SSID\""
    },
    "wifi-password": {
        "help": "WiFi Password",
        "value": "\"Password\""
    }

IP address setup

This example uses IPv4 to communicate with the mbed Device Connector Server except for 6LoWPAN ND and Thread. The example program should automatically get an IPv4 address from the router when connected over Ethernet.

If your network does not have DHCP enabled, you have to manually assign a static IP address to the board. We recommend having DHCP enabled to make everything run smoothly.

Changing socket type

Your device can connect to mbed Device Connector via UDP or TCP binding mode. The default is UDP. The binding mode cannot be changed in 6LoWPAN ND or Thread mode.

To change the binding mode:

  • In the `simpleclient.h` file, find the parameter `SOCKET_MODE`. The default is `M2MInterface::UDP`.
  • To switch to TCP, change it to `M2MInterface::TCP`.
  • Rebuild and flash the application.

Tip: The instructions in this document remain the same, irrespective of the socket mode you select.

Monitoring the application

The application prints debug messages over the serial port, so you can monitor its activity with a serial port monitor. The application uses baud rate 115200.

SerialPC

After connecting, you should see messages about connecting to mbed Device Connector:

In app_start()
IP address 10.2.15.222
Device name 6868df22-d353-4150-b90a-a878130859d9

When you click the `SW2` button on your board you should see messages about the value changes:

handle_button_click, new value of counter is 1

Testing the application

  • Flash the application.
  • Verify that the registration succeeded. You should see `Registered object successfully!` printed to the serial port.
  • On mbed Device Connector, go to My devices > Connected devices. Your device should be listed here.
  • Press the `SW2` button on the device a number of times (make a note of how many times you did that).
  • Go to Device Connector > API Console.
  • Enter https://api.connector.mbed.com/endpoints/DEVICE_NAME/3200/0/5501 in the URI field and click TEST API. Replace DEVICE_NAME with your actual endpoint name. The device name can be found in the security.h file, see variable MBED_ENDPOINT_NAME or it can be found from the traces.
  • The number of times you pressed SW2 is shown.
  • Press the SW3 button to unregister from mbed Device Connector. You should see Unregistered Object Successfully printed to the serial port and the LED starts blinking. This will also stop your application. Press the `RESET` button to run the program again.

For more methods check the mbed Device Connector Quick Start.

Application resources

The application exposes three resources:

  • 3200/0/5501. Number of presses of SW2 (GET).
  • 3201/0/5850. Blink function, blinks LED1 when executed (POST).
  • 3201/0/5853. Blink pattern, used by the blink function to determine how to blink. In the format of 1000:500:1000:500:1000:500 (PUT).

For information on how to get notifications when resource 1 changes, or how to use resources 2 and 3, take a look at the mbed Device Connector Quick Start.

Building this example

Building with mbed CLI

If you'd like to use mbed CLI to build this, then you should follow the instructions in the Handbook TODO - new link. The instructions here relate to using the developer.mbed.org Online Compiler

If you'd like to use the online Compiler, then you can Import this code into your compiler, select your platform from the top right, compile the code using the compile button, load it onto your board, press the reset button on the board and you code will run. See the client go online!

More instructions for using the mbed Online Compiler can be found at TODO - update this

main.cpp

Committer:
mbed_official
Date:
2019-01-08
Revision:
164:4ec747895c33
Parent:
128:86c8e85c0df0

File content as of revision 164:4ec747895c33:

/*
 * Copyright (c) 2015, 2016 ARM Limited. All rights reserved.
 * SPDX-License-Identifier: Apache-2.0
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#include <string>
#include <sstream>
#include <vector>
#include "mbed-trace/mbed_trace.h"
#include "mbedtls/entropy_poll.h"

#include "security.h"

#include "mbed.h"

// easy-connect compliancy, it has 2 sets of wifi pins we have only one
#define MBED_CONF_APP_ESP8266_TX MBED_CONF_APP_WIFI_TX
#define MBED_CONF_APP_ESP8266_RX MBED_CONF_APP_WIFI_RX
#include "easy-connect/easy-connect.h"

// Should be defined after easy-connect.h
#include "simpleclient.h"

#ifdef TARGET_STM
#define RED_LED (LED3)
#define GREEN_LED (LED1)
#define BLUE_LED (LED2)
#define LED_ON (1)
#else // !TARGET_STM
#define RED_LED (LED1)
#define GREEN_LED (LED2)
#define BLUE_LED (LED3)
#define LED_ON (0)
#endif // !TARGET_STM
#define LED_OFF (!LED_ON)

#define BLINK_SIGNAL 0x1

// Status indication
DigitalOut red_led(RED_LED);
DigitalOut green_led(GREEN_LED);
DigitalOut blue_led(BLUE_LED);

Ticker status_ticker;
void blinky() {
    green_led = !green_led;
}

// These are example resource values for the Device Object
struct MbedClientDevice device = {
    "Manufacturer_String",      // Manufacturer
    "Type_String",              // Type
    "ModelNumber_String",       // ModelNumber
    "SerialNumber_String"       // SerialNumber
};

// Instantiate the class which implements LWM2M Client API (from simpleclient.h)
MbedClient mbed_client(device);

// Set up a button interrupt for user interaction
#ifdef MBED_CONF_APP_BUTTON1
	InterruptIn counter_btn(MBED_CONF_APP_BUTTON1);
#endif


/**
 * User interaction handler / simulator. Sets up physical button handler and a ticker
 * for regular updates for the resources.
 *
 * MBED_CONF_APP_BUTTON1 is mapped to actual button pin the mbed_app.json file, where you need to
 * specify board-specific value or leave it undefined if the board does not have buttons.
 */
class InteractionProvider {

public:
	InteractionProvider(Semaphore& updates_sem) : updates(updates_sem) {

	    timer_ticked = false;
	    clicked = false;

		// Set up handler function for the interaction button, if available

#ifdef MBED_CONF_APP_BUTTON1
		counter_btn.fall(this, &InteractionProvider::counter_button_handler);
#endif

	    // Use the counter button handler to send an update of endpoint resource values
		// to connector every 15 seconds periodically.
	    timer.attach(this, &InteractionProvider::timer_handler, 15.0);
	}

	// flags for interaction, these are read from outside interrupt context
	volatile bool timer_ticked;
	volatile bool clicked;


private:

	void timer_handler() {
	    timer_ticked = true;
	    updates.release();
	}

	void counter_button_handler() {
	    clicked = true;
	    updates.release();
	}

	// time-based event source for regular resource updates
	Ticker timer;

	// Network interaction must be performed outside of interrupt context
	Semaphore& updates;

};

/*
 * Arguments for running "blink" in it's own thread.
 */
class BlinkArgs {
public:
    BlinkArgs() {
        clear();
    }
    void clear() {
        position = 0;
        blink_pattern.clear();
    }
    uint16_t position;
    std::vector<uint32_t> blink_pattern;
};

/*
 * The Led contains one property (pattern) and a function (blink).
 * When the function blink is executed, the pattern is read, and the LED
 * will blink based on the pattern.
 */
class LedResource {
public:
    LedResource() {
        // create ObjectID with metadata tag of '3201', which is 'digital output'
        blinky_thread.start(callback(this, &LedResource::do_blink));
        led_object = M2MInterfaceFactory::create_object("3201");
        M2MObjectInstance* led_inst = led_object->create_object_instance();

        // 5853 = Multi-state output
        M2MResource* pattern_res = led_inst->create_dynamic_resource("5853", "Pattern",
            M2MResourceInstance::STRING, false);
        // read and write
        pattern_res->set_operation(M2MBase::GET_PUT_ALLOWED);
        // set initial pattern (toggle every 200ms. 7 toggles in total)
        pattern_res->set_value((const uint8_t*)"500:500:500:500:500:500:500", 27);

        // there's not really an execute LWM2M ID that matches... hmm...
        M2MResource* led_res = led_inst->create_dynamic_resource("5850", "Blink",
            M2MResourceInstance::OPAQUE, false);
        // we allow executing a function here...
        led_res->set_operation(M2MBase::POST_ALLOWED);
        // when a POST comes in, we want to execute the led_execute_callback
        led_res->set_execute_function(execute_callback(this, &LedResource::blink));
        // Completion of execute function can take a time, that's why delayed response is used
        led_res->set_delayed_response(true);
        blink_args = new BlinkArgs();
    }

    ~LedResource() {
        delete blink_args;
    }

    M2MObject* get_object() {
        return led_object;
    }

    void blink(void *argument) {
        // read the value of 'Pattern'
        status_ticker.detach();
        green_led = LED_OFF;

        M2MObjectInstance* inst = led_object->object_instance();
        M2MResource* res = inst->resource("5853");
        // Clear previous blink data
        blink_args->clear();

        // values in mbed Client are all buffers, and we need a vector of int's
        uint8_t* buffIn = NULL;
        uint32_t sizeIn;
        res->get_value(buffIn, sizeIn);

        // turn the buffer into a string, and initialize a vector<int> on the heap
        std::string s((char*)buffIn, sizeIn);
        free(buffIn);
        printf("led_execute_callback pattern=%s\n", s.c_str());

        // our pattern is something like 500:200:500, so parse that
        std::size_t found = s.find_first_of(":");
        while (found!=std::string::npos) {
            blink_args->blink_pattern.push_back(atoi((const char*)s.substr(0,found).c_str()));
            s = s.substr(found+1);
            found=s.find_first_of(":");
            if(found == std::string::npos) {
                blink_args->blink_pattern.push_back(atoi((const char*)s.c_str()));
            }
        }
        // check if POST contains payload
        if (argument) {
            M2MResource::M2MExecuteParameter* param = (M2MResource::M2MExecuteParameter*)argument;
            String object_name = param->get_argument_object_name();
            uint16_t object_instance_id = param->get_argument_object_instance_id();
            String resource_name = param->get_argument_resource_name();
            int payload_length = param->get_argument_value_length();
            const uint8_t* payload = param->get_argument_value();
            printf("Resource: %s/%d/%s executed\n", object_name.c_str(), object_instance_id, resource_name.c_str());
            printf("Payload: %.*s\n", payload_length, payload);
        }
        // do_blink is called with the vector, and starting at -1
        blinky_thread.signal_set(BLINK_SIGNAL);
    }

private:
    M2MObject* led_object;
    Thread blinky_thread;
    BlinkArgs *blink_args;
    void do_blink() {
        for(;;) {
            blinky_thread.signal_wait(BLINK_SIGNAL);
	        for (;;) {
	            // blink the LED
	            red_led = !red_led;
	            // up the position, if we reached the end of the vector
	            if (blink_args->position >= blink_args->blink_pattern.size()) {
	                // send delayed response after blink is done
	                M2MObjectInstance* inst = led_object->object_instance();
	                M2MResource* led_res = inst->resource("5850");
	                led_res->send_delayed_post_response();
	                red_led = LED_OFF;
	                status_ticker.attach_us(blinky, 250000);
	                break;
	            }
	            // Wait requested time, then continue prosessing the blink pattern from next position.
	            Thread::wait(blink_args->blink_pattern.at(blink_args->position));
	            blink_args->position++;
	        }
        }
    }
};

/*
 * The button contains one property (click count).
 * When `handle_button_click` is executed, the counter updates.
 */
class ButtonResource {
public:
    ButtonResource(): counter(0) {
        // create ObjectID with metadata tag of '3200', which is 'digital input'
        btn_object = M2MInterfaceFactory::create_object("3200");
        M2MObjectInstance* btn_inst = btn_object->create_object_instance();
        // create resource with ID '5501', which is digital input counter
        M2MResource* btn_res = btn_inst->create_dynamic_resource("5501", "Button",
            M2MResourceInstance::INTEGER, true /* observable */);
        // we can read this value
        btn_res->set_operation(M2MBase::GET_ALLOWED);
        // set initial value (all values in mbed Client are buffers)
        // to be able to read this data easily in the Connector console, we'll use a string
        btn_res->set_value((uint8_t*)"0", 1);
    }

    ~ButtonResource() {
    }

    M2MObject* get_object() {
        return btn_object;
    }

    /*
     * When you press the button, we read the current value of the click counter
     * from mbed Device Connector, then up the value with one.
     */
    void handle_button_click() {
        if (mbed_client.register_successful()) {
            M2MObjectInstance* inst = btn_object->object_instance();
            M2MResource* res = inst->resource("5501");

            // up counter
            counter++;
            printf("handle_button_click, new value of counter is %d\n", counter);
            // serialize the value of counter as a string, and tell connector
            char buffer[20];
            int size = sprintf(buffer,"%d",counter);
            res->set_value((uint8_t*)buffer, size);
        } else {
            printf("simulate button_click, device not registered\n");
        }
    }

private:
    M2MObject* btn_object;
    uint16_t counter;
};

/*
 * The timer contains one property: counter.
 * When `handle_timer_tick` is executed, the counter updates.
 */
class TimerResource {
public:
    TimerResource(): counter(0) {
        // create ObjectID with metadata tag of '3200', which is 'digital input'
        btn_object = M2MInterfaceFactory::create_object("3200");
        M2MObjectInstance* btn_inst = btn_object->create_object_instance();
        // create resource with ID '5502', which is digital input counter
        M2MResource* btn_res = btn_inst->create_dynamic_resource("5502", "Timer",
            M2MResourceInstance::INTEGER, true /* observable */);
        // we can read this value
        btn_res->set_operation(M2MBase::GET_ALLOWED);
        // set initial value (all values in mbed Client are buffers)
        // to be able to read this data easily in the Connector console, we'll use a string
        btn_res->set_value((uint8_t*)"0", 1);
    }

    ~TimerResource() {
    }

    M2MObject* get_object() {
        return btn_object;
    }

    /*
     * When the timer ticks, we read the current value of the click counter
     * from mbed Device Connector, then up the value with one.l
     */
    void handle_timer_tick() {
        if (mbed_client.register_successful()) {
            M2MObjectInstance* inst = btn_object->object_instance();
            M2MResource* res = inst->resource("5502");

            // up counter
            counter++;
            printf("handle_timer_click, new value of counter is %d\n", counter);
            // serialize the value of counter as a string, and tell connector
            char buffer[20];
            int size = sprintf(buffer,"%d",counter);
            res->set_value((uint8_t*)buffer, size);
        } else {
            printf("handle_timer_tick, device not registered\n");
        }
    }

private:
    M2MObject* btn_object;
    uint16_t counter;
};



class BigPayloadResource {
public:
    BigPayloadResource() {
        big_payload = M2MInterfaceFactory::create_object("1000");
        M2MObjectInstance* payload_inst = big_payload->create_object_instance();
        M2MResource* payload_res = payload_inst->create_dynamic_resource("1", "BigData",
            M2MResourceInstance::STRING, true /* observable */);
        payload_res->set_operation(M2MBase::GET_PUT_ALLOWED);
        payload_res->set_value((uint8_t*)"0", 1);
        payload_res->set_incoming_block_message_callback(
                    incoming_block_message_callback(this, &BigPayloadResource::block_message_received));
        payload_res->set_outgoing_block_message_callback(
                    outgoing_block_message_callback(this, &BigPayloadResource::block_message_requested));
    }

    M2MObject* get_object() {
        return big_payload;
    }

    void block_message_received(M2MBlockMessage *argument) {
        if (argument) {
            if (M2MBlockMessage::ErrorNone == argument->error_code()) {
                if (argument->is_last_block()) {
                    printf("Last block received\n");
                }
                printf("Block number: %d\n", argument->block_number());
                // First block received
                if (argument->block_number() == 0) {
                    // Store block
                // More blocks coming
                } else {
                    // Store blocks
                }
            } else {
                printf("Error when receiving block message!  - EntityTooLarge\n");
            }
            printf("Total message size: %" PRIu32 "\n", argument->total_message_size());
        }
    }

    void block_message_requested(const String& resource, uint8_t *&/*data*/, uint32_t &/*len*/) {
        printf("GET request received for resource: %s\n", resource.c_str());
        // Copy data and length to coap response
    }

private:
    M2MObject*  big_payload;
};




// debug printf function
void trace_printer(const char* str) {
    printf("%s\r\n", str);
}

// Entry point to the program
int main() {

    unsigned int seed;
    size_t len;

#ifdef MBEDTLS_ENTROPY_HARDWARE_ALT
    // Used to randomize source port
    mbedtls_hardware_poll(NULL, (unsigned char *) &seed, sizeof seed, &len);

#elif defined MBEDTLS_TEST_NULL_ENTROPY

#warning "mbedTLS security feature is disabled. Connection will not be secure !! Implement proper hardware entropy for your selected hardware."
    // Used to randomize source port
    mbedtls_null_entropy_poll( NULL,(unsigned char *) &seed, sizeof seed, &len);

#else

#error "This hardware does not have entropy, endpoint will not register to Connector.\
You need to enable NULL ENTROPY for your application, but if this configuration change is made then no security is offered by mbed TLS.\
Add MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES and MBEDTLS_TEST_NULL_ENTROPY in mbed_app.json macros to register your endpoint."

#endif

    srand(seed);
    red_led = LED_OFF;
    blue_led = LED_OFF;

    status_ticker.attach_us(blinky, 250000);
    // Keep track of the main thread
    osThreadId mainThread = osThreadGetId();

    printf("\nStarting mbed Client example\n");

    mbed_trace_init();
    mbed_trace_print_function_set(trace_printer);
    mbed_trace_config_set(TRACE_MODE_COLOR | TRACE_ACTIVE_LEVEL_INFO | TRACE_CARRIAGE_RETURN);

    NetworkInterface* network = easy_connect(true);
    if(network == NULL) {
        printf("\nConnection to Network Failed - exiting application...\n");
        return -1;
    }

    // we create our button, timer and LED resources
    ButtonResource button_resource;
    LedResource led_resource;
    BigPayloadResource big_payload_resource;
    TimerResource timer_resource;

    // Network interaction must be performed outside of interrupt context
    Semaphore updates(0);

    InteractionProvider interaction_provider(updates);


    // Create endpoint interface to manage register and unregister
    mbed_client.create_interface(MBED_SERVER_ADDRESS, network);

    // Create Objects of varying types, see simpleclient.h for more details on implementation.
    M2MSecurity* register_object = mbed_client.create_register_object(); // server object specifying connector info
    M2MDevice*   device_object   = mbed_client.create_device_object();   // device resources object

    // Create list of Objects to register
    M2MObjectList object_list;

    // Add objects to list
    object_list.push_back(device_object);
    object_list.push_back(button_resource.get_object());
    object_list.push_back(led_resource.get_object());
    object_list.push_back(big_payload_resource.get_object());
    object_list.push_back(timer_resource.get_object());

    // Set endpoint registration object
    mbed_client.set_register_object(register_object);

    // Register with mbed Device Connector
    mbed_client.test_register(register_object, object_list);
    volatile bool registered = true;

    while (true) {
        updates.wait(25000);
        if(registered) {
            if(!interaction_provider.clicked) {
                mbed_client.test_update_register();
            }
        }else {
            break;
        }
        if(interaction_provider.clicked) {
            interaction_provider.clicked = false;
            button_resource.handle_button_click();
        }
        if(interaction_provider.timer_ticked) {
            interaction_provider.timer_ticked = false;
            timer_resource.handle_timer_tick();
        }
    }

    mbed_client.test_unregister();
    status_ticker.detach();
}