CMSIS DSP library
Dependents: KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more
Fork of mbed-dsp by
cmsis_dsp/StatisticsFunctions/arm_mean_q31.c
- Committer:
- emilmont
- Date:
- 2012-11-28
- Revision:
- 1:fdd22bb7aa52
- Child:
- 2:da51fb522205
File content as of revision 1:fdd22bb7aa52:
/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. February 2012 * $Revision: V1.1.0 * * Project: CMSIS DSP Library * Title: arm_mean_q31.c * * Description: Mean value of a Q31 vector. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Version 1.1.0 2012/02/15 * Updated with more optimizations, bug fixes and minor API changes. * * Version 1.0.10 2011/7/15 * Big Endian support added and Merged M0 and M3/M4 Source code. * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupStats */ /** * @addtogroup mean * @{ */ /** * @brief Mean value of a Q31 vector. * @param[in] *pSrc points to the input vector * @param[in] blockSize length of the input vector * @param[out] *pResult mean value returned here * @return none. * * @details * <b>Scaling and Overflow Behavior:</b> *\par * The function is implemented using a 64-bit internal accumulator. * The input is represented in 1.31 format and is accumulated in a 64-bit * accumulator in 33.31 format. * There is no risk of internal overflow with this approach, and the * full precision of intermediate result is preserved. * Finally, the accumulator is truncated to yield a result of 1.31 format. * */ void arm_mean_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult) { q63_t sum = 0; /* Temporary result storage */ uint32_t blkCnt; /* loop counter */ #ifndef ARM_MATH_CM0 /* Run the below code for Cortex-M4 and Cortex-M3 */ q31_t in1, in2, in3, in4; /*loop Unrolling */ blkCnt = blockSize >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C = (A[0] + A[1] + A[2] + ... + A[blockSize-1]) */ in1 = *pSrc++; in2 = *pSrc++; in3 = *pSrc++; in4 = *pSrc++; sum += in1; sum += in2; sum += in3; sum += in4; /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; #else /* Run the below code for Cortex-M0 */ /* Loop over blockSize number of values */ blkCnt = blockSize; #endif /* #ifndef ARM_MATH_CM0 */ while(blkCnt > 0u) { /* C = (A[0] + A[1] + A[2] + ... + A[blockSize-1]) */ sum += *pSrc++; /* Decrement the loop counter */ blkCnt--; } /* C = (A[0] + A[1] + A[2] + ... + A[blockSize-1]) / blockSize */ /* Store the result to the destination */ *pResult = (q31_t) (sum / (int32_t) blockSize); } /** * @} end of mean group */