working version
Dependencies: mbed mbed-rtos SimpleDMA FreescaleIAP eeprom
Fork of CDMS_CODE_FM_28JAN2017 by
CDMS_HK.h
- Committer:
- samp1234
- Date:
- 2022-04-03
- Revision:
- 357:f3d48d62e00e
- Parent:
- 356:197c93dc2012
File content as of revision 357:f3d48d62e00e:
void FCTN_CDMS_HK_MAIN();
void FCTN_CDMS_HK();
void VERIFY_COMRX();
void VERIFY_RTC();
void CDMS_HK_SD();
void HANDLE_HW_FAULTS();
void HANDLE_HW_FAULT_SD();
void HANDLE_HW_FAULT_BAE();
void HANDLE_HW_FAULT_PL();
void FUNC_CDMS_GPIO_STATUS();
void minMaxHkData();
void COLLECT_CDMS_RAM();
void IS_BAE_IN_DISTRESS();
uint8_t SAVE_BAE(uint8_t);
void FCTN_CDMS_P_MGMT(uint8_t);
extern uint8_t beacon_array[134];
//extern RSSI_MAX;
AnalogIn TempInput(PIN27); // Input from Current Multiplexer
AnalogIn CDMS_temp_sensor(PIN53);
AnalogIn COMRX_RSSI_VOLTAGE(PIN70);
AnalogIn EPS_BTRY_VOLT (PIN54);
AnalogIn BAE_CURRENT_MUX_OUT (PIN53);
DigitalOut SelectLinec3 (PIN79); // MSB of Select Lines
DigitalOut SelectLinec2 (PIN78);
// SBC V1.0
DigitalOut SelectLinec1 (PIN76);
DigitalOut SelectLinec0 (PIN77); // LSB of Select Lines
// SBC V2.0
//DigitalOut SelectLinec1 (PIN77);
//DigitalOut SelectLinec0 (PIN76); // LSB of Select Lines
Convolution CDMS_HEALTH;
Convolution BAE_HEALTH;
unsigned char CDMS_HK_FRAME[134] = {0};
char BAE_HK[134] = {0};
uint8_t convoluted_CDMS_HK[270];
uint8_t interleave_CDMS_HK[288];
uint8_t CDMS_HEALTH_FINAL[512] = {0};
uint8_t convoluted_BAE_HK[270];
uint8_t interleave_BAE_HK[288];
uint8_t BAE_HEALTH_FINAL[512] = {0};
unsigned char BAE_HK_FRAME[134] = {0};
//Software Timer
void int_acq1() { expired=1; }
void FCTN_CDMS_HK_MAIN(void const *args)
{
uint8_t sd_stat = 0;
uint8_t hk_count=0;
while(1) {
gPC.printf("waiting for HK sig\n\r");
gHK_THREAD->signal_wait(HK_SIGNAL);
gPC.printf("checking mutex in HK\n\r");
gMutex.lock();
SCI_LED1 =1;
gPC.printf("locked mutex, entered in HK \n\r");
if(hk_count == 1 || hk_count == 2) {
FCTN_CDMS_PL_MAIN((void const *)NULL);
hk_count--;
gPC.printf("releasing mutex for HK_PL \n\r");
SCI_LED1 =0;
PL_GPIO_3_STATUS=0;
gMutex.unlock();
continue;
} else if(hk_count == 0) {
FCTN_CDMS_PL_MAIN((void const *)NULL);
hk_count = 2;
}
//gPC.printf("\n\r%d\n",CDMS_WR_SD_FAULT_COUNTER);
if(EN_CDMS_HK == 0x00)
{
gMutex.unlock();
continue;
}
CDMS_HK_MAIN_STATUS = 0x01;
CDMS_HK_MAIN_COUNTER++;
CDMS_I2C_ERR_BAE_CURRENT = CDMS_I2C_ERR_BAE_COUNTER;
if(!COM_RSSI_SET)
{
RSSI_VOLTAGE = COMRX_RSSI_VOLTAGE.read() * 3.3;//to be checked
gPC.printf("RSSI= %f",RSSI_VOLTAGE);
gPC.printf("RSSI_MAX = %f",RSSI_MAX);
}
else {
COM_RSSI_SET = 0;
gPC.printf("RSSI_MAX = %f",RSSI_MAX);
RSSI_VOLTAGE = COMRX_RSSI_VOLTAGE.read() * 3.3;
gPC.printf("RSSI= %f",RSSI_VOLTAGE);
}
FCTN_CDMS_HK(); //collects temperatures
//VERIFY_COMRX();
VERIFY_RTC();
HANDLE_HW_FAULTS();
FUNC_CDMS_GPIO_STATUS();
uint8_t CDMS_quant[20];
CDMS_quant[0]= COM_ADF_TMP+40;
CDMS_quant[1]= (uint8_t)quant_data.CDMS_temp_quant;
CDMS_quant[2]= (uint8_t)(RSSI_VOLTAGE*10);
CDMS_quant[3]= (uint8_t)(EPS_BTRY_VOLT.read()*33*(62.0/11));
for(int i=0; i<16; i++) {
CDMS_quant[i+4]= (uint8_t)quant_data.temp_quant[i];
}
minMaxHkData();
gPC.printf("\n\r %d",CDMS_quant[0]);
CDMS_HEALTH_DATA[1] = GPIO_STATUS; //Reading GPIO Pins
CDMS_HEALTH_DATA[0] = GPIO_STATUS >> 8;
COLLECT_CDMS_RAM();
for(int i = 0; i<84; i++)
CDMS_HEALTH_DATA[2+i] = CDMS_RAM[i]; //Reading RAM parameters
for(int i = 0; i<20; i++) //Collecting Data from Temp sensors
CDMS_HEALTH_DATA[86+i] = CDMS_quant[i];
// Here: Have to FIT flash data.
CDMS_HEALTH_DATA[106] = (EPS_V_A_EN_STATUS<<7) | ((BAE_STATUS<<5)&0x60) | ((SD_STATUS<<3)&0x18) | ((PL_BEE_SW_STATUS<<1)&0x06) | (PL_EPS_LATCH_SW_EN & 0x01);
CDMS_HEALTH_DATA[107] = (RTC_INIT_STATUS<<6) | ((CDMS_RTC_DISABLE<<5)&0x20);
// CDMS_HEALTH_DATA[107] = (RTC_INIT_STATUS<<6) | ((EN_RTC<<5)&0x20); // changed by samp
gPC.printf("\n\r 0x%08X",EN_RTC);
CDMS_HEALTH_DATA[108] = CDMS_RESET_COUNTER >>8;
CDMS_HEALTH_DATA[109] = CDMS_RESET_COUNTER;
CDMS_HEALTH_DATA[110] = TIME_LATEST_CDSMS_RESET >>24;
CDMS_HEALTH_DATA[111] = TIME_LATEST_CDSMS_RESET >>16;
CDMS_HEALTH_DATA[112] = TIME_LATEST_CDSMS_RESET >>8;
CDMS_HEALTH_DATA[113] = TIME_LATEST_CDSMS_RESET;
COM_TC_BYTES_LIMIT = BYTE_OVERFLOW_CONSTANT;
CDMS_HEALTH_DATA[114] = COM_TC_BYTES_LIMIT>>8;
CDMS_HEALTH_DATA[115] = COM_TC_BYTES_LIMIT;
CDMS_HEALTH_DATA[116] = COM_RX_CURRENT_MAX;
CDMS_HEALTH_DATA[117] = COM_RX_DISABLE_TIMEOUT;
CDMS_HEALTH_DATA[118] = COM_PA_TMP_HIGH;
CDMS_HEALTH_DATA[119] = COM_PA_RECOVERY_TIMEOUT;
CDMS_HEALTH_DATA[120] = COM_SESSION_TIMEOUT/60;
CDMS_HEALTH_DATA[121] = COM_RSSI_MIN;
CDMS_HEALTH_DATA[122] = SD_LIB_BLK_CURRENT>>8;
CDMS_HEALTH_DATA[123] = SD_LIB_BLK_CURRENT;
uint32_t time = FCTN_CDMS_RD_RTC() >> 7; //Reading Time from RTC
for(int i = 124; i<128; i++)
CDMS_HEALTH_DATA[i] = time >> (127-i)*8;
gPC.printf("\t\t%d/%d/%d ",((time & 0x003E0000)>>17),((time & 0x03C00000)>>22),((time & 0x0C000000)>>26)+2016);
gPC.printf("%d:%d:%d\n",((time & 0x0001F000)>>12),((time & 0x00000FC0)>>6),(time & 0x0000003F));
if(CDMS_HK_SD_DATA_READY==1||BAE_HK_SD_DATA_READY==1)
{
FCTN_SD_MNGR();
gPC.printf("endHK_SD");
}
// gPC.printf("endHK_SD"); //Adding FSC & TMID to TM frame
CDMS_HK_FRAME[0] = 0x20;
CDMS_HK_FRAME[1] = (FSC_CURRENT[4]+1) >> 16;
CDMS_HK_FRAME[2] = (FSC_CURRENT[4]+1) >> 8;
CDMS_HK_FRAME[3] = FSC_CURRENT[4]+1;
// gPC.printf("\n");
for(int i = 0; i<128; i++) { /*Adding actual CDMS Health data to TM frame*/
CDMS_HK_FRAME[i+4] = CDMS_HEALTH_DATA[i];
//gPC.printf("%02x",CDMS_HEALTH_DATA[i]);
}
// gPC.printf("\n");
uint16_t crc = crc16_gen(CDMS_HK_FRAME,132); /*Adding CRC to TM frame*/
CDMS_HK_FRAME[132] = crc >> 8;
CDMS_HK_FRAME[133] = crc;
exor(CDMS_HK_FRAME);
CDMS_HEALTH.convolutionEncode(CDMS_HK_FRAME , convoluted_CDMS_HK);
CDMS_HEALTH.convolutionEncode(CDMS_HK_FRAME + 67, convoluted_CDMS_HK + 135);
//gPC.printf("\n\r reached here");
interleave(convoluted_CDMS_HK , interleave_CDMS_HK);
interleave(convoluted_CDMS_HK +135, interleave_CDMS_HK + 144);
//gPC.printf("\n\r reached here");
// gPC.printf("enterdHK_SD");
if(CDMS_HK_SD_DATA_READY==1)
{
for(int i=0; i<288; i++)
CDMS_HEALTH_FINAL[i] = interleave_CDMS_HK[i];
//gPC.printf("\n\r reached here");
sd_stat = SD_WRITE(CDMS_HEALTH_FINAL,FSC_CURRENT[4]+1,4);
if(sd_stat) {
gPC.puts("sd write failure $*&^@!~!");
}
}
// }
CDMS_HK_SD_DATA_READY=1;
// gPC.printf("Completed CDMS HK\t");
/*---------------------------------- BAE HK --------------------------------------------*/
//gPC.printf("\n\rDO IT NOW\r");
BAE_HK_I2C = FCTN_I2C_READ(BAE_HK,134);
// gPC.printf("\nEntering BAE HK\t");
if(BAE_HK_I2C == 0) {
gPC.printf("BAE_HK_");
crc = crc16_gen((unsigned char *)BAE_HK,132);
if(crc == ((uint16_t)BAE_HK[132] << 8) | (uint16_t)BAE_HK[133]) {
gPC.printf("BAE HK data recieved through I2C\t");
TIME_LATEST_I2C_BAE = FCTN_CDMS_RD_RTC() >> 7;
// for(int i = 0; i<15; i++) //Changed to test - J
// gPC.printf("%d\t",BAE_HK[i]);
// for(int i = 0; i<4; i++)
// BAE_HK[i] = time >> (3-i)*8;
for(int i = 128; i<132; i++)
BAE_HK[i] = time >> (131-i)*8;
BAE_HK_FRAME[0] = 0x28;
BAE_HK_FRAME[1] = (FSC_CURRENT[5]+1) >> 16;
BAE_HK_FRAME[2] = (FSC_CURRENT[5]+1) >> 8;
BAE_HK_FRAME[3] = FSC_CURRENT[5]+1;
for(int i = 0; i<128; i++) /*Adding actual CDMS Health data to TM frame*/
BAE_HK_FRAME[4+i] = BAE_HK[4+i];
crc = crc16_gen(BAE_HK_FRAME,132); /*Adding CRC to TM frame*/
BAE_HK_FRAME[132] = crc >> 8;
BAE_HK_FRAME[133] = crc;
exor(BAE_HK_FRAME);
BAE_HEALTH.convolutionEncode(BAE_HK_FRAME , convoluted_BAE_HK);
BAE_HEALTH.convolutionEncode(BAE_HK_FRAME + 67, convoluted_BAE_HK + 135);
interleave(convoluted_BAE_HK , interleave_BAE_HK);
interleave(convoluted_BAE_HK +135, interleave_BAE_HK + 144);
// gPC.printf("enterHK_SD3");
if(BAE_HK_SD_DATA_READY==1)
{
for(int i=0; i<288; i++)
BAE_HEALTH_FINAL[i] = interleave_BAE_HK[i];
sd_stat = SD_WRITE(BAE_HEALTH_FINAL,FSC_CURRENT[5]+1,5);
if(sd_stat) {
gPC.puts("BAE_HK sd write fail");
//break;
}
}
BAE_HK_SD_DATA_READY = 1;
// gPC.printf("endHK_SD4");
}
} else {
gPC.printf("BAE HK data not recieved through I2C\t");
gPC.printf("/r/n ack= %d",BAE_HK_I2C);
for(int i = 0; i<134; i++)
BAE_HK[i] = 0;
}
// gPC.printf("Completed BAE HK\n");
POWER_MODE = BAE_HK[40]; // Extract Power Mode from BAE_HK
gPC.printf("POWER MODE is %d\n", POWER_MODE);
/*----------------------------------Power Management------------------------------------*/
FCTN_CDMS_P_MGMT(POWER_MODE);
/*----------------------------------Beacon message--------------------------------------*/
// Add HK bits
beacon_array[0] = 0x00;
beacon_array[1] = TC_count;
beacon_array[2] = time >> 24;
beacon_array[3] = time >> 16;
beacon_array[4] = time >> 8;
beacon_array[5] = time;
beacon_array[6] = SD_FAULTCOUNT >> 8;
beacon_array[7] = SD_FAULTCOUNT;
beacon_array[8] = CDMS_RESET_COUNTER;
beacon_array[9] = RTC_FAULTCOUNT;
if(!COM_OC_SET)
beacon_array[10] = (((SD_STATUS == DEVICE_DISABLED || SD_STATUS == DEVICE_OC_FAULT)?1:0)<<7)|(RTC_STATUS <<6)|(COM_RX_STATUS<<3)|(0<<2)|(COMRX_OC_FAULT<<1)|(COM_TX_OC_FAULT);
else
{
beacon_array[10] = (((SD_STATUS == DEVICE_DISABLED || SD_STATUS == DEVICE_OC_FAULT)?1:0)<<7)|(RTC_STATUS <<6)|(COM_RX_STATUS<<3)|(0<<2)|(COMRX_OC_FAULT<<1)|(com_oc_sw_status);
COM_OC_SET = 0;
}
beacon_array[11] = (COM_RX_CNTRL <<7)|(COM_TX_CNTRL<<6)|(COM_PA_IC_TMP >> 2);
beacon_array[12] = CDMS_HK_MAIN_COUNTER >>8;
beacon_array[13] = CDMS_HK_MAIN_COUNTER;
beacon_array[14] = PL_MAIN_COUNTER >>8;
beacon_array[15] = PL_MAIN_COUNTER;
beacon_array[16] = PL_RCV_SC_DATA_COUNTER >>8;
beacon_array[17] = PL_RCV_SC_DATA_COUNTER;
beacon_array[18] = TIME_LATEST_SPI_SPEED >>24;
beacon_array[19] = TIME_LATEST_SPI_SPEED >>16;
beacon_array[20] = TIME_LATEST_SPI_SPEED >>8;
beacon_array[21] = TIME_LATEST_SPI_SPEED;
beacon_array[22] = (uint8_t)(RSSI_VOLTAGE*10);
// Add SC bits
crc = crc16_gen(beacon_array,132);
beacon_array[132] = crc;
beacon_array[133] = crc >> 8;
bool y;
y = FCTN_I2C_WRITE((char *)beacon_array,135); //134
if(y == 0) {
TIME_LATEST_I2C_BAE = FCTN_CDMS_RD_RTC() >> 7;
gPC.printf("long Bcn sent\n\r");
} else
gPC.printf("long Bcn not sent\r\n");
//gPC.printf("\rCompleted Beacon\n");
if (GIVE_UP_ON_BAE == 0)
IS_BAE_IN_DISTRESS();
gPC.printf("\n\rreleasing mutex for HK_MAIN \n\r");
SCI_LED1 =0;
gMutex.unlock();
}
}
int quantiz(float start,float step,float x)
{
int y=(x-start)/step;
if(y<=0)y=0;
if(y>=255)y=255;
return y;
}
char saveMin(char x,char y)
{
return (y<x)?y:x;
}
char saveMax(char x,char y)
{
return (y>x)?y:x;
}
void minMaxHkData()
{
if(firstCount==true) {
MAX_COM_ADF_TMP = COM_ADF_TMP;
MIN_COM_ADF_TMP = COM_ADF_TMP;
MAX_RSSI_VOLTAGE = RSSI_VOLTAGE;
MIN_RSSI_VOLTAGE = RSSI_VOLTAGE;
for (int i = 0; i < 16; ++i) {
min_max_data.temp_min[i] = quant_data.temp_quant[i];
min_max_data.temp_max[i] = quant_data.temp_quant[i];
}
min_max_data.CDMS_temp_min=quant_data.CDMS_temp_quant;
min_max_data.CDMS_temp_max=quant_data.CDMS_temp_quant;
GPIO_FAULTS = 0;
} else {
MAX_COM_ADF_TMP = (MAX_COM_ADF_TMP < COM_ADF_TMP)?COM_ADF_TMP:MAX_COM_ADF_TMP;
MIN_COM_ADF_TMP = (MIN_COM_ADF_TMP > COM_ADF_TMP)?COM_ADF_TMP:MIN_COM_ADF_TMP;
MAX_RSSI_VOLTAGE = (MAX_RSSI_VOLTAGE < RSSI_VOLTAGE)?RSSI_VOLTAGE:MAX_RSSI_VOLTAGE;
MIN_RSSI_VOLTAGE = (MIN_RSSI_VOLTAGE > RSSI_VOLTAGE)?RSSI_VOLTAGE:MIN_RSSI_VOLTAGE;
for (int i = 0; i < 16; ++i) {
min_max_data.temp_min[i] = saveMin(min_max_data.temp_min[i],quant_data.temp_quant[i]);
min_max_data.temp_max[i] = saveMax(min_max_data.temp_max[i],quant_data.temp_quant[i]);
}
min_max_data.CDMS_temp_min = saveMin(min_max_data.CDMS_temp_min,quant_data.CDMS_temp_quant);
min_max_data.CDMS_temp_max = saveMax(min_max_data.CDMS_temp_max,quant_data.CDMS_temp_quant);
}
firstCount=false;
}
void FCTN_CDMS_HK()
{
int Iteration=0;
float resistance;
SelectLinec0=0;
SelectLinec1=0;
SelectLinec2=0;
SelectLinec3=0;
wait_ms(1);
//gPC.printf("\r%d %d %d %d\n",SelectLinec3.read(),SelectLinec2.read(),SelectLinec1.read(),SelectLinec0.read());
for(Iteration=0; Iteration<16; Iteration++) {
actual_data.temp_actual[Iteration]=TempInput.read();
SelectLinec0=!(SelectLinec0);
if(Iteration%2==1)
SelectLinec1=!(SelectLinec1);
if(Iteration%4==3)
SelectLinec2=!(SelectLinec2);
if(Iteration%8==7)
SelectLinec3=!(SelectLinec3);
wait_ms(1);
// gPC.printf("\r%d %d %d %d\n",SelectLinec3.read(),SelectLinec2.read(),SelectLinec1.read(),SelectLinec0.read());
}
actual_data.CDMS_temp_actual=(-90.7*3.3*CDMS_temp_sensor.read())+190.1543;
for(Iteration=0; Iteration<16; Iteration++) {
if(Iteration<4) {
actual_data.temp_actual[Iteration]=actual_data.temp_actual[Iteration]*3.3*2*10;
} else if(Iteration<14) {
resistance=24300*actual_data.temp_actual[Iteration]*3.3/(3.3-actual_data.temp_actual[Iteration]*3.3);
if(actual_data.temp_actual[Iteration]*3.3<1.378) //Document says 1.378 .Pls Check
actual_data.temp_actual[Iteration]=(3694/log(24.032242*resistance))-273;
else
actual_data.temp_actual[Iteration]=(3365.4/log(7.60573*resistance))-273;
} else
actual_data.temp_actual[Iteration]=(-90.7*3.3*actual_data.temp_actual[Iteration])+190.1543;
}
for(Iteration=0; Iteration<16; Iteration++) {
if(Iteration<4) {
quant_data.temp_quant[Iteration]=actual_data.temp_actual[Iteration];
wait(0.001);
} else if(Iteration<14)
{
quant_data.temp_quant[Iteration]=quantiz(tstart_thermistor,tstep_thermistor,actual_data.temp_actual[Iteration]);
//quant_data.temp_quant[Iteration]=quantiz(0,1,actual_data.temp_actual[Iteration]);
quant_data.temp_quant[13]= COM_PA_TMP_IN_TX;
}
else
// quant_data.temp_quant[Iteration]=quantiz(tstart,tstep,actual_data.temp_actual[Iteration]);
quant_data.temp_quant[Iteration]=quantiz(tstart,tstep,actual_data.temp_actual[Iteration]);
}
// quant_data.CDMS_temp_quant=quantiz(tstart,tstep,actual_data.CDMS_temp_actual);
quant_data.CDMS_temp_quant=10*RSSI_MAX;
minMaxHkData();
}
void FUNC_CDMS_GPIO_STATUS() //Polls the status of Input GPIO PINS
{
/*
//V_A_PGOOD //TRZ EN
GPIO_STATUS=(V_A_PGOOD)?(GPIO_STATUS)|((uint16_t)(0x1<<15)):(GPIO_STATUS)&(~((uint16_t)(0x1<<15)));
//V_B_PGOOD_1 //3V3BPGOOD //$
GPIO_STATUS=(V_B_PGOOD_1)?(GPIO_STATUS)|((uint16_t)(0x1<<14)):(GPIO_STATUS)&(~((uint16_t)(0x1<<14)));
//V_B_PGOOD_2 //3V3BEN //$
GPIO_STATUS=(V_B_PGOOD_2)?(GPIO_STATUS)|((uint16_t)(0x1<<13)):(GPIO_STATUS)&(~((uint16_t)(0x1<<13)));
//V_C_PGOOD //3V3CPGOOD //$
GPIO_STATUS=(V_C_PGOOD)?(GPIO_STATUS)|((uint16_t)(0x1<<12)):(GPIO_STATUS)&(~((uint16_t)(0x1<<12)));
*/
//COMRX_OC_FAULT //$
GPIO_STATUS=(COMRX_OC_FAULT)?(GPIO_STATUS)|((uint16_t)(0x1<<11)):(GPIO_STATUS)&(~((uint16_t)(0x1<<11)));
// COMTX_OC_FAULT //$
GPIO_STATUS=(COM_TX_OC_FAULT)?(GPIO_STATUS)|((uint16_t)(0x1<<10)):(GPIO_STATUS)&(~((uint16_t)(0x1<<10)));
// CDMS_SD_OC_FAULT
GPIO_STATUS=(SD_OC_FAULT)?(GPIO_STATUS)|((uint16_t)(0x1<<9)):(GPIO_STATUS)&(~((uint16_t)(0x1<<9)));
if(SD_OC_FAULT == 0) {
gPC.printf("SD CARD DOWN");
}
if(COMRX_OC_FAULT == 0) {
gPC.printf("COM RX DOWN");
}
if(COM_TX_OC_FAULT == 0) {
gPC.printf("COM TX DOWN");
}
if(BAE_OC_FAULT == 0) {
gPC.printf("BAE DOWN");
}
//BAE_OC_FAULT //$
GPIO_STATUS=(BAE_OC_FAULT)?(GPIO_STATUS)|((uint16_t)(0x1<<8)):(GPIO_STATUS)&(~((uint16_t)(0x1<<8)));
/*
//PL_GPIO_1_STATUS //$
GPIO_STATUS=(PL_GPIO_1_STATUS)?(GPIO_STATUS)|((uint16_t)(0x1<<8)):(GPIO_STATUS)&(~((uint16_t)(0x1<<8)));
//PL_GPIO_2_STATUS //$
GPIO_STATUS=(PL_GPIO_2_STATUS)?(GPIO_STATUS)|((uint16_t)(0x1<<7)):(GPIO_STATUS)&(~((uint16_t)(0x1<<7)));
//PL_GPIO_3_STATUS //$
GPIO_STATUS=(PL_GPIO_3_STATUS)?(GPIO_STATUS)|((uint16_t)(0x1<<6)):(GPIO_STATUS)&(~((uint16_t)(0x1<<6)));
*/
//PL_BEE_SW_OC_FAULT //to be verified
GPIO_STATUS=(PL_BEE_SW_OC_FAULT)?(GPIO_STATUS)|((uint16_t)(0x1<<4)):(GPIO_STATUS)&(~((uint16_t)(0x1<<4)));
//PL_EPS_LATCH_SW_OC_FAULT // to be verified
GPIO_STATUS=(PL_EPS_LATCH_SW_OC_FAULT)?(GPIO_STATUS)|((uint16_t)(0x1<<3)):(GPIO_STATUS)&(~((uint16_t)(0x1<<3)));
//EPS_V_C_EN_STATUS
GPIO_STATUS=(COM_RX_CNTRL)?(GPIO_STATUS)|((uint16_t)(0x1<<2)):(GPIO_STATUS)&(~((uint16_t)(0x1<<2)));
//EPS_V_D_EN_STATUS
GPIO_STATUS=(COM_TX_CNTRL)?(GPIO_STATUS)|((uint16_t)(0x1<<1)):(GPIO_STATUS)&(~((uint16_t)(0x1<<1)));
// gPC.printf("%04x\n",GPIO_STATUS);
gPC.printf("\n\rBAE_OC STATE = %04x",GPIO_STATUS);
if (((GPIO_STATUS) | (GPIO_FAULTS)) != 0xFFFF)
{
GPIO_FAULTS = (GPIO_FAULTS | (~(GPIO_STATUS)));
}
}
void VERIFY_COMRX()
{
//COMRX_OC_FAULT //$
if(COMRX_OC_FAULT==0 && RSSI_VOLTAGE > 0.4) {
COMRX_STATUS = COMRX_ALIVE;
} else {
//RESET_COMRX();
COMRX_RESET_COUNTER++;
if(COMRX_OC_FAULT==0 && RSSI_VOLTAGE > 0.4)
COMRX_STATUS = COMRX_ALIVE;
else
COMRX_STATUS = COMRX_DEAD;
}
}
void VERIFY_RTC()
{
uint8_t response;
if(EN_RTC == 0x00)
return;
gCS_RTC=1;
gCS_RTC=0;
spi.write(0x0F);
response = spi.write(0x00);
CDMS_RTC_BL = (response & 0x10) >>4;
if(response & 0x04 == 0x04) {
//RESET_RTC();
RTC_STATUS = 0x01;
RTC_FAULTCOUNT++;
}
gCS_RTC=1;
}
void HANDLE_HW_FAULTS()
{
HANDLE_HW_FAULT_SD();
HANDLE_HW_FAULT_BAE();
HANDLE_HW_FAULT_PL();
}
void HANDLE_HW_FAULT_SD()
{
if(SD_STATUS != DEVICE_DISABLED) {
if(SD_STATUS == DEVICE_OC_FAULT) {
gPC.printf("Switching on SD card");
SD_CARD_fromuC_ENA3 = 1;
SD_CARD_fromISO_ENA4 = 1;
SD_SW_EN_DS = 1; //powering on SD
wait_ms(10);
}
if(SD_OC_FAULT == 0) {
gPC.printf("Switching off SD card");
SD_CARD_fromuC_ENA3 = 0;
SD_CARD_fromISO_ENA4 = 0;
SD_SW_EN_DS = 0; //switching off SD card
SD_FAULTCOUNT++;
SD_STATUS = (SD_FAULTCOUNT == 3) ? DEVICE_DISABLED :DEVICE_OC_FAULT;
if(SD_FAULTCOUNT == 3) {
//FCTN_CDMS_WR_FLASH(2,DEVICE_DISABLED);
WRITE_TO_EEPROM(2,DEVICE_DISABLED);
gPC.printf("Declaring SD card permanantly Disabled");
}
} else {
SD_STATUS = DEVICE_POWERED;
//if(SD_STATUS != DEVICE_POWERED)
//FCTN_CDMS_WR_FLASH(2,DEVICE_POWERED);
WRITE_TO_EEPROM(2,DEVICE_POWERED);
wait_us(1);
SD_FAULTCOUNT = 0;
}
}
}
void HANDLE_HW_FAULT_BAE()
{
if(BAE_STATUS != DEVICE_DISABLED) {
if(BAE_STATUS == DEVICE_OC_FAULT) {
gPC.printf("Switching on BAE");
BAE_SW_EN_DS = 1; //Power ON BAE
wait_ms(10);
}
if(BAE_OC_FAULT == 0) {
gPC.printf("Switching off BAE");
BAE_SW_EN_DS = 0; //Switch OFF BAE
BAE_FAULTCOUNT++;
BAE_STATUS = (BAE_FAULTCOUNT == 3)?DEVICE_DISABLED:DEVICE_OC_FAULT;
if(BAE_FAULTCOUNT == 3) {
//FCTN_CDMS_WR_FLASH(1,DEVICE_DISABLED);
WRITE_TO_EEPROM(1,DEVICE_DISABLED);
gPC.printf("Declaring BAE permanantly Disabled");
}
} else {
BAE_STATUS = DEVICE_POWERED;
//FCTN_CDMS_WR_FLASH(1,DEVICE_POWERED);
WRITE_TO_EEPROM(1,DEVICE_POWERED);
wait_us(1);
BAE_FAULTCOUNT = 0;
}
}
}
void HANDLE_HW_FAULT_PL()
{
if(PL_BEE_SW_STATUS != DEVICE_DISABLED) {
if(PL_BEE_SW_STATUS == DEVICE_OC_FAULT) {
gPC.printf("Switching on PL_BEE");
PYLD_DFF_CLK = 0;
PYLD_DFF = 1; // Switching ON PL
wait_us(1);
PYLD_DFF_CLK = 1;
wait_us(1);
PYLD_DFF_CLK = 0;
wait_us(1);
}
if(PL_BEE_SW_OC_FAULT == 0) { // if OC Fault
gPC.printf("Switching off PL_BEE");
PYLD_DFF_CLK = 0;
PYLD_DFF = 0; //Switching OFF PL
wait_us(1);
PYLD_DFF_CLK = 1;
wait_us(1);
PYLD_DFF_CLK = 0;
wait_us(1);
PL_FAULTCOUNT++;
PL_BEE_SW_STATUS = (PL_FAULTCOUNT == 3)?DEVICE_DISABLED:DEVICE_OC_FAULT;
if(PL_FAULTCOUNT == 3) {
//FCTN_CDMS_WR_FLASH(4,DEVICE_DISABLED);
WRITE_TO_EEPROM(4,DEVICE_DISABLED);
gPC.printf("Declaring PL_BEE permanantly Disabled");
}
} else {
PL_BEE_SW_STATUS = DEVICE_POWERED;
//FCTN_CDMS_WR_FLASH(4,DEVICE_POWERED);
WRITE_TO_EEPROM(4,DEVICE_POWERED);
PL_FAULTCOUNT = 0;
}
}
}
void COLLECT_CDMS_RAM()
{
CDMS_RAM[0] = ((PL_INIT_STATUS<<7)&0x80)|((PL_MAIN_status<<6)&0x40)|((PL_LOW_power<<5)&0x20)|((PL_STATE<<3)&0x18)|(PL_STATUS&0x07);
CDMS_RAM[1] = ( (PL_RCV_SC_DATA_STATUS<<7) & 0x80 )|
( ((gFLAGS & COM_SESSION_FLAG)<<3) & 0x40 )|
( ((gFLAGS & COM_RX_FLAG)<<1) & 0x20 )|
( ((gFLAGS & RF_SW_STATUS_FLAG)>>8)&0x10 )|
( ((gFLAGS & COM_TX_FLAG)>>5)&0x08 )|
( (COM_TX_STATUS<<2)&0x04 )|
( ((gFLAGS & COM_MNG_TMTC_RUNNING_FLAG)>>3) & 0x02 )|
(EN_CDMS_HK&0x01);
CDMS_RAM[2] = ((EN_PL<<7)&0x80)|((EN_RCV_SC<<6)&0x40)|
((CDMS_INIT_STATUS<<5)&0x20)|
((CDMS_HK_MAIN_STATUS<<4)&0x10)|
((CDMS_HK_STATUS<<2)&0x0C)|
((COM_RX_STATUS<<1)&0x02)|
(CDMS_RTC_BL&0x01);
CDMS_RAM[3] = CDMS_I2C_ERR_SPEED_COUNTER >> 8;
CDMS_RAM[4] = CDMS_I2C_ERR_SPEED_COUNTER;
CDMS_RAM[5] = CDMS_I2C_ERR_BAE_COUNTER >> 8;
CDMS_RAM[6] = CDMS_I2C_ERR_BAE_COUNTER;
CDMS_RAM[7] = CDMS_HK_MAIN_COUNTER >> 8;
CDMS_RAM[8] = CDMS_HK_MAIN_COUNTER;
CDMS_RAM[9] = PL_MAIN_COUNTER >> 8;
CDMS_RAM[10] = PL_MAIN_COUNTER;
CDMS_RAM[11] = PL_RCV_SC_DATA_COUNTER >> 8;
CDMS_RAM[12] = PL_RCV_SC_DATA_COUNTER;
CDMS_RAM[13] = COMRX_RESET_COUNTER >> 8;
CDMS_RAM[14] = COMRX_RESET_COUNTER;
CDMS_RAM[15] = CDMS_WR_SD_FAULT_COUNTER >> 8;
CDMS_RAM[16] = CDMS_WR_SD_FAULT_COUNTER;
CDMS_RAM[17] = SD_LIB_WRITES >> 8;
CDMS_RAM[18] = SD_LIB_WRITES;
TIME_LATEST_RTC= FCTN_CDMS_RD_RTC() >> 7; // added by samp
for(int i = 0; i<4; i++)
CDMS_RAM[19+i] = TIME_LATEST_RTC >> (3-i)*8;
for(int i = 0; i<4; i++)
CDMS_RAM[23+i] = TIME_LATEST_I2C_BAE >> (3-i)*8;
for(int i = 0; i<4; i++)
CDMS_RAM[27+i] = TIME_LATEST_I2C_SPEED >> (3-i)*8;
for(int i = 0; i<4; i++)
CDMS_RAM[31+i] = TIME_LATEST_SD_WR >> (3-i)*8;
for(int i = 0; i<4; i++)
CDMS_RAM[35+i] = TIME_LATEST_SD_RD >> (3-i)*8;
for(int i = 0; i<4; i++)
CDMS_RAM[39+i] = TIME_LATEST_SPI_SPEED >> (3-i)*8;
for(int i = 0; i<4; i++)
CDMS_RAM[43+i] = FSC_CURRENT[1] >> (3-i)*8;
for(int i = 0; i<4; i++)
CDMS_RAM[47+i] = FSC_OLD[1] >> (3-i)*8;
for(int i = 0; i<4; i++)
CDMS_RAM[51+i] = FSC_CURRENT[2] >> (3-i)*8;
for(int i = 0; i<4; i++)
CDMS_RAM[55+i] = FSC_OLD[2] >> (3-i)*8;
for(int i = 0; i<4; i++)
CDMS_RAM[59+i] = FSC_CURRENT[3] >> (3-i)*8;
for(int i = 0; i<4; i++)
CDMS_RAM[63+i] = FSC_OLD[3] >> (3-i)*8;
for(int i = 0; i<4; i++)
CDMS_RAM[67+i] = FSC_CURRENT[4] >> (3-i)*8;
for(int i = 0; i<4; i++)
CDMS_RAM[71+i] = FSC_OLD[4] >> (3-i)*8;
for(int i = 0; i<4; i++)
CDMS_RAM[75+i] = FSC_CURRENT[5] >> (3-i)*8;
for(int i = 0; i<4; i++)
CDMS_RAM[79+i] = FSC_OLD[5] >> (3-i)*8;
CDMS_RAM[83] = 0x00;
gPC.printf("\n\r%u %u %u %u %u",FSC_CURRENT[1],FSC_CURRENT[2],FSC_CURRENT[3],FSC_CURRENT[4],FSC_CURRENT[5]);
}
void IS_BAE_IN_DISTRESS()
{
if((BAE_STATUS == 1)&&(CDMS_I2C_ERR_BAE_COUNTER == (CDMS_I2C_ERR_BAE_CURRENT + 2)))
{
if (CDMS_HK_MAIN_COUNTER == (CDMS_I2C_ERR_HK_LATEST + 1))
{
CDMS_I2C_ERR_HK_LATEST = CDMS_HK_MAIN_COUNTER;
KILL_BAE_COUNTER++;
gPC.printf("\r Takin aim, Boss\n\r");
}
else
{
CDMS_I2C_ERR_HK_LATEST = CDMS_HK_MAIN_COUNTER;
KILL_BAE_COUNTER = 1;
gPC.printf("\r Target lost\n\r");
}
if (KILL_BAE_COUNTER >= 3)
{
GIVE_UP_ON_BAE = SAVE_BAE(KILL_BAE_COUNTER);
gPC.printf("\r Kill Confirmed\n\r");
}
}
}
uint8_t SAVE_BAE(uint8_t counter)
{
BAE_SW_EN_DS = 0;
wait(5);
BAE_SW_EN_DS = 1;
BAE_STATUS = DEVICE_POWERED;
//FCTN_CDMS_WR_FLASH(1,DEVICE_POWERED);
WRITE_TO_EEPROM(1,DEVICE_POWERED);
if (counter == 6)
return 1;
return 0;
}
void FCTN_CDMS_P_MGMT(uint8_t power_mode)
{
if(EN_P_MGMT == 0x00) //ENABLE POWER MANAGEMENT
return;
switch(power_mode)
{
case 3:
{
if(EN_PL == 0) //Enabling PMS thread if disabled
EN_PL = 1;
break;
}
case 2:
{
EN_PL = 0;
if(PL_STATE == 0x01)
{
gPC.printf("\r Already in Standby\n");
break;
}
gPC.printf("\n\rCommanding PL_BEE to go to Standby State");
if(PL_BEE_SW_STATUS == 0x03)
{
gPC.printf("\n\r Switched Off chilling out");
break;
}
else
{
pl_next_index = -1;
Base_tm *tm_ptr_standby;
SET_PL_BEE_STANDBY(tm_ptr_standby);
if((pl_main_flag & PL_DISABLED)==PL_SUCCESS_I2C)
{
pl_main_flag = pl_main_flag & (~PL_DISABLED);
pl_main_flag |= PL_STANDBY;
PL_STATUS = 0x01;
PL_STATE = 0x01;
WRITE_TO_EEPROM(16,(uint32_t)PL_STATE);
}
break;
}
}
case 1:
{
EN_PL = 0;
if(PL_BEE_SW_STATUS != 0x03)
{
gPC.printf("\n\rCommanding PL_BEE to go to Standby State");
pl_next_index = -1;
Base_tm *tm_ptr_standby;
SET_PL_BEE_STANDBY(tm_ptr_standby); //No ack needed now
gPC.printf("\n\rPowering OFF PL_BEE");
SET_PL_BEE_OFF;
PL_BEE_SW_STATUS = 0x03;
WRITE_TO_EEPROM(4,DEVICE_DISABLED);
PL_STATUS = 0;
}
pl_main_flag = pl_main_flag & (~PL_DISABLED);
pl_main_flag |= PL_OFF;
PL_STATUS = 0x00;
PL_STATE = 0x00;
WRITE_TO_EEPROM(16,(uint32_t)PL_STATE);
break;
}
default:
{
gPC.printf("Non-existant Power Mode (%d) BAE's lost it\n\r", power_mode);
}
}
}
/*
void SYS_RESET(uint_8 ack_pin){
if(ack_pin == 1)
{
//ACKNOWLEDGE SYS RST
ack_pin = 0;
//DISABLE THE THREADS
EN_PL = 0;
EN_CDMS_HK = 0;
//SWITCH OFF BAE
SW_OFF_BAE();
//PAYLOAD IN STANDBY MODE
Base_tm *tm_ptr_standby;
SET_PL_BEE_STANDBY(tm_ptr_standby);
if((pl_main_flag & PL_DISABLED)==PL_SUCCESS_I2C)
{
pl_main_flag = pl_main_flag & (~PL_DISABLED);
pl_main_flag |= PL_STANDBY;
PL_STATUS = 0x01;
}
pl_main_flag = pl_main_flag & (~PL_MAIN_STATUS);
//SWITCH OFF SD CARD
CDMS_SD_SW_OFF();
//TURN ON
WRITE_TO_EEPROM(2,DEVICE_POWERED);
WRITE_TO_EEPROM(1,DEVICE_POWERED);
}
}
*/
