一応着地判定できます。

Dependencies:   mbed

main.cpp

Committer:
ponpoko1939
Date:
15 months ago
Revision:
2:b9549dd058d8
Parent:
1:1ad86845f584

File content as of revision 2:b9549dd058d8:

#include "mbed.h"
#include "math.h"
#include "MPU9250.h"

    float sum = 0;
    uint32_t sumCount = 0;
    char buffer[14];
    MPU9250 mpu9250;
    Timer t;
    Serial pc(USBTX, USBRX); // tx, rx
    double acx,acy,acz;
    int k = 0,l = 0;
    
int main()
{
  pc.baud(9600);  

  //Set up I2C
  i2c.frequency(400000);  // use fast (400 kHz) I2C  ← KPのは100kHzじゃなかった?
  
  pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);   
  
  t.start();        
    
  // Read the WHO_AM_I register, this is a good test of communication
  uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);  // Read WHO_AM_I register for MPU-9250
  pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x71\n\r");
  
  if (whoami == 0x71) // WHO_AM_I should always be 0x68
  {  
    pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
    pc.printf("MPU9250 is online...\n\r");
    sprintf(buffer, "0x%x", whoami);
    wait(1);
    
    mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
    mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
    pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);  
    pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);  
    pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);  
    pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);  
    pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);  
    pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);  
    mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers  
    pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
    pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
    pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
    pc.printf("x accel bias = %f\n\r", accelBias[0]);
    pc.printf("y accel bias = %f\n\r", accelBias[1]);
    pc.printf("z accel bias = %f\n\r", accelBias[2]);
    wait(2);
    mpu9250.initMPU9250(); 
    pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
    mpu9250.initAK8963(magCalibration);
    pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
    pc.printf("Accelerometer full-scale range = %f  g\n\r", 2.0f*(float)(1<<Ascale));
    pc.printf("Gyroscope full-scale range = %f  deg/s\n\r", 250.0f*(float)(1<<Gscale));
    if(Mscale == 0) pc.printf("Magnetometer resolution = 14  bits\n\r");
    if(Mscale == 1) pc.printf("Magnetometer resolution = 16  bits\n\r");
    if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
    if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
    wait(1);
   }
   else
   {
    pc.printf("Could not connect to MPU9250: \n\r");
    pc.printf("%#x \n",  whoami);
    sprintf(buffer, "WHO_AM_I 0x%x", whoami);
    
    while(1) ; // Loop forever if communication doesn't happen
    }
    mpu9250.getAres(); // Get accelerometer sensitivity
    mpu9250.getGres(); // Get gyro sensitivity
    mpu9250.getMres(); // Get magnetometer sensitivity
    pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
    pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
    pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
    magbias[0] = +470.;  // User environmental x-axis correction in milliGauss, should be automatically calculated
    magbias[1] = +120.;  // User environmental x-axis correction in milliGauss
    magbias[2] = +125.;  // User environmental x-axis correction in milliGauss

 while(1) {
  
  // If intPin goes high, all data registers have new data
  if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) {  // On interrupt, check if data ready interrupt

    mpu9250.readAccelData(accelCount);  // Read the x/y/z adc values   
    // Now we'll calculate the accleration value into actual g's
    ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
    ay = (float)accelCount[1]*aRes - accelBias[1];   
    az = (float)accelCount[2]*aRes - accelBias[2];  
   
    mpu9250.readGyroData(gyroCount);  // Read the x/y/z adc values
    // Calculate the gyro value into actual degrees per second
    gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
    gy = (float)gyroCount[1]*gRes - gyroBias[1];  
    gz = (float)gyroCount[2]*gRes - gyroBias[2];   
  
    mpu9250.readMagData(magCount);  // Read the x/y/z adc values   
    // Calculate the magnetometer values in milliGauss
    // Include factory calibration per data sheet and user environmental corrections
    mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];  // get actual magnetometer value, this depends on scale being set
    my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];  
    mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];   
  }
   
    Now = t.read_us();
    deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
    lastUpdate = Now;
    
    sum += deltat;
    sumCount++;
    
//    if(lastUpdate - firstUpdate > 10000000.0f) {
//     beta = 0.04;  // decrease filter gain after stabilized
//     zeta = 0.015; // increasey bias drift gain after stabilized
 //   }
    
   // Pass gyro rate as rad/s
//  mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
  mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
    //出力されるのはここから
    // Serial print and/or display at 0.5 s rate independent of data rates
    delt_t = t.read_ms() - count;
    if (delt_t > 500) { // update LCD once per half-second independent of read rate
    
    acx = 1000*ax;
    acy = 1000*ay;
    acz = 1000*az;
    
    pc.printf(" ax = %f", 1000*ax); 
    pc.printf(" ay = %f", 1000*ay); 
    pc.printf(" az = %f  mg\n\r", 1000*az); 

    pc.printf(" gx = %f", gx); 
    pc.printf(" gy = %f", gy); 
    pc.printf(" gz = %f  deg/s\n\r", gz); 
    
    pc.printf(" mx = %f", mx); 
    pc.printf(" my = %f", my); 
    pc.printf(" mz = %f  mG\n\r", mz); 
    
    /*//温度/*
    tempCount = mpu9250.readTempData();  // Read the adc values
    temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
    pc.printf(" temperature = %f  C\n\r", temperature); 
    */
    
    pc.printf("q0 = %f\n\r", q[0]);
    pc.printf("q1 = %f\n\r", q[1]);
    pc.printf("q2 = %f\n\r", q[2]);
    pc.printf("q3 = %f\n\r", q[3]);      
    
  // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
  // In this coordinate system, the positive z-axis is down toward Earth. 
  // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
  // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
  // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
  // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
  // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
  // applied in the correct order which for this configuration is yaw, pitch, and then roll.
  // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
    yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
    pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
    roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
    pitch *= 180.0f / PI;
    yaw   *= 180.0f / PI; 
    yaw   -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
    roll  *= 180.0f / PI;

    pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
    pc.printf("average rate = %f\n\r", (float) sumCount/sum);
//    sprintf(buffer, "YPR: %f %f %f", yaw, pitch, roll);
//    sprintf(buffer, "rate = %f", (float) sumCount/sum);

    myled= !myled;
    count = t.read_ms(); 

    if(count > 1<<21) {
        t.start(); // start the timer over again if ~30 minutes has passed
        count = 0;
        deltat= 0;
        lastUpdate = t.read_us();
    }
    sum = 0;
    sumCount = 0; 
    
    int flag = 0;
    //落下判定のつもり
    while(flag = (acz > 800 && acx < 150 && acx > -150 && acy < 300 && acy > -300)){
        if(flag = 0)break;
        pc.printf("*********************\n\r");
            mpu9250.getAres(); // Get accelerometer sensitivity
    mpu9250.getGres(); // Get gyro sensitivity
    mpu9250.getMres(); // Get magnetometer sensitivity
    pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
    pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
    pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
    magbias[0] = +470.;  // User environmental x-axis correction in milliGauss, should be automatically calculated
    magbias[1] = +120.;  // User environmental x-axis correction in milliGauss
    magbias[2] = +125.;  // User environmental x-axis correction in milliGauss

 while(1) {
  
  // If intPin goes high, all data registers have new data
  if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) {  // On interrupt, check if data ready interrupt

    mpu9250.readAccelData(accelCount);  // Read the x/y/z adc values   
    // Now we'll calculate the accleration value into actual g's
    ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
    ay = (float)accelCount[1]*aRes - accelBias[1];   
    az = (float)accelCount[2]*aRes - accelBias[2];  
   
    mpu9250.readGyroData(gyroCount);  // Read the x/y/z adc values
    // Calculate the gyro value into actual degrees per second
    gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
    gy = (float)gyroCount[1]*gRes - gyroBias[1];  
    gz = (float)gyroCount[2]*gRes - gyroBias[2];   
  
    mpu9250.readMagData(magCount);  // Read the x/y/z adc values   
    // Calculate the magnetometer values in milliGauss
    // Include factory calibration per data sheet and user environmental corrections
    mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];  // get actual magnetometer value, this depends on scale being set
    my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];  
    mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];   
  }
   
    Now = t.read_us();
    deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
    lastUpdate = Now;
    
    sum += deltat;
    sumCount++;
    
//    if(lastUpdate - firstUpdate > 10000000.0f) {
//     beta = 0.04;  // decrease filter gain after stabilized
//     zeta = 0.015; // increasey bias drift gain after stabilized
 //   }
    
   // Pass gyro rate as rad/s
//  mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
  mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
    //出力されるのはここから
    // Serial print and/or display at 0.5 s rate independent of data rates
    delt_t = t.read_ms() - count;
    if (delt_t > 500) { // update LCD once per half-second independent of read rate
    
    acx = 1000*ax;
    acy = 1000*ay;
    acz = 1000*az;
    
    break;
/*    
    pc.printf(" ax = %f", 1000*ax); 
    pc.printf(" ay = %f", 1000*ay); 
    pc.printf(" az = %f  mg\n\r", 1000*az); 

    pc.printf(" gx = %f", gx); 
    pc.printf(" gy = %f", gy); 
    pc.printf(" gz = %f  deg/s\n\r", gz); 
    
    pc.printf(" mx = %f", mx); 
    pc.printf(" my = %f", my); 
    pc.printf(" mz = %f  mG\n\r", mz); 
*/
    }
    
/*  平均値とる方向性もなしで  
    double ac[3] = {0};
    do{
        for(l;l < 3;l++){
            for(k;k < 30;k += 0){
                ac[l] += sqrt(pow(acx,2.0) + pow(acy,2.0) + pow(acz,2.0));
                if(k < 28){
                    k++;
                    pc.printf("************%d巡目%d回目***********\n\r",l,k);
                    goto Getdata;
                }else k++;
            }
            k = 0;
            ac[l] /= 30;
            pc.printf("平均値は・・・%f\n\r",ac[l]);
        }
        l = 0;
    }while(ac[1] > ac[0] && ac[1] < ac[2]);
    pc.printf("ループから抜けた\n\r");
/*    while(1) {
        myled = 1;
        wait(0.2);
        myled = 0;
        wait(0.2);
        ac[0] = sqrt(pow(acx,2.0) + pow(acy,2.0) + pow(acz,2.0));
        if(ac[0] > 500){
            pc.printf("平均値は・・・%f\n\r",ac[0]);
            break;
        }
    }
*/    
}
} 
}
}
}