一応着地判定できます。

Dependencies:   mbed

Committer:
ponpoko1939
Date:
Sat Jul 14 10:10:50 2018 +0000
Revision:
2:b9549dd058d8
Parent:
1:1ad86845f584
ver1

Who changed what in which revision?

UserRevisionLine numberNew contents of line
ponpoko1939 0:1070e8be3721 1 #include "mbed.h"
ponpoko1939 0:1070e8be3721 2 #include "math.h"
ponpoko1939 0:1070e8be3721 3 #include "MPU9250.h"
ponpoko1939 0:1070e8be3721 4
ponpoko1939 0:1070e8be3721 5 float sum = 0;
ponpoko1939 0:1070e8be3721 6 uint32_t sumCount = 0;
ponpoko1939 0:1070e8be3721 7 char buffer[14];
ponpoko1939 0:1070e8be3721 8 MPU9250 mpu9250;
ponpoko1939 0:1070e8be3721 9 Timer t;
ponpoko1939 0:1070e8be3721 10 Serial pc(USBTX, USBRX); // tx, rx
ponpoko1939 0:1070e8be3721 11 double acx,acy,acz;
ponpoko1939 2:b9549dd058d8 12 int k = 0,l = 0;
ponpoko1939 0:1070e8be3721 13
ponpoko1939 0:1070e8be3721 14 int main()
ponpoko1939 0:1070e8be3721 15 {
ponpoko1939 0:1070e8be3721 16 pc.baud(9600);
ponpoko1939 0:1070e8be3721 17
ponpoko1939 0:1070e8be3721 18 //Set up I2C
ponpoko1939 0:1070e8be3721 19 i2c.frequency(400000); // use fast (400 kHz) I2C ← KPのは100kHzじゃなかった?
ponpoko1939 0:1070e8be3721 20
ponpoko1939 0:1070e8be3721 21 pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);
ponpoko1939 0:1070e8be3721 22
ponpoko1939 0:1070e8be3721 23 t.start();
ponpoko1939 0:1070e8be3721 24
ponpoko1939 0:1070e8be3721 25 // Read the WHO_AM_I register, this is a good test of communication
ponpoko1939 0:1070e8be3721 26 uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250
ponpoko1939 0:1070e8be3721 27 pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x71\n\r");
ponpoko1939 0:1070e8be3721 28
ponpoko1939 0:1070e8be3721 29 if (whoami == 0x71) // WHO_AM_I should always be 0x68
ponpoko1939 0:1070e8be3721 30 {
ponpoko1939 0:1070e8be3721 31 pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
ponpoko1939 0:1070e8be3721 32 pc.printf("MPU9250 is online...\n\r");
ponpoko1939 0:1070e8be3721 33 sprintf(buffer, "0x%x", whoami);
ponpoko1939 0:1070e8be3721 34 wait(1);
ponpoko1939 0:1070e8be3721 35
ponpoko1939 0:1070e8be3721 36 mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
ponpoko1939 0:1070e8be3721 37 mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
ponpoko1939 0:1070e8be3721 38 pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);
ponpoko1939 0:1070e8be3721 39 pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);
ponpoko1939 0:1070e8be3721 40 pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);
ponpoko1939 0:1070e8be3721 41 pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);
ponpoko1939 0:1070e8be3721 42 pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);
ponpoko1939 0:1070e8be3721 43 pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);
ponpoko1939 0:1070e8be3721 44 mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
ponpoko1939 0:1070e8be3721 45 pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
ponpoko1939 0:1070e8be3721 46 pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
ponpoko1939 0:1070e8be3721 47 pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
ponpoko1939 0:1070e8be3721 48 pc.printf("x accel bias = %f\n\r", accelBias[0]);
ponpoko1939 0:1070e8be3721 49 pc.printf("y accel bias = %f\n\r", accelBias[1]);
ponpoko1939 0:1070e8be3721 50 pc.printf("z accel bias = %f\n\r", accelBias[2]);
ponpoko1939 0:1070e8be3721 51 wait(2);
ponpoko1939 0:1070e8be3721 52 mpu9250.initMPU9250();
ponpoko1939 0:1070e8be3721 53 pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
ponpoko1939 0:1070e8be3721 54 mpu9250.initAK8963(magCalibration);
ponpoko1939 0:1070e8be3721 55 pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer
ponpoko1939 0:1070e8be3721 56 pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale));
ponpoko1939 0:1070e8be3721 57 pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale));
ponpoko1939 0:1070e8be3721 58 if(Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r");
ponpoko1939 0:1070e8be3721 59 if(Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r");
ponpoko1939 0:1070e8be3721 60 if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
ponpoko1939 0:1070e8be3721 61 if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
ponpoko1939 0:1070e8be3721 62 wait(1);
ponpoko1939 0:1070e8be3721 63 }
ponpoko1939 0:1070e8be3721 64 else
ponpoko1939 0:1070e8be3721 65 {
ponpoko1939 0:1070e8be3721 66 pc.printf("Could not connect to MPU9250: \n\r");
ponpoko1939 0:1070e8be3721 67 pc.printf("%#x \n", whoami);
ponpoko1939 0:1070e8be3721 68 sprintf(buffer, "WHO_AM_I 0x%x", whoami);
ponpoko1939 0:1070e8be3721 69
ponpoko1939 0:1070e8be3721 70 while(1) ; // Loop forever if communication doesn't happen
ponpoko1939 0:1070e8be3721 71 }
ponpoko1939 0:1070e8be3721 72 mpu9250.getAres(); // Get accelerometer sensitivity
ponpoko1939 0:1070e8be3721 73 mpu9250.getGres(); // Get gyro sensitivity
ponpoko1939 0:1070e8be3721 74 mpu9250.getMres(); // Get magnetometer sensitivity
ponpoko1939 0:1070e8be3721 75 pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
ponpoko1939 0:1070e8be3721 76 pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
ponpoko1939 0:1070e8be3721 77 pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
ponpoko1939 0:1070e8be3721 78 magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated
ponpoko1939 0:1070e8be3721 79 magbias[1] = +120.; // User environmental x-axis correction in milliGauss
ponpoko1939 0:1070e8be3721 80 magbias[2] = +125.; // User environmental x-axis correction in milliGauss
ponpoko1939 0:1070e8be3721 81
ponpoko1939 0:1070e8be3721 82 while(1) {
ponpoko1939 0:1070e8be3721 83
ponpoko1939 0:1070e8be3721 84 // If intPin goes high, all data registers have new data
ponpoko1939 0:1070e8be3721 85 if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt
ponpoko1939 0:1070e8be3721 86
ponpoko1939 0:1070e8be3721 87 mpu9250.readAccelData(accelCount); // Read the x/y/z adc values
ponpoko1939 0:1070e8be3721 88 // Now we'll calculate the accleration value into actual g's
ponpoko1939 0:1070e8be3721 89 ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
ponpoko1939 0:1070e8be3721 90 ay = (float)accelCount[1]*aRes - accelBias[1];
ponpoko1939 0:1070e8be3721 91 az = (float)accelCount[2]*aRes - accelBias[2];
ponpoko1939 0:1070e8be3721 92
ponpoko1939 0:1070e8be3721 93 mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values
ponpoko1939 0:1070e8be3721 94 // Calculate the gyro value into actual degrees per second
ponpoko1939 0:1070e8be3721 95 gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set
ponpoko1939 0:1070e8be3721 96 gy = (float)gyroCount[1]*gRes - gyroBias[1];
ponpoko1939 0:1070e8be3721 97 gz = (float)gyroCount[2]*gRes - gyroBias[2];
ponpoko1939 0:1070e8be3721 98
ponpoko1939 0:1070e8be3721 99 mpu9250.readMagData(magCount); // Read the x/y/z adc values
ponpoko1939 0:1070e8be3721 100 // Calculate the magnetometer values in milliGauss
ponpoko1939 0:1070e8be3721 101 // Include factory calibration per data sheet and user environmental corrections
ponpoko1939 0:1070e8be3721 102 mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set
ponpoko1939 0:1070e8be3721 103 my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
ponpoko1939 0:1070e8be3721 104 mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];
ponpoko1939 0:1070e8be3721 105 }
ponpoko1939 0:1070e8be3721 106
ponpoko1939 0:1070e8be3721 107 Now = t.read_us();
ponpoko1939 0:1070e8be3721 108 deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
ponpoko1939 0:1070e8be3721 109 lastUpdate = Now;
ponpoko1939 0:1070e8be3721 110
ponpoko1939 0:1070e8be3721 111 sum += deltat;
ponpoko1939 0:1070e8be3721 112 sumCount++;
ponpoko1939 0:1070e8be3721 113
ponpoko1939 0:1070e8be3721 114 // if(lastUpdate - firstUpdate > 10000000.0f) {
ponpoko1939 0:1070e8be3721 115 // beta = 0.04; // decrease filter gain after stabilized
ponpoko1939 0:1070e8be3721 116 // zeta = 0.015; // increasey bias drift gain after stabilized
ponpoko1939 0:1070e8be3721 117 // }
ponpoko1939 0:1070e8be3721 118
ponpoko1939 0:1070e8be3721 119 // Pass gyro rate as rad/s
ponpoko1939 0:1070e8be3721 120 // mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
ponpoko1939 0:1070e8be3721 121 mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
ponpoko1939 0:1070e8be3721 122 //出力されるのはここから
ponpoko1939 0:1070e8be3721 123 // Serial print and/or display at 0.5 s rate independent of data rates
ponpoko1939 0:1070e8be3721 124 delt_t = t.read_ms() - count;
ponpoko1939 0:1070e8be3721 125 if (delt_t > 500) { // update LCD once per half-second independent of read rate
ponpoko1939 0:1070e8be3721 126
ponpoko1939 0:1070e8be3721 127 acx = 1000*ax;
ponpoko1939 0:1070e8be3721 128 acy = 1000*ay;
ponpoko1939 0:1070e8be3721 129 acz = 1000*az;
ponpoko1939 0:1070e8be3721 130
ponpoko1939 0:1070e8be3721 131 pc.printf(" ax = %f", 1000*ax);
ponpoko1939 0:1070e8be3721 132 pc.printf(" ay = %f", 1000*ay);
ponpoko1939 0:1070e8be3721 133 pc.printf(" az = %f mg\n\r", 1000*az);
ponpoko1939 0:1070e8be3721 134
ponpoko1939 0:1070e8be3721 135 pc.printf(" gx = %f", gx);
ponpoko1939 0:1070e8be3721 136 pc.printf(" gy = %f", gy);
ponpoko1939 0:1070e8be3721 137 pc.printf(" gz = %f deg/s\n\r", gz);
ponpoko1939 0:1070e8be3721 138
ponpoko1939 0:1070e8be3721 139 pc.printf(" mx = %f", mx);
ponpoko1939 0:1070e8be3721 140 pc.printf(" my = %f", my);
ponpoko1939 0:1070e8be3721 141 pc.printf(" mz = %f mG\n\r", mz);
ponpoko1939 0:1070e8be3721 142
ponpoko1939 0:1070e8be3721 143 /*//温度/*
ponpoko1939 0:1070e8be3721 144 tempCount = mpu9250.readTempData(); // Read the adc values
ponpoko1939 0:1070e8be3721 145 temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
ponpoko1939 0:1070e8be3721 146 pc.printf(" temperature = %f C\n\r", temperature);
ponpoko1939 0:1070e8be3721 147 */
ponpoko1939 0:1070e8be3721 148
ponpoko1939 0:1070e8be3721 149 pc.printf("q0 = %f\n\r", q[0]);
ponpoko1939 0:1070e8be3721 150 pc.printf("q1 = %f\n\r", q[1]);
ponpoko1939 0:1070e8be3721 151 pc.printf("q2 = %f\n\r", q[2]);
ponpoko1939 0:1070e8be3721 152 pc.printf("q3 = %f\n\r", q[3]);
ponpoko1939 0:1070e8be3721 153
ponpoko1939 0:1070e8be3721 154 // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
ponpoko1939 0:1070e8be3721 155 // In this coordinate system, the positive z-axis is down toward Earth.
ponpoko1939 0:1070e8be3721 156 // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
ponpoko1939 0:1070e8be3721 157 // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
ponpoko1939 0:1070e8be3721 158 // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
ponpoko1939 0:1070e8be3721 159 // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
ponpoko1939 0:1070e8be3721 160 // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
ponpoko1939 0:1070e8be3721 161 // applied in the correct order which for this configuration is yaw, pitch, and then roll.
ponpoko1939 0:1070e8be3721 162 // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
ponpoko1939 0:1070e8be3721 163 yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
ponpoko1939 0:1070e8be3721 164 pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
ponpoko1939 0:1070e8be3721 165 roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
ponpoko1939 0:1070e8be3721 166 pitch *= 180.0f / PI;
ponpoko1939 0:1070e8be3721 167 yaw *= 180.0f / PI;
ponpoko1939 0:1070e8be3721 168 yaw -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
ponpoko1939 0:1070e8be3721 169 roll *= 180.0f / PI;
ponpoko1939 0:1070e8be3721 170
ponpoko1939 0:1070e8be3721 171 pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
ponpoko1939 0:1070e8be3721 172 pc.printf("average rate = %f\n\r", (float) sumCount/sum);
ponpoko1939 0:1070e8be3721 173 // sprintf(buffer, "YPR: %f %f %f", yaw, pitch, roll);
ponpoko1939 0:1070e8be3721 174 // sprintf(buffer, "rate = %f", (float) sumCount/sum);
ponpoko1939 0:1070e8be3721 175
ponpoko1939 0:1070e8be3721 176 myled= !myled;
ponpoko1939 0:1070e8be3721 177 count = t.read_ms();
ponpoko1939 0:1070e8be3721 178
ponpoko1939 0:1070e8be3721 179 if(count > 1<<21) {
ponpoko1939 0:1070e8be3721 180 t.start(); // start the timer over again if ~30 minutes has passed
ponpoko1939 0:1070e8be3721 181 count = 0;
ponpoko1939 0:1070e8be3721 182 deltat= 0;
ponpoko1939 0:1070e8be3721 183 lastUpdate = t.read_us();
ponpoko1939 0:1070e8be3721 184 }
ponpoko1939 0:1070e8be3721 185 sum = 0;
ponpoko1939 0:1070e8be3721 186 sumCount = 0;
ponpoko1939 0:1070e8be3721 187
ponpoko1939 2:b9549dd058d8 188 int flag = 0;
ponpoko1939 2:b9549dd058d8 189 //落下判定のつもり
ponpoko1939 2:b9549dd058d8 190 while(flag = (acz > 800 && acx < 150 && acx > -150 && acy < 300 && acy > -300)){
ponpoko1939 2:b9549dd058d8 191 if(flag = 0)break;
ponpoko1939 2:b9549dd058d8 192 pc.printf("*********************\n\r");
ponpoko1939 2:b9549dd058d8 193 mpu9250.getAres(); // Get accelerometer sensitivity
ponpoko1939 2:b9549dd058d8 194 mpu9250.getGres(); // Get gyro sensitivity
ponpoko1939 2:b9549dd058d8 195 mpu9250.getMres(); // Get magnetometer sensitivity
ponpoko1939 2:b9549dd058d8 196 pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
ponpoko1939 2:b9549dd058d8 197 pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
ponpoko1939 2:b9549dd058d8 198 pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
ponpoko1939 2:b9549dd058d8 199 magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated
ponpoko1939 2:b9549dd058d8 200 magbias[1] = +120.; // User environmental x-axis correction in milliGauss
ponpoko1939 2:b9549dd058d8 201 magbias[2] = +125.; // User environmental x-axis correction in milliGauss
ponpoko1939 2:b9549dd058d8 202
ponpoko1939 2:b9549dd058d8 203 while(1) {
ponpoko1939 2:b9549dd058d8 204
ponpoko1939 2:b9549dd058d8 205 // If intPin goes high, all data registers have new data
ponpoko1939 2:b9549dd058d8 206 if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt
ponpoko1939 2:b9549dd058d8 207
ponpoko1939 2:b9549dd058d8 208 mpu9250.readAccelData(accelCount); // Read the x/y/z adc values
ponpoko1939 2:b9549dd058d8 209 // Now we'll calculate the accleration value into actual g's
ponpoko1939 2:b9549dd058d8 210 ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
ponpoko1939 2:b9549dd058d8 211 ay = (float)accelCount[1]*aRes - accelBias[1];
ponpoko1939 2:b9549dd058d8 212 az = (float)accelCount[2]*aRes - accelBias[2];
ponpoko1939 2:b9549dd058d8 213
ponpoko1939 2:b9549dd058d8 214 mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values
ponpoko1939 2:b9549dd058d8 215 // Calculate the gyro value into actual degrees per second
ponpoko1939 2:b9549dd058d8 216 gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set
ponpoko1939 2:b9549dd058d8 217 gy = (float)gyroCount[1]*gRes - gyroBias[1];
ponpoko1939 2:b9549dd058d8 218 gz = (float)gyroCount[2]*gRes - gyroBias[2];
ponpoko1939 2:b9549dd058d8 219
ponpoko1939 2:b9549dd058d8 220 mpu9250.readMagData(magCount); // Read the x/y/z adc values
ponpoko1939 2:b9549dd058d8 221 // Calculate the magnetometer values in milliGauss
ponpoko1939 2:b9549dd058d8 222 // Include factory calibration per data sheet and user environmental corrections
ponpoko1939 2:b9549dd058d8 223 mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set
ponpoko1939 2:b9549dd058d8 224 my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
ponpoko1939 2:b9549dd058d8 225 mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];
ponpoko1939 2:b9549dd058d8 226 }
ponpoko1939 2:b9549dd058d8 227
ponpoko1939 2:b9549dd058d8 228 Now = t.read_us();
ponpoko1939 2:b9549dd058d8 229 deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
ponpoko1939 2:b9549dd058d8 230 lastUpdate = Now;
ponpoko1939 0:1070e8be3721 231
ponpoko1939 2:b9549dd058d8 232 sum += deltat;
ponpoko1939 2:b9549dd058d8 233 sumCount++;
ponpoko1939 2:b9549dd058d8 234
ponpoko1939 2:b9549dd058d8 235 // if(lastUpdate - firstUpdate > 10000000.0f) {
ponpoko1939 2:b9549dd058d8 236 // beta = 0.04; // decrease filter gain after stabilized
ponpoko1939 2:b9549dd058d8 237 // zeta = 0.015; // increasey bias drift gain after stabilized
ponpoko1939 2:b9549dd058d8 238 // }
ponpoko1939 2:b9549dd058d8 239
ponpoko1939 2:b9549dd058d8 240 // Pass gyro rate as rad/s
ponpoko1939 2:b9549dd058d8 241 // mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
ponpoko1939 2:b9549dd058d8 242 mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
ponpoko1939 2:b9549dd058d8 243 //出力されるのはここから
ponpoko1939 2:b9549dd058d8 244 // Serial print and/or display at 0.5 s rate independent of data rates
ponpoko1939 2:b9549dd058d8 245 delt_t = t.read_ms() - count;
ponpoko1939 2:b9549dd058d8 246 if (delt_t > 500) { // update LCD once per half-second independent of read rate
ponpoko1939 2:b9549dd058d8 247
ponpoko1939 2:b9549dd058d8 248 acx = 1000*ax;
ponpoko1939 2:b9549dd058d8 249 acy = 1000*ay;
ponpoko1939 2:b9549dd058d8 250 acz = 1000*az;
ponpoko1939 2:b9549dd058d8 251
ponpoko1939 2:b9549dd058d8 252 break;
ponpoko1939 2:b9549dd058d8 253 /*
ponpoko1939 2:b9549dd058d8 254 pc.printf(" ax = %f", 1000*ax);
ponpoko1939 2:b9549dd058d8 255 pc.printf(" ay = %f", 1000*ay);
ponpoko1939 2:b9549dd058d8 256 pc.printf(" az = %f mg\n\r", 1000*az);
ponpoko1939 2:b9549dd058d8 257
ponpoko1939 2:b9549dd058d8 258 pc.printf(" gx = %f", gx);
ponpoko1939 2:b9549dd058d8 259 pc.printf(" gy = %f", gy);
ponpoko1939 2:b9549dd058d8 260 pc.printf(" gz = %f deg/s\n\r", gz);
ponpoko1939 2:b9549dd058d8 261
ponpoko1939 2:b9549dd058d8 262 pc.printf(" mx = %f", mx);
ponpoko1939 2:b9549dd058d8 263 pc.printf(" my = %f", my);
ponpoko1939 2:b9549dd058d8 264 pc.printf(" mz = %f mG\n\r", mz);
ponpoko1939 2:b9549dd058d8 265 */
ponpoko1939 2:b9549dd058d8 266 }
ponpoko1939 2:b9549dd058d8 267
ponpoko1939 2:b9549dd058d8 268 /* 平均値とる方向性もなしで
ponpoko1939 0:1070e8be3721 269 double ac[3] = {0};
ponpoko1939 0:1070e8be3721 270 do{
ponpoko1939 2:b9549dd058d8 271 for(l;l < 3;l++){
ponpoko1939 2:b9549dd058d8 272 for(k;k < 30;k += 0){
ponpoko1939 2:b9549dd058d8 273 ac[l] += sqrt(pow(acx,2.0) + pow(acy,2.0) + pow(acz,2.0));
ponpoko1939 2:b9549dd058d8 274 if(k < 28){
ponpoko1939 2:b9549dd058d8 275 k++;
ponpoko1939 2:b9549dd058d8 276 pc.printf("************%d巡目%d回目***********\n\r",l,k);
ponpoko1939 2:b9549dd058d8 277 goto Getdata;
ponpoko1939 2:b9549dd058d8 278 }else k++;
ponpoko1939 0:1070e8be3721 279 }
ponpoko1939 2:b9549dd058d8 280 k = 0;
ponpoko1939 2:b9549dd058d8 281 ac[l] /= 30;
ponpoko1939 2:b9549dd058d8 282 pc.printf("平均値は・・・%f\n\r",ac[l]);
ponpoko1939 0:1070e8be3721 283 }
ponpoko1939 2:b9549dd058d8 284 l = 0;
ponpoko1939 0:1070e8be3721 285 }while(ac[1] > ac[0] && ac[1] < ac[2]);
ponpoko1939 1:1ad86845f584 286 pc.printf("ループから抜けた\n\r");
ponpoko1939 1:1ad86845f584 287 /* while(1) {
ponpoko1939 0:1070e8be3721 288 myled = 1;
ponpoko1939 0:1070e8be3721 289 wait(0.2);
ponpoko1939 0:1070e8be3721 290 myled = 0;
ponpoko1939 0:1070e8be3721 291 wait(0.2);
ponpoko1939 0:1070e8be3721 292 ac[0] = sqrt(pow(acx,2.0) + pow(acy,2.0) + pow(acz,2.0));
ponpoko1939 0:1070e8be3721 293 if(ac[0] > 500){
ponpoko1939 0:1070e8be3721 294 pc.printf("平均値は・・・%f\n\r",ac[0]);
ponpoko1939 0:1070e8be3721 295 break;
ponpoko1939 0:1070e8be3721 296 }
ponpoko1939 0:1070e8be3721 297 }
ponpoko1939 1:1ad86845f584 298 */
ponpoko1939 0:1070e8be3721 299 }
ponpoko1939 0:1070e8be3721 300 }
ponpoko1939 0:1070e8be3721 301 }
ponpoko1939 2:b9549dd058d8 302 }
ponpoko1939 2:b9549dd058d8 303 }