Working version without LEDs
Voici le dernier schéma de cablage (version du 08/02/2020)
https://os.mbed.com/media/uploads/max_ence/schemarobot_fev2020.pdf
VL53L0X.cpp
- Committer:
- elab
- Date:
- 2020-05-30
- Revision:
- 1:69b5d8f0ba9c
- Parent:
- 0:0e577ce96b2f
File content as of revision 1:69b5d8f0ba9c:
/**
******************************************************************************
* @file VL53L0X_class.cpp
* @author IMG
* @version V0.0.1
* @date 28-June-2016
* @brief Implementation file for the VL53L0X driver class
******************************************************************************
* @attention
*
* <h2><center>© COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/*
Simplifications versus the original library:
Replace:
* "MicroSeconds" or "micro_seconds" by "us" or "_us"
* "MilliSeconds" or "milli_seconds" by "ms" or "_ms"
* "MegaCps" or "MCps" or "_mega_cps" by "MHz" or "_MHz"
* "MicroMeter" by "um" or "_um"
* "FIXEDPNT" by "FP"
Everything related to histogram_mode seems completely not implemented, so all definitions removed.
Everything related to x_talk_compensation seems also not implemented, all removed
Some example regular expressinos used to simplify the code:
b) Search for: \QRead_Byte(\E([A-Za-z_\d]+)[[:punct:]](\s*)\Q&\E([A-Za-z\d_]+)\Q);\E
Replace by: \3 = Read_Byte\(\1\);
to replace: Read_Byte(0x90,&module_id);
by this: module_id = Read_Byte(0x90);
c) Search for: ([A-Za-z_\d]+)\Q(\E\r\n(\s*)
Replace by: \1\(
To join lines where the first line has an open bracket, and the next line starts listing the parameters.
for example: Status = VL53L0X_UpdateByte(V
L53L0X_REG_VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV, ....
becomes: Status = VL53L0X_UpdateByte(VL53L0X_REG_VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV, ....
*/
/* Includes */
#include <stdlib.h>
#include "VL53L0X.h"
void Report_Range_Infos(VL53L0X_RangingMeasurementData_t RangeResults, Serial *aSerial )
{
aSerial->printf("\n\r Reporting All Fields of VL53L0X_RangingMeasurementData_t structure \n\r" );
aSerial->printf(" .Range_mm = %dmm; Ranged distance. \n\r", RangeResults.Range_mm );
aSerial->printf(" .RangeDMax_mm = %dmm; maximum detection distance in current setup and environment conditions \n\r", RangeResults.RangeDMax_mm );
aSerial->printf(" .SignalRateRtn_MHz = %3.3fMHz; effectively a measure of target reflectance \n\r", RangeResults.SignalRateRtn_MHz / 65535.01);
aSerial->printf(" .AmbientRateRtn_MHz = %3.3fMHz; effectively a measure of the ambient light \n\r", RangeResults.AmbientRateRtn_MHz / 65535.01 );
aSerial->printf(" .EffectiveSpadRtnCount = %3.3f; effective SPAD count for the return signal \n\r", RangeResults.EffectiveSpadRtnCount / 256.001 );
aSerial->printf(" .RangeFractionalPart = %d; Fractional part of range distance. \n\r", RangeResults.RangeFractionalPart >> 6 );
aSerial->printf(" .RangeStatus = %d[u8]; Status for the current measurement, 0 = value is valid \n\r", RangeResults.RangeStatus );
aSerial->printf(" .SigmaEstimate = %3.2f; Estimated Sigma - based on ambient & VCSEL rates and signal_total_events \n\r", RangeResults.SigmaEstimate/ 65535.01 );
};
void Report_Deep_Infos(VL53L0X TOF1, Serial *aSerial)
{
aSerial->printf("\n\r Reporting All Top Level Infos of the class \n\r" );
aSerial->printf("I2cDevAddr = %d. \n\r", TOF1.I2cDevAddr );
aSerial->printf("comms_type = %d. Type of comms: 1=VL53L0X_COMMS_I2C or VL53L0X_COMMS_SPI \n\r", TOF1.comms_type );
aSerial->printf("comms_speed = %d. Communication speed [kHz] : typically 400kHz for I2C \n\r", TOF1.comms_speed_khz );
aSerial->printf("\n\r Reporting All Infos of the Device_Info structure: \n\r" );
aSerial->printf("Device_Info.ProductType = 0x%2X. VL53L0X = 1, VL53L1 = 2 \n\r", TOF1.Device_Info.ProductType );
aSerial->printf("Device_Info.ProductRevision = %d.%d. Revision NR, major.minor \n\r",
TOF1.Device_Info.ProductRevisionMajor, TOF1.Device_Info.ProductRevisionMinor );
aSerial->printf("Device_Info.Name = %s. Name of Device e.g. Left_Distance\n\r", TOF1.Device_Info.Name );
aSerial->printf("Device_Info.Type = %s. Type of Device e.g VL53L0X \n\r", TOF1.Device_Info.Type );
aSerial->printf("Device_Info.ProductId = %s. Product Identifier String \n\r", TOF1.Device_Info.ProductId );
aSerial->printf("\n\r Reporting All Fields of CurrentParameters \n\r" );
aSerial->printf(" .DeviceMode = %d. Defines type of measurement to be done for the next measurement \n\r",
TOF1.CurrentParameters.DeviceMode );
aSerial->printf(" .Measure_Time_Budget_us= %dus. Allowed total time for a single measurement \n\r",
TOF1.CurrentParameters.MeasurementTimingBudget_us );
aSerial->printf(" .Measure_Period_ms = %dms. Time between two consecutive measurements \n\r",
TOF1.CurrentParameters.InterMeasurementPeriod_ms );
aSerial->printf(" .XTalk_Compens_En = %d. Crosstalk compensation enable or not (0, default) \n\r",
TOF1.CurrentParameters.XTalkCompensationEnable );
aSerial->printf(" .XTalk_CompRange_mm = %dmm. CrossTalk compensation range, seems never used \n\r",
TOF1.CurrentParameters.XTalkCompensationRange_mm );
aSerial->printf(" .XTalk_CompRate_MHz = %3.2fMHz. CrossTalk compensation rate . \n\r",
(float) TOF1.CurrentParameters.XTalkCompensationRate_MHz / 65536);
aSerial->printf(" .RangeOffset_um = %d. Range offset adjustment (um) last programmed.\n\r",
TOF1.CurrentParameters.RangeOffset_um );
aSerial->printf(" .LimitChecks ... = SIGMA_FINAL, SIGNAL_RATE_FINAL, SIGNAL_REF_CLIP, IGNORE_THRESHOLD, SIGNAL_RATE_MSRC, SIGNAL_RATE_PRE.\n\r");
aSerial->printf(" .LimitChecksEnable[x] = %d %d %d %d %d %d. The Limit Checks enabled or not.\n\r",
TOF1.CurrentParameters.LimitChecksEnable[0],TOF1.CurrentParameters.LimitChecksEnable[1] ,TOF1.CurrentParameters.LimitChecksEnable[2],
TOF1.CurrentParameters.LimitChecksEnable[3],TOF1.CurrentParameters.LimitChecksEnable[4] ,TOF1.CurrentParameters.LimitChecksEnable[5] );
aSerial->printf(" .LimitChecksStatus[x] = %d %d %d %d %d %d. Status of checks of last measurement.\n\r",
TOF1.CurrentParameters.LimitChecksStatus[0],TOF1.CurrentParameters.LimitChecksStatus[1] ,TOF1.CurrentParameters.LimitChecksStatus[2],
TOF1.CurrentParameters.LimitChecksStatus[3],TOF1.CurrentParameters.LimitChecksStatus[4] ,TOF1.CurrentParameters.LimitChecksStatus[5] );
aSerial->printf(" .LimitChecksValue[x] = %d %d %d %d %d %d [FP1616]. The Limit Check values \n\r",
TOF1.CurrentParameters.LimitChecksValue[0],TOF1.CurrentParameters.LimitChecksValue[1] ,TOF1.CurrentParameters.LimitChecksValue[2],
TOF1.CurrentParameters.LimitChecksValue[3],TOF1.CurrentParameters.LimitChecksValue[4] ,TOF1.CurrentParameters.LimitChecksValue[5] );
aSerial->printf(" .WrapAroundCheckEnable = %d. Wrap Around Check enabled or not \n\r",
TOF1.CurrentParameters.WrapAroundCheckEnable );
aSerial->printf("\n\r Reporting All Fields of VL53L0X_DevData_t Data structure \n\r" );
aSerial->printf(" .OscFrequency_MHz = %3.2fMHz; Frequency used \n\r", (float) TOF1.Data.OscFrequency_MHz/65536 );
aSerial->printf(" .LastEncodedTimeout = %d[u16]; Last encoded Time out used for timing budget \n\r", TOF1.Data.LastEncodedTimeout );
aSerial->printf(" .Pin0GpioFunctionality = %d[u8]; functionality of the GPIO: pin0 \n\r", TOF1.Data.Pin0GpioFunctionality );
aSerial->printf(" .FinalRangeTimeout_us = %d[u32]; Execution time of the final ranging \n\r", TOF1.Data.FinalRangeTimeout_us );
aSerial->printf(" .FinalRangeVcselPulsePeriod= %d[u8]; Vcsel pulse period (pll clocks) for the final range measurement \n\r", TOF1.Data.FinalRangeVcselPulsePeriod );
aSerial->printf(" .PreRangeTimeout_us = %d[u32]; Execution time of the final range \n\r", TOF1.Data.PreRangeTimeout_us );
aSerial->printf(" .PreRangeVcselPulsePeriod = %d[u8]; Vcsel pulse period (pll clocks) for the pre-range measurement \n\r", TOF1.Data.PreRangeVcselPulsePeriod );
aSerial->printf(" .ReadDataFromDeviceDone = %2d; reads from device has been done (>0) or not. \n\r", TOF1.Data.ReadDataFromDeviceDone );
aSerial->printf(" .ModuleId = %X; Module ID \n\r", TOF1.Data.ModuleId );
aSerial->printf(" .Revision = %d[u8]; test Revision \n\r", TOF1.Data.Revision );
aSerial->printf(" .ProductId = %s[char*]; Product Identifier String \n\r", TOF1.Data.ProductId );
aSerial->printf(" .ReferenceSpadCount = %d[u8]; used for ref spad management \n\r", TOF1.Data.ReferenceSpadCount );
aSerial->printf(" .ReferenceSpadType = %d[u8]; used for ref spad management \n\r", TOF1.Data.ReferenceSpadType );
aSerial->printf(" .RefSpadsInitialised = %d[u8]; reports if ref spads are initialised. \n\r", TOF1.Data.RefSpadsInitialised );
aSerial->printf(" .PartUIDUpper = %d[u32]; Unique Part ID Upper \n\r", TOF1.Data.PartUIDUpper );
aSerial->printf(" .PartUIDLower = %d[u32]; Unique Part ID Lower \n\r", TOF1.Data.PartUIDLower );
aSerial->printf(" .SignalRateMeasFixed400mm = %3.3f; Peak Signal rate at 400 mm \n\r", 1.0 / 65535.0 * TOF1.Data.SignalRateMeasFixed400mm );
aSerial->printf(" .RefSpadEnables[x] = %X %X %X %X %X %X[hex8]; Reference Spad Enables \n\r",
TOF1.Data.RefSpadEnables[0], TOF1.Data.RefSpadEnables[1], TOF1.Data.RefSpadEnables[2],
TOF1.Data.RefSpadEnables[3], TOF1.Data.RefSpadEnables[4], TOF1.Data.RefSpadEnables[5] );
aSerial->printf(" .RefGoodSpadMap[x] = %X %X %X %X %X %X[hex8]; Reference Spad Good Spad Map\n\r",
TOF1.Data.RefGoodSpadMap[0], TOF1.Data.RefGoodSpadMap[1], TOF1.Data.RefGoodSpadMap[2],
TOF1.Data.RefGoodSpadMap[3], TOF1.Data.RefGoodSpadMap[4], TOF1.Data.RefGoodSpadMap[5] );
aSerial->printf(" .Part2PartOffsetNVM_um = %d[i32]; backed up NVM value \n\r", TOF1.Data.Part2PartOffsetNVM_um );
aSerial->printf(" .Part2PartOffsetAdjustNVM_um= %d[i32]; backed up NVM value of additional offset adjustment \n\r", TOF1.Data.Part2PartOffsetAdjustNVM_um );
aSerial->printf(" .SequenceConfig = %d[u8]; Internal value for the sequence config \n\r", TOF1.Data.SequenceConfig );
aSerial->printf(" .RangeFractionalEnable = %d[u8]; Enable/Disable fractional part of range data \n\r", TOF1.Data.RangeFractionalEnable);
aSerial->printf(" .PalState = %d[u8]; Current state of the PAL \n\r", TOF1.Data.PalState );
aSerial->printf(" .PowerMode = %d[u8]; Current Power Mode; Stdby1/2, Idle1/2 \n\r", TOF1.Data.PowerMode );
aSerial->printf(" .SigmaEstRefArray = %d[u16]; Reference array sigma value in 1/100th of [mm] \n\r", TOF1.Data.SigmaEstRefArray );
aSerial->printf(" .SigmaEstEffPulseWidth = %d[u16]; Effective Pulse width for sigma estimate in 1/100th of ns \n\r", TOF1.Data.SigmaEstEffPulseWidth );
aSerial->printf(" .SigmaEstEffAmbWidth = %d. Effective Ambient width for sigma estimate in 1/100th of ns \n\r", TOF1.Data.SigmaEstEffAmbWidth );
aSerial->printf(" .StopVariable = %d[u8]; StopVariable used during the stop sequence \n\r", TOF1.Data.StopVariable );
aSerial->printf(" .targetRefRate = %d. Target Ambient Rate for Ref spad management \n\r", TOF1.Data.targetRefRate );
aSerial->printf(" .LastSignalRef_MHz = %3.3fMHz; Latest Signal ref \n\r", TOF1.Data.LastSignalRef_MHz / 65535.01 );
aSerial->printf(" .UseInternalTuningSetting = %d[u8]; Indicate if we use Tuning Settings table \n\r", TOF1.Data.UseInternalTuningSettings );
aSerial->printf(" .LinearityCorrectiveGain = %d[u8]; Linearity Corrective Gain value in x1000 \n\r", TOF1.Data.LinearityCorrectiveGain );
aSerial->printf(" .DmaxCalRange_mm = %dmm; Dmax Calibration Range \n\r", TOF1.Data.DmaxCalRange_mm );
aSerial->printf(" .DmaxCalSignalRateRtn_MHz = %3.3fMHz; Dmax Calibration Signal Rate Return \n\r", TOF1.Data.DmaxCalSignalRateRtn_MHz / 65535.01 );
}
int VL53L0X::read_id(uint8_t *id)
{ int status = 0;
uint16_t rl_id = 0;
status = VL53L0X_read_word(VL53L0X_REG_IDENTIFICATION_MODEL_ID, &rl_id);
if (rl_id == 0xEEAA) {
return status;
}
return -1;
}
int VL53L0X::init_sensor(uint8_t new_addr)
{ int status;
VL53L0X_off();
VL53L0X_on();
// Verify if the device is actually present
uint8_t id = 0;
status = read_id(&id);
if (status != 0) {
//aSerial->printf("VL53L0X sensor is not present!\n\r");
return 99; } // device is not present
status = VL53L0X_data_init();
if (status != VL53L0X_ERROR_NONE) {
//aSerial->printf("Failed to init VL53L0X sensor!\n\r");
return status;
}
// deduce silicon version
status = VL53L0X_get_device_info();
status = prepare();
if (status != VL53L0X_ERROR_NONE) {
//aSerial->printf("Failed to prepare VL53L0X!\n\r");
return status;
}
if (new_addr != VL53L0X_DEFAULT_ADDRESS) {
status = set_device_address(new_addr);
if (status) {
//aSerial->printf("Failed to change I2C address!\n\r");
return status;
}
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_data_init(void)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
VL53L0X_DeviceParameters_t CurrentParameters;
int i;
uint8_t StopVariable;
/* by default the I2C is running at 1V8 if you want to change it you
* need to include this define at compilation level. */
#ifdef USE_I2C_2V8
Status = VL53L0X_UpdateByte(VL53L0X_REG_VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV,0xFE,0x01);
#endif
/* Set I2C standard mode */
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_byte( 0x88, 0x00); }
Data.ReadDataFromDeviceDone = 0;
Data.ReadDataFromDeviceDone = 0;
#ifdef USE_IQC_STATION
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_apply_offset_adjustment();
}
#endif
/* Default value is 1000 for Linearity Corrective Gain */
Data.LinearityCorrectiveGain = 1000;
/* Dmax default Parameter */
Data.DmaxCalRange_mm = 400;
Data.DmaxCalSignalRateRtn_MHz = (FixPoint1616_t)((0x00016B85)); /* 1.42 No Cover Glass*/
/* Set Default static parameters
*set first temporary values 9.44_MHz * 65536 = 618660 */
Data.OscFrequency_MHz = 618660;
/* Set Default XTalkCompensationRate_MHz to 0 */
CurrentParameters.XTalkCompensationRate_MHz = 0;
/* Get default parameters */
status = VL53L0X_get_device_parameters( &CurrentParameters);
if (status == VL53L0X_ERROR_NONE) {
/* initialize PAL values */
CurrentParameters.DeviceMode = VL53L0X_DEVICEMODE_SINGLE_RANGING;
CurrentParameters = CurrentParameters;
}
/* Sigma estimator variable */
Data.SigmaEstRefArray = 100;
Data.SigmaEstEffPulseWidth = 900;
Data.SigmaEstEffAmbWidth = 500;
Data.targetRefRate = 0x0A00; /* 20 MHz in 9:7 format */
/* Use internal default settings */
Data.UseInternalTuningSettings = 1;
status |= VL53L0X_write_byte( 0x80, 0x01);
status |= VL53L0X_write_byte( 0xFF, 0x01);
status |= VL53L0X_write_byte( 0x00, 0x00);
status |= VL53L0X_read_byte( 0x91, &StopVariable);
Data.StopVariable = StopVariable;
status |= VL53L0X_write_byte( 0x00, 0x01);
status |= VL53L0X_write_byte( 0xFF, 0x00);
status |= VL53L0X_write_byte( 0x80, 0x00);
/* Enable all check */
for (i = 0; i < VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS; i++) {
if (status == VL53L0X_ERROR_NONE) {
status |= VL53L0X_set_limit_check_enable( i, 1);
} else { break; }
}
/* Disable the following checks */
if (status == VL53L0X_ERROR_NONE)
status = VL53L0X_set_limit_check_enable(VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP, 0);
if (status == VL53L0X_ERROR_NONE)
status = VL53L0X_set_limit_check_enable(VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD, 0);
if (status == VL53L0X_ERROR_NONE)
status = VL53L0X_set_limit_check_enable(VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC, 0);
if (status == VL53L0X_ERROR_NONE)
status = VL53L0X_set_limit_check_enable(VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE, 0);
/* Limit default values */
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_set_limit_check_value(VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
(FixPoint1616_t)(18 * 65536));
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_set_limit_check_value(VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,
(FixPoint1616_t)(25 * 65536 / 100)); /* 0.25 * 65536 */
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_set_limit_check_value(VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
(FixPoint1616_t)(35 * 65536));
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_set_limit_check_value(VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
(FixPoint1616_t)(0 * 65536));
}
if (status == VL53L0X_ERROR_NONE) {
Data.SequenceConfig = 0xFF;
status = VL53L0X_write_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,0xFF);
/* Set PAL state to tell that we are waiting for call to VL53L0X_StaticInit */
Data.PalState = VL53L0X_STATE_WAIT_STATICINIT;
}
if (status == VL53L0X_ERROR_NONE) {
Data.RefSpadsInitialised = 0;
}
return status;
}
int VL53L0X::prepare()
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint32_t ref_spad_count;
uint8_t is_aperture_spads;
uint8_t vhv_settings;
uint8_t phase_cal;
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_static_init(); // Device Initialization
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_perform_ref_calibration(&vhv_settings, &phase_cal); // Device Initialization
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_perform_ref_spad_management(&ref_spad_count, &is_aperture_spads); // Device Initialization
}
return status;
}
int VL53L0X::start_measurement(OperatingMode operating_mode, void (*fptr)(void),
VL53L0X_RangingConfig rangingConfig)
{ int Status = VL53L0X_ERROR_NONE;
int ClrStatus;
uint8_t VhvSettings;
uint8_t PhaseCal;
// default settings, for normal range.
FixPoint1616_t signalLimit = (FixPoint1616_t)(0.25 * 65536);
FixPoint1616_t sigmaLimit = (FixPoint1616_t)(25 * 65536);
uint32_t timingBudget = 33000;
uint8_t preRangeVcselPeriod = 14;
uint8_t finalRangeVcselPeriod = 10;
if (operating_mode == range_continuous_interrupt) {
if (_gpio1Int == NULL) {
//aSerial->printf("GPIO1 Error\r\n");
return 1;
}
Status = VL53L0X_stop_measurement(); // it is safer to do this while sensor is stopped
// Status = VL53L0X_SetInterruptThresholds(Device, VL53L0X_DEVICEMODE_CONTINUOUS_RANGING, 0, 300);
Status = VL53L0X_set_gpio_config(0, VL53L0X_DEVICEMODE_CONTINUOUS_RANGING,
VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY,
VL53L0X_INTERRUPTPOLARITY_HIGH);
if (Status == VL53L0X_ERROR_NONE) {
attach_interrupt_measure_detection_irq(fptr);
enable_interrupt_measure_detection_irq();
}
ClrStatus = clear_interrupt(VL53L0X_REG_RESULT_INTERRUPT_STATUS | VL53L0X_REG_RESULT_RANGE_STATUS);
if (ClrStatus) { Status = 97; } // VL53L0X_ClearErrorInterrupt fail
if (Status == VL53L0X_ERROR_NONE) {
CurrentParameters.DeviceMode = VL53L0X_DEVICEMODE_CONTINUOUS_RANGING; // Setup in continuous ranging mode
Status = VL53L0X_start_measurement();
}
}
if (operating_mode == range_single_shot_polling) {
// singelshot, polled ranging
if (Status == VL53L0X_ERROR_NONE) {
// no need to do this when we use VL53L0X_PerformSingleRangingMeasurement
CurrentParameters.DeviceMode = VL53L0X_DEVICEMODE_SINGLE_RANGING; // Setup in single ranging mode
// Enable/Disable Sigma and Signal check
Status = VL53L0X_set_limit_check_enable(VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE, 1);
}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_set_limit_check_enable(VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE, 1);
}
/* Preselected Ranging configurations */
switch(rangingConfig) {
case Range_Config_DEFAULT:
// default settings, for normal range.
signalLimit = (FixPoint1616_t)(0.25 * 65536);
sigmaLimit = (FixPoint1616_t)(16 * 65536);
timingBudget = 33000;
preRangeVcselPeriod = 14;
finalRangeVcselPeriod = 10;
break;
case Range_Config_LONG_RANGE: // *** from mass market cube expansion v1.1, ranging with satellites.
signalLimit = (FixPoint1616_t)(0.1 * 65536);
sigmaLimit = (FixPoint1616_t)(60 * 65536);
timingBudget = 33000;
preRangeVcselPeriod = 18;
finalRangeVcselPeriod = 14;
break;
case Range_Config_HIGH_ACCURACY:
signalLimit = (FixPoint1616_t)(0.25*65536);
sigmaLimit = (FixPoint1616_t)(18*65536);
timingBudget = 200000;
preRangeVcselPeriod = 14;
finalRangeVcselPeriod = 10;
break;
case Range_Config_HIGH_SPEED:
signalLimit = (FixPoint1616_t)(0.25*65536);
sigmaLimit = (FixPoint1616_t)(60*65536);
timingBudget = 20000;
preRangeVcselPeriod = 14;
finalRangeVcselPeriod = 10;
break;
default:
Status = 96; // Config Not Supported
}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_set_limit_check_value(VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE, signalLimit);}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_set_limit_check_value(VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE, sigmaLimit);}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_set_measurement_timing_budget_us( timingBudget);}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_set_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE, preRangeVcselPeriod);}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_set_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_FINAL_RANGE, finalRangeVcselPeriod);}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_perform_ref_calibration( &VhvSettings, &PhaseCal);}
}
if (operating_mode == range_continuous_polling) {
if (Status == VL53L0X_ERROR_NONE) {
CurrentParameters.DeviceMode = VL53L0X_DEVICEMODE_CONTINUOUS_RANGING; // Setup in continuous ranging mode
Status = VL53L0X_start_measurement();
}
}
return Status;
}
int VL53L0X::range_meas_int_continuous_mode(void (*fptr)(void))
{ int status, clr_status;
status = VL53L0X_stop_measurement(); // it is safer to do this while sensor is stopped
// status = VL53L0X_SetInterruptThresholds(Device, VL53L0X_DEVICEMODE_CONTINUOUS_RANGING, 0, 300);
status = VL53L0X_set_gpio_config( 0, VL53L0X_DEVICEMODE_CONTINUOUS_RANGING,
VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY, VL53L0X_INTERRUPTPOLARITY_HIGH);
if (!status) {
attach_interrupt_measure_detection_irq(fptr);
enable_interrupt_measure_detection_irq();
}
clr_status = clear_interrupt(VL53L0X_REG_RESULT_INTERRUPT_STATUS | VL53L0X_REG_RESULT_RANGE_STATUS);
if (clr_status!=0) { status = 98; } // VL53L0X_ClearErrorInterrupt_fail;
if (!status) {
status = range_start_continuous_mode();
}
return status;
}
VL53L0X_Error VL53L0X::wait_measurement_data_ready(void)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t new_dat_ready = 0;
uint32_t loop_nb;
// Wait until it finished
// use timeout to avoid deadlock
if (status == VL53L0X_ERROR_NONE) {
loop_nb = 0;
do {
status = VL53L0X_get_measurement_data_ready( &new_dat_ready);
if ((new_dat_ready == 0x01) || status != VL53L0X_ERROR_NONE) {
break;
}
loop_nb = loop_nb + 1;
VL53L0X_polling_delay();
} while (loop_nb < VL53L0X_DEFAULT_MAX_LOOP);
if (loop_nb >= VL53L0X_DEFAULT_MAX_LOOP) {
status = VL53L0X_ERROR_TIME_OUT;
}
}
return status;
}
int VL53L0X::get_distance(uint32_t *p_data)
{
int status = 0;
VL53L0X_RangingMeasurementData_t p_ranging_measurement_data;
status = start_measurement(range_single_shot_polling, NULL, Range_Config_DEFAULT);
if (!status) {
status = get_measurement(range_single_shot_polling, &p_ranging_measurement_data);
}
if (p_ranging_measurement_data.RangeStatus == 0) { // we have a valid range.
*p_data = p_ranging_measurement_data.Range_mm;
} else {
*p_data = 0;
status = VL53L0X_ERROR_RANGE_ERROR;
}
stop_measurement(range_single_shot_polling);
return status;
}
VL53L0X_Error VL53L0X::wait_stop_completed(void)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint32_t stop_completed = 0;
uint32_t loop_nb;
// Wait until it finished
// use timeout to avoid deadlock
if (status == VL53L0X_ERROR_NONE) {
loop_nb = 0;
do {
status = VL53L0X_get_stop_completed_status( &stop_completed);
if ((stop_completed == 0x00) || status != VL53L0X_ERROR_NONE) {
break;
}
loop_nb = loop_nb + 1;
VL53L0X_polling_delay();
} while (loop_nb < VL53L0X_DEFAULT_MAX_LOOP);
if (loop_nb >= VL53L0X_DEFAULT_MAX_LOOP) {
status = VL53L0X_ERROR_TIME_OUT;
}
}
return status;
}
int VL53L0X::get_measurement(OperatingMode operating_mode, VL53L0X_RangingMeasurementData_t *p_data)
{ int Status = VL53L0X_ERROR_NONE;
if (operating_mode == range_single_shot_polling) {
Status = VL53L0X_perform_single_ranging_measurement( p_data);
}
if (operating_mode == range_continuous_polling) {
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_measurement_poll_for_completion();
}
if (Status == VL53L0X_ERROR_NONE) {
Status = VL53L0X_get_ranging_measurement_data( p_data);
// Clear the interrupt
VL53L0X_clear_interrupt_mask( VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY);
VL53L0X_polling_delay();
}
}
if (operating_mode == range_continuous_interrupt) {
Status = VL53L0X_get_ranging_measurement_data( p_data);
VL53L0X_clear_interrupt_mask( VL53L0X_REG_SYSTEM_INTERRUPT_CLEAR | VL53L0X_REG_RESULT_INTERRUPT_STATUS);
}
return Status;
}
int VL53L0X::stop_measurement(OperatingMode operating_mode)
{ int status = VL53L0X_ERROR_NONE;
// don't need to stop for a singleshot range!
if (operating_mode == range_single_shot_polling) {
}
if (operating_mode == range_continuous_interrupt || operating_mode == range_continuous_polling) {
// continuous mode
if (status == VL53L0X_ERROR_NONE) {
//aSerial->printf("Call of VL53L0X_StopMeasurement\n");
status = VL53L0X_stop_measurement();
}
if (status == VL53L0X_ERROR_NONE) {
//aSerial->printf("Wait Stop to be competed\n");
status = wait_stop_completed();
}
if (status == VL53L0X_ERROR_NONE)
status = VL53L0X_clear_interrupt_mask(VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY);
}
return status;
}
int VL53L0X::handle_irq(OperatingMode operating_mode, VL53L0X_RangingMeasurementData_t *data)
{ int status;
status = get_measurement(operating_mode, data);
enable_interrupt_measure_detection_irq();
return status;
}
int VL53L0X::range_start_continuous_mode()
{ CurrentParameters.DeviceMode = VL53L0X_DEVICEMODE_CONTINUOUS_RANGING;
return VL53L0X_start_measurement();
}
VL53L0X_Error VL53L0X::VL53L0X_device_read_strobe(void)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t strobe;
uint32_t loop_nb;
status |= VL53L0X_write_byte( 0x83, 0x00);
/* polling
* use timeout to avoid deadlock*/
if (status == VL53L0X_ERROR_NONE) {
loop_nb = 0;
do {
status = VL53L0X_read_byte( 0x83, &strobe);
if ((strobe != 0x00) || status != VL53L0X_ERROR_NONE) {
break;
}
loop_nb = loop_nb + 1;
} while (loop_nb < VL53L0X_DEFAULT_MAX_LOOP);
if (loop_nb >= VL53L0X_DEFAULT_MAX_LOOP) {
status = VL53L0X_ERROR_TIME_OUT;
}
}
status |= VL53L0X_write_byte( 0x83, 0x01);
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_info_from_device( uint8_t option)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t byte;
uint32_t tmp_dword;
uint8_t module_id;
uint8_t revision;
uint8_t reference_spad_count = 0;
uint8_t reference_spad_type = 0;
uint32_t part_uid_upper = 0;
uint32_t part_uid_lower = 0;
uint32_t offset_fixed1104_mm = 0;
int16_t offset_micro_meters = 0;
uint32_t dist_meas_tgt_fixed1104_mm = 400 << 4;
uint32_t dist_meas_fixed1104_400_mm = 0;
uint32_t signal_rate_meas_fixed1104_400_mm = 0;
char product_id[19];
char *product_id_tmp;
uint8_t read_data_from_device_done;
FixPoint1616_t signal_rate_meas_fixed400_mm_fix = 0;
uint8_t nvm_ref_good_spad_map[VL53L0X_REF_SPAD_BUFFER_SIZE];
int i;
read_data_from_device_done = Data.ReadDataFromDeviceDone;
read_data_from_device_done = Data.ReadDataFromDeviceDone;
read_data_from_device_done = Data.ReadDataFromDeviceDone;
/* This access is done only once after that a GetDeviceInfo or
* datainit is done*/
if (read_data_from_device_done != 7) {
status |= VL53L0X_write_byte( 0x80, 0x01);
status |= VL53L0X_write_byte( 0xFF, 0x01);
status |= VL53L0X_write_byte( 0x00, 0x00);
status |= VL53L0X_write_byte( 0xFF, 0x06);
status |= VL53L0X_read_byte ( 0x83, &byte);
status |= VL53L0X_write_byte( 0x83, byte | 4);
status |= VL53L0X_write_byte( 0xFF, 0x07);
status |= VL53L0X_write_byte( 0x81, 0x01);
status |= VL53L0X_polling_delay();
status |= VL53L0X_write_byte( 0x80, 0x01);
if (((option & 1) == 1) &&
((read_data_from_device_done & 1) == 0)) {
status |= VL53L0X_write_byte( 0x94, 0x6b);
status |= VL53L0X_device_read_strobe();
status |= VL53L0X_read_dword( 0x90, &tmp_dword);
reference_spad_count = (uint8_t)((tmp_dword >> 8) & 0x07f);
reference_spad_type = (uint8_t)((tmp_dword >> 15) & 0x01);
status |= VL53L0X_write_byte( 0x94, 0x24);
status |= VL53L0X_device_read_strobe();
status |= VL53L0X_read_dword( 0x90, &tmp_dword);
nvm_ref_good_spad_map[0] = (uint8_t)((tmp_dword >> 24) & 0xff);
nvm_ref_good_spad_map[1] = (uint8_t)((tmp_dword >> 16) & 0xff);
nvm_ref_good_spad_map[2] = (uint8_t)((tmp_dword >> 8) & 0xff);
nvm_ref_good_spad_map[3] = (uint8_t)(tmp_dword & 0xff);
status |= VL53L0X_write_byte( 0x94, 0x25);
status |= VL53L0X_device_read_strobe();
status |= VL53L0X_read_dword( 0x90, &tmp_dword);
nvm_ref_good_spad_map[4] = (uint8_t)((tmp_dword >> 24) & 0xff);
nvm_ref_good_spad_map[5] = (uint8_t)((tmp_dword >> 16) & 0xff);
}
if (((option & 2) == 2) &&
((read_data_from_device_done & 2) == 0)) {
status |= VL53L0X_write_byte( 0x94, 0x02);
status |= VL53L0X_device_read_strobe();
status |= VL53L0X_read_byte( 0x90, &module_id);
status |= VL53L0X_write_byte( 0x94, 0x7B);
status |= VL53L0X_device_read_strobe();
status |= VL53L0X_read_byte( 0x90, &revision);
status |= VL53L0X_write_byte( 0x94, 0x77);
status |= VL53L0X_device_read_strobe();
status |= VL53L0X_read_dword( 0x90, &tmp_dword);
product_id[0] = (char)((tmp_dword >> 25) & 0x07f);
product_id[1] = (char)((tmp_dword >> 18) & 0x07f);
product_id[2] = (char)((tmp_dword >> 11) & 0x07f);
product_id[3] = (char)((tmp_dword >> 4) & 0x07f);
byte = (uint8_t)((tmp_dword & 0x00f) << 3);
status |= VL53L0X_write_byte( 0x94, 0x78);
status |= VL53L0X_device_read_strobe();
status |= VL53L0X_read_dword( 0x90, &tmp_dword);
product_id[4] = (char)(byte +
((tmp_dword >> 29) & 0x07f));
product_id[5] = (char)((tmp_dword >> 22) & 0x07f);
product_id[6] = (char)((tmp_dword >> 15) & 0x07f);
product_id[7] = (char)((tmp_dword >> 8) & 0x07f);
product_id[8] = (char)((tmp_dword >> 1) & 0x07f);
byte = (uint8_t)((tmp_dword & 0x001) << 6);
status |= VL53L0X_write_byte( 0x94, 0x79);
status |= VL53L0X_device_read_strobe();
status |= VL53L0X_read_dword( 0x90, &tmp_dword);
product_id[9] = (char)(byte +
((tmp_dword >> 26) & 0x07f));
product_id[10] = (char)((tmp_dword >> 19) & 0x07f);
product_id[11] = (char)((tmp_dword >> 12) & 0x07f);
product_id[12] = (char)((tmp_dword >> 5) & 0x07f);
byte = (uint8_t)((tmp_dword & 0x01f) << 2);
status |= VL53L0X_write_byte( 0x94, 0x7A);
status |= VL53L0X_device_read_strobe();
status |= VL53L0X_read_dword( 0x90, &tmp_dword);
product_id[13] = (char)(byte +
((tmp_dword >> 30) & 0x07f));
product_id[14] = (char)((tmp_dword >> 23) & 0x07f);
product_id[15] = (char)((tmp_dword >> 16) & 0x07f);
product_id[16] = (char)((tmp_dword >> 9) & 0x07f);
product_id[17] = (char)((tmp_dword >> 2) & 0x07f);
product_id[18] = '\0';
}
if (((option & 4) == 4) &&
((read_data_from_device_done & 4) == 0)) {
status |= VL53L0X_write_byte( 0x94, 0x7B);
status |= VL53L0X_device_read_strobe();
status |= VL53L0X_read_dword( 0x90, &part_uid_upper);
status |= VL53L0X_write_byte( 0x94, 0x7C);
status |= VL53L0X_device_read_strobe();
status |= VL53L0X_read_dword( 0x90, &part_uid_lower);
status |= VL53L0X_write_byte( 0x94, 0x73);
status |= VL53L0X_device_read_strobe();
status |= VL53L0X_read_dword( 0x90, &tmp_dword);
signal_rate_meas_fixed1104_400_mm = (tmp_dword & 0x0000000ff) << 8;
status |= VL53L0X_write_byte( 0x94, 0x74);
status |= VL53L0X_device_read_strobe();
status |= VL53L0X_read_dword( 0x90, &tmp_dword);
signal_rate_meas_fixed1104_400_mm |= ((tmp_dword & 0xff000000) >> 24);
status |= VL53L0X_write_byte( 0x94, 0x75);
status |= VL53L0X_device_read_strobe();
status |= VL53L0X_read_dword( 0x90, &tmp_dword);
dist_meas_fixed1104_400_mm = (tmp_dword & 0x0000000ff) << 8;
status |= VL53L0X_write_byte( 0x94, 0x76);
status |= VL53L0X_device_read_strobe();
status |= VL53L0X_read_dword( 0x90, &tmp_dword);
dist_meas_fixed1104_400_mm |= ((tmp_dword & 0xff000000) >> 24);
}
status |= VL53L0X_write_byte( 0x81, 0x00);
status |= VL53L0X_write_byte( 0xFF, 0x06);
status |= VL53L0X_read_byte( 0x83, &byte);
status |= VL53L0X_write_byte( 0x83, byte & 0xfb);
status |= VL53L0X_write_byte( 0xFF, 0x01);
status |= VL53L0X_write_byte( 0x00, 0x01);
status |= VL53L0X_write_byte( 0xFF, 0x00);
status |= VL53L0X_write_byte( 0x80, 0x00);
}
if ((status == VL53L0X_ERROR_NONE) &&
(read_data_from_device_done != 7)) {
/* Assign to variable if status is ok */
if (((option & 1) == 1) &&
((read_data_from_device_done & 1) == 0)) {
Data.ReferenceSpadCount = reference_spad_count;
Data.ReferenceSpadType = reference_spad_type;
for (i = 0; i < VL53L0X_REF_SPAD_BUFFER_SIZE; i++) {
Data.RefGoodSpadMap[i] =
nvm_ref_good_spad_map[i];
}
}
if (((option & 2) == 2) &&
((read_data_from_device_done & 2) == 0)) {
Data.ModuleId = module_id;
Data.Revision = revision;
product_id_tmp = Data.ProductId;
VL53L0X_COPYSTRING(product_id_tmp, product_id);
}
if (((option & 4) == 4) &&
((read_data_from_device_done & 4) == 0)) {
Data.PartUIDUpper = part_uid_upper;
Data.PartUIDLower = part_uid_lower;
signal_rate_meas_fixed400_mm_fix =
VL53L0X_FP97TOFP1616(signal_rate_meas_fixed1104_400_mm);
Data.SignalRateMeasFixed400mm = signal_rate_meas_fixed400_mm_fix;
offset_micro_meters = 0;
if (dist_meas_fixed1104_400_mm != 0) {
offset_fixed1104_mm =
dist_meas_fixed1104_400_mm -
dist_meas_tgt_fixed1104_mm;
offset_micro_meters = (offset_fixed1104_mm
* 1000) >> 4;
offset_micro_meters *= -1;
}
Data.Part2PartOffsetAdjustNVM_um = offset_micro_meters;
}
byte = (uint8_t)(read_data_from_device_done | option);
Data.ReadDataFromDeviceDone = byte;
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_offset_calibration_data_micro_meter(int32_t *p_offset_calibration_data_micro_meter)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint16_t range_offset_register;
int16_t c_max_offset = 2047;
int16_t c_offset_range = 4096;
/* Note, that offset has 10.2 format */
status = VL53L0X_read_word(VL53L0X_REG_ALGO_PART_TO_PART_RANGE_OFFSET_MM,
&range_offset_register);
if (status == VL53L0X_ERROR_NONE) {
range_offset_register = (range_offset_register & 0x0fff);
/* Apply 12 bit 2's compliment conversion */
if (range_offset_register > c_max_offset) {
*p_offset_calibration_data_micro_meter =
(int16_t)(range_offset_register - c_offset_range) * 250;
} else {
*p_offset_calibration_data_micro_meter =
(int16_t)range_offset_register * 250; }
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_set_offset_calibration_data_micro_meter(int32_t offset_calibration_data_micro_meter)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
int32_t c_max_offset_micro_meter = 511000;
int32_t c_min_offset_micro_meter = -512000;
int16_t c_offset_range = 4096;
uint32_t encoded_offset_val;
if (offset_calibration_data_micro_meter > c_max_offset_micro_meter) {
offset_calibration_data_micro_meter = c_max_offset_micro_meter;
} else {
if (offset_calibration_data_micro_meter < c_min_offset_micro_meter) {
offset_calibration_data_micro_meter = c_min_offset_micro_meter;
}
}
/* The offset register is 10.2 format and units are mm
* therefore conversion is applied by a division of 250. */
if (offset_calibration_data_micro_meter >= 0) {
encoded_offset_val = offset_calibration_data_micro_meter / 250;
} else {
encoded_offset_val =
c_offset_range + offset_calibration_data_micro_meter / 250;
}
status = VL53L0X_write_word(VL53L0X_REG_ALGO_PART_TO_PART_RANGE_OFFSET_MM,
encoded_offset_val);
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_apply_offset_adjustment(void)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
int32_t corrected_offset_micro_meters;
int32_t current_offset_micro_meters;
/* if we run on this function we can read all the NVM info used by the API */
status = VL53L0X_get_info_from_device( 7);
/* Read back current device offset */
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_get_offset_calibration_data_micro_meter(¤t_offset_micro_meters);
}
/* Apply Offset Adjustment derived from 400mm measurements */
if (status == VL53L0X_ERROR_NONE) {
/* Store initial device offset */
Data.Part2PartOffsetNVM_um = current_offset_micro_meters;
corrected_offset_micro_meters = current_offset_micro_meters +
(int32_t)Data.Part2PartOffsetAdjustNVM_um;
status = VL53L0X_set_offset_calibration_data_micro_meter(corrected_offset_micro_meters);
/* store current, adjusted offset */
if (status == VL53L0X_ERROR_NONE) {
CurrentParameters.RangeOffset_um = corrected_offset_micro_meters;
}
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_inter_measurement_period_ms(uint32_t *p_inter_measurement_period_ms)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint16_t osc_calibrate_val;
uint32_t im_period_ms;
status = VL53L0X_read_word( VL53L0X_REG_OSC_CALIBRATE_VAL,
&osc_calibrate_val);
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_read_dword(VL53L0X_REG_SYSTEM_INTERMEASUREMENT_PERIOD,
&im_period_ms);
}
if (status == VL53L0X_ERROR_NONE) {
if (osc_calibrate_val != 0) {
*p_inter_measurement_period_ms =
im_period_ms / osc_calibrate_val;
}
CurrentParameters.InterMeasurementPeriod_ms = *p_inter_measurement_period_ms;
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_x_talk_compensation_rate_MHz(FixPoint1616_t *p_xtalk_compensation_rate_MHz)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint16_t value;
FixPoint1616_t temp_fix1616;
status = VL53L0X_read_word(VL53L0X_REG_CROSSTALK_COMPENSATION_PEAK_RATE_MHz, (uint16_t *)&value);
if (status == VL53L0X_ERROR_NONE) {
if (value == 0) {
/* the Xtalk is disabled return value from memory */
temp_fix1616 = CurrentParameters.XTalkCompensationRate_MHz ;
*p_xtalk_compensation_rate_MHz = temp_fix1616;
CurrentParameters.XTalkCompensationEnable = 0;
} else {
temp_fix1616 = VL53L0X_FP313TOFP1616(value);
*p_xtalk_compensation_rate_MHz = temp_fix1616;
CurrentParameters.XTalkCompensationRate_MHz = temp_fix1616;
CurrentParameters.XTalkCompensationEnable = 1;
}
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_limit_check_value( uint16_t limit_check_id,
FixPoint1616_t *p_limit_check_value)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t enable_zero_value = 0;
uint16_t temp16;
FixPoint1616_t temp_fix1616;
switch (limit_check_id) {
case VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE:
/* internal computation: */
temp_fix1616 = CurrentParameters.LimitChecksValue[VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE];
enable_zero_value = 0;
break;
case VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE:
status = VL53L0X_read_word(VL53L0X_REG_FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT, &temp16);
if (status == VL53L0X_ERROR_NONE) {
temp_fix1616 = VL53L0X_FP97TOFP1616(temp16);
}
enable_zero_value = 1;
break;
case VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP:
/* internal computation: */
temp_fix1616 = CurrentParameters.LimitChecksValue[VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP];
enable_zero_value = 0;
break;
case VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD:
/* internal computation: */
temp_fix1616 = CurrentParameters.LimitChecksValue[VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD];
enable_zero_value = 0;
break;
case VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC:
case VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE:
status = VL53L0X_read_word(VL53L0X_REG_PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT,
&temp16);
if (status == VL53L0X_ERROR_NONE) {
temp_fix1616 = VL53L0X_FP97TOFP1616(temp16);
}
enable_zero_value = 0;
break;
default:
status = VL53L0X_ERROR_INVALID_PARAMS;
}
if (status == VL53L0X_ERROR_NONE) {
if (enable_zero_value == 1) {
if (temp_fix1616 == 0) {
/* disabled: return value from memory */
temp_fix1616 = CurrentParameters.LimitChecksValue[limit_check_id];
*p_limit_check_value = temp_fix1616;
CurrentParameters.LimitChecksEnable[limit_check_id] = 0;
} else {
*p_limit_check_value = temp_fix1616;
CurrentParameters.LimitChecksValue[limit_check_id] = temp_fix1616;
CurrentParameters.LimitChecksEnable[limit_check_id] = 1;
}
} else { *p_limit_check_value = temp_fix1616; }
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_limit_check_enable( uint16_t limit_check_id,
uint8_t *p_limit_check_enable)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t temp8;
if (limit_check_id >= VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS) {
status = VL53L0X_ERROR_INVALID_PARAMS;
*p_limit_check_enable = 0;
} else {
temp8 = CurrentParameters.LimitChecksEnable[limit_check_id];
*p_limit_check_enable = temp8;
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_wrap_around_check_enable(uint8_t *p_wrap_around_check_enable)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t data;
status = VL53L0X_read_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, &data);
if (status == VL53L0X_ERROR_NONE) {
Data.SequenceConfig = data;
if (data & (0x01 << 7)) {
*p_wrap_around_check_enable = 0x01;
} else {
*p_wrap_around_check_enable = 0x00;
}
}
if (status == VL53L0X_ERROR_NONE) {
CurrentParameters.WrapAroundCheckEnable = *p_wrap_around_check_enable;
}
return status;
}
VL53L0X_Error VL53L0X::sequence_step_enabled(VL53L0X_SequenceStepId sequence_step_id, uint8_t sequence_config,
uint8_t *p_sequence_step_enabled)
{ VL53L0X_Error Status = VL53L0X_ERROR_NONE;
*p_sequence_step_enabled = 0;
switch (sequence_step_id) {
case VL53L0X_SEQUENCESTEP_TCC:
*p_sequence_step_enabled = (sequence_config & 0x10) >> 4;
break;
case VL53L0X_SEQUENCESTEP_DSS:
*p_sequence_step_enabled = (sequence_config & 0x08) >> 3;
break;
case VL53L0X_SEQUENCESTEP_MSRC:
*p_sequence_step_enabled = (sequence_config & 0x04) >> 2;
break;
case VL53L0X_SEQUENCESTEP_PRE_RANGE:
*p_sequence_step_enabled = (sequence_config & 0x40) >> 6;
break;
case VL53L0X_SEQUENCESTEP_FINAL_RANGE:
*p_sequence_step_enabled = (sequence_config & 0x80) >> 7;
break;
default:
Status = VL53L0X_ERROR_INVALID_PARAMS;
}
return Status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_sequence_step_enables(VL53L0X_SchedulerSequenceSteps_t *p_scheduler_sequence_steps)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t sequence_config = 0;
status = VL53L0X_read_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
&sequence_config);
if (status == VL53L0X_ERROR_NONE) {
status = sequence_step_enabled(VL53L0X_SEQUENCESTEP_TCC, sequence_config,
&p_scheduler_sequence_steps->TccOn);
}
if (status == VL53L0X_ERROR_NONE) {
status = sequence_step_enabled(VL53L0X_SEQUENCESTEP_DSS, sequence_config,
&p_scheduler_sequence_steps->DssOn);
}
if (status == VL53L0X_ERROR_NONE) {
status = sequence_step_enabled(VL53L0X_SEQUENCESTEP_MSRC, sequence_config,
&p_scheduler_sequence_steps->MsrcOn);
}
if (status == VL53L0X_ERROR_NONE) {
status = sequence_step_enabled(VL53L0X_SEQUENCESTEP_PRE_RANGE, sequence_config,
&p_scheduler_sequence_steps->PreRangeOn);
}
if (status == VL53L0X_ERROR_NONE) {
status = sequence_step_enabled(VL53L0X_SEQUENCESTEP_FINAL_RANGE, sequence_config,
&p_scheduler_sequence_steps->FinalRangeOn);
}
return status;
}
uint8_t VL53L0X::VL53L0X_decode_vcsel_period(uint8_t vcsel_period_reg)
{ /*! Converts the encoded VCSEL period register value into the real period in PLL clocks */
uint8_t vcsel_period_pclks = 0;
vcsel_period_pclks = (vcsel_period_reg + 1) << 1;
return vcsel_period_pclks;
}
uint8_t VL53L0X::lv53l0x_encode_vcsel_period(uint8_t vcsel_period_pclks)
{ /*! Converts the encoded VCSEL period register value into the real period in PLL clocks */
uint8_t vcsel_period_reg = 0;
vcsel_period_reg = (vcsel_period_pclks >> 1) - 1;
return vcsel_period_reg;
}
VL53L0X_Error VL53L0X::wrapped_VL53L0X_set_vcsel_pulse_period(VL53L0X_VcselPeriod vcsel_period_type, uint8_t vcsel_pulse_period_pclk)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t vcsel_period_reg;
uint8_t min_pre_vcsel_period_pclk = 12;
uint8_t max_pre_vcsel_period_pclk = 18;
uint8_t min_final_vcsel_period_pclk = 8;
uint8_t max_final_vcsel_period_pclk = 14;
uint32_t measurement_timing_budget_us;
uint32_t final_range_timeout_us;
uint32_t pre_range_timeout_us;
uint32_t msrc_timeout_us;
uint8_t phase_cal_int = 0;
/* Check if valid clock period requested */
if ((vcsel_pulse_period_pclk % 2) != 0) {
/* Value must be an even number */
status = VL53L0X_ERROR_INVALID_PARAMS;
} else if (vcsel_period_type == VL53L0X_VCSEL_PERIOD_PRE_RANGE &&
(vcsel_pulse_period_pclk < min_pre_vcsel_period_pclk ||
vcsel_pulse_period_pclk > max_pre_vcsel_period_pclk)) {
status = VL53L0X_ERROR_INVALID_PARAMS;
} else if (vcsel_period_type == VL53L0X_VCSEL_PERIOD_FINAL_RANGE &&
(vcsel_pulse_period_pclk < min_final_vcsel_period_pclk ||
vcsel_pulse_period_pclk > max_final_vcsel_period_pclk)) {
status = VL53L0X_ERROR_INVALID_PARAMS;
}
/* Apply specific settings for the requested clock period */
if (status != VL53L0X_ERROR_NONE) { return status; }
if (vcsel_period_type == VL53L0X_VCSEL_PERIOD_PRE_RANGE) {
/* Set phase check limits */
if (vcsel_pulse_period_pclk == 12) {
status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
0x18);
status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
0x08);
} else if (vcsel_pulse_period_pclk == 14) {
status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
0x30);
status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
0x08);
} else if (vcsel_pulse_period_pclk == 16) {
status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
0x40);
status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
0x08);
} else if (vcsel_pulse_period_pclk == 18) {
status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
0x50);
status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
0x08);
}
} else if (vcsel_period_type == VL53L0X_VCSEL_PERIOD_FINAL_RANGE) {
if (vcsel_pulse_period_pclk == 8) {
status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,0x10);
status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,0x08);
status |= VL53L0X_write_byte(VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x02);
status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x0C);
status |= VL53L0X_write_byte( 0xff, 0x01);
status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_LIM,0x30);
status |= VL53L0X_write_byte( 0xff, 0x00);
} else if (vcsel_pulse_period_pclk == 10) {
status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,0x28);
status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,0x08);
status |= VL53L0X_write_byte(VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x09);
status |= VL53L0X_write_byte( 0xff, 0x01);
status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_LIM,0x20);
status |= VL53L0X_write_byte( 0xff, 0x00);
} else if (vcsel_pulse_period_pclk == 12) {
status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x38);
status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
status |= VL53L0X_write_byte(VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x08);
status |= VL53L0X_write_byte( 0xff, 0x01);
status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_LIM,0x20);
status |= VL53L0X_write_byte( 0xff, 0x00);
} else if (vcsel_pulse_period_pclk == 14) {
status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,0x048);
status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,0x08);
status |= VL53L0X_write_byte(VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x07);
status |= VL53L0X_write_byte( 0xff, 0x01);
status |= VL53L0X_write_byte(VL53L0X_REG_ALGO_PHASECAL_LIM,0x20);
status |= VL53L0X_write_byte( 0xff, 0x00);
}
}
/* Re-calculate and apply timeouts, in macro periods */
if (status == VL53L0X_ERROR_NONE) {
vcsel_period_reg = lv53l0x_encode_vcsel_period((uint8_t) vcsel_pulse_period_pclk);
/* When the VCSEL period for the pre or final range is changed,
* the corresponding timeout must be read from the device using
* the current VCSEL period, then the new VCSEL period can be
* applied. The timeout then must be written back to the device
* using the new VCSEL period.
*
* For the MSRC timeout, the same applies - this timeout being
* dependant on the pre-range vcsel period.
*/
switch (vcsel_period_type) {
case VL53L0X_VCSEL_PERIOD_PRE_RANGE:
status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_PRE_RANGE,
&pre_range_timeout_us);
if (status == VL53L0X_ERROR_NONE)
status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_MSRC,
&msrc_timeout_us);
if (status == VL53L0X_ERROR_NONE)
status = VL53L0X_write_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VCSEL_PERIOD,
vcsel_period_reg);
if (status == VL53L0X_ERROR_NONE)
status = set_sequence_step_timeout(VL53L0X_SEQUENCESTEP_PRE_RANGE,
pre_range_timeout_us);
if (status == VL53L0X_ERROR_NONE)
status = set_sequence_step_timeout(VL53L0X_SEQUENCESTEP_MSRC,
msrc_timeout_us);
Data.PreRangeVcselPulsePeriod = vcsel_pulse_period_pclk;
break;
case VL53L0X_VCSEL_PERIOD_FINAL_RANGE:
status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_FINAL_RANGE,
&final_range_timeout_us);
if (status == VL53L0X_ERROR_NONE)
status = VL53L0X_write_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD,
vcsel_period_reg);
if (status == VL53L0X_ERROR_NONE)
status = set_sequence_step_timeout(VL53L0X_SEQUENCESTEP_FINAL_RANGE,
final_range_timeout_us);
Data.FinalRangeVcselPulsePeriod = vcsel_pulse_period_pclk;
break;
default:
status = VL53L0X_ERROR_INVALID_PARAMS;
}
}
/* Finally, the timing budget must be re-applied */
if (status == VL53L0X_ERROR_NONE) {
measurement_timing_budget_us = CurrentParameters.MeasurementTimingBudget_us ;
status = VL53L0X_set_measurement_timing_budget_us(measurement_timing_budget_us);
}
/* Perform the phase calibration. This is needed after changing on
* vcsel period. get_data_enable = 0, restore_config = 1 */
if (status == VL53L0X_ERROR_NONE)
status = VL53L0X_perform_phase_calibration(&phase_cal_int, 0, 1);
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_set_vcsel_pulse_period(VL53L0X_VcselPeriod vcsel_period_type, uint8_t vcsel_pulse_period)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
status = wrapped_VL53L0X_set_vcsel_pulse_period( vcsel_period_type, vcsel_pulse_period);
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_vcsel_pulse_period(VL53L0X_VcselPeriod vcsel_period_type, uint8_t *p_vcsel_pulse_period_pclk)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t vcsel_period_reg;
switch (vcsel_period_type) {
case VL53L0X_VCSEL_PERIOD_PRE_RANGE:
status = VL53L0X_read_byte(VL53L0X_REG_PRE_RANGE_CONFIG_VCSEL_PERIOD,
&vcsel_period_reg);
break;
case VL53L0X_VCSEL_PERIOD_FINAL_RANGE:
status = VL53L0X_read_byte(VL53L0X_REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD,
&vcsel_period_reg);
break;
default:
status = VL53L0X_ERROR_INVALID_PARAMS;
}
if (status == VL53L0X_ERROR_NONE)
*p_vcsel_pulse_period_pclk = VL53L0X_decode_vcsel_period(vcsel_period_reg);
return status;
}
uint32_t VL53L0X::VL53L0X_decode_timeout(uint16_t encoded_timeout)
{ /*! Decode 16-bit timeout register value - format (LSByte * 2^MSByte) + 1 */
uint32_t timeout_macro_clks = 0;
timeout_macro_clks = ((uint32_t)(encoded_timeout & 0x00FF)
<< (uint32_t)((encoded_timeout & 0xFF00) >> 8)) + 1;
return timeout_macro_clks;
}
uint32_t VL53L0X::VL53L0X_calc_macro_period_ps( uint8_t vcsel_period_pclks)
{ uint64_t pll_period_ps;
uint32_t macro_period_vclks;
uint32_t macro_period_ps;
/* The above calculation will produce rounding errors, therefore set fixed value*/
pll_period_ps = 1655;
macro_period_vclks = 2304;
macro_period_ps = (uint32_t)(macro_period_vclks
* vcsel_period_pclks * pll_period_ps);
return macro_period_ps;
}
/* To convert register value into us */
uint32_t VL53L0X::VL53L0X_calc_timeout_us(uint16_t timeout_period_mclks,
uint8_t vcsel_period_pclks)
{ uint32_t macro_period_ps;
uint32_t macro_period_ns;
uint32_t actual_timeout_period_us = 0;
macro_period_ps = VL53L0X_calc_macro_period_ps( vcsel_period_pclks);
macro_period_ns = (macro_period_ps + 500) / 1000;
actual_timeout_period_us =
((timeout_period_mclks * macro_period_ns) + 500) / 1000;
return actual_timeout_period_us;
}
VL53L0X_Error VL53L0X::get_sequence_step_timeout(VL53L0X_SequenceStepId sequence_step_id,
uint32_t *p_time_out_micro_secs)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t current_vcsel_pulse_period_p_clk;
uint8_t encoded_time_out_byte = 0;
uint32_t timeout_us = 0;
uint16_t pre_range_encoded_time_out = 0;
uint16_t msrc_time_out_m_clks;
uint16_t pre_range_time_out_m_clks;
uint16_t final_range_time_out_m_clks = 0;
uint16_t final_range_encoded_time_out;
VL53L0X_SchedulerSequenceSteps_t scheduler_sequence_steps;
if ((sequence_step_id == VL53L0X_SEQUENCESTEP_TCC) ||
(sequence_step_id == VL53L0X_SEQUENCESTEP_DSS) ||
(sequence_step_id == VL53L0X_SEQUENCESTEP_MSRC)) {
status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,
¤t_vcsel_pulse_period_p_clk);
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_read_byte(VL53L0X_REG_MSRC_CONFIG_TIMEOUT_MACROP,
&encoded_time_out_byte);
}
msrc_time_out_m_clks = VL53L0X_decode_timeout(encoded_time_out_byte);
timeout_us = VL53L0X_calc_timeout_us(msrc_time_out_m_clks,
current_vcsel_pulse_period_p_clk);
} else if (sequence_step_id == VL53L0X_SEQUENCESTEP_PRE_RANGE) {
/* Retrieve PRE-RANGE VCSEL Period */
status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,
¤t_vcsel_pulse_period_p_clk);
/* Retrieve PRE-RANGE Timeout in Macro periods (MCLKS) */
if (status == VL53L0X_ERROR_NONE) {
/* Retrieve PRE-RANGE VCSEL Period */
status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,
¤t_vcsel_pulse_period_p_clk);
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_read_word(VL53L0X_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
&pre_range_encoded_time_out);
}
pre_range_time_out_m_clks = VL53L0X_decode_timeout(pre_range_encoded_time_out);
timeout_us = VL53L0X_calc_timeout_us(pre_range_time_out_m_clks,
current_vcsel_pulse_period_p_clk);
}
} else if (sequence_step_id == VL53L0X_SEQUENCESTEP_FINAL_RANGE) {
VL53L0X_get_sequence_step_enables( &scheduler_sequence_steps);
pre_range_time_out_m_clks = 0;
if (scheduler_sequence_steps.PreRangeOn) {
/* Retrieve PRE-RANGE VCSEL Period */
status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,
¤t_vcsel_pulse_period_p_clk);
/* Retrieve PRE-RANGE Timeout in Macro periods
* (MCLKS) */
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_read_word(VL53L0X_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
&pre_range_encoded_time_out);
pre_range_time_out_m_clks = VL53L0X_decode_timeout(pre_range_encoded_time_out);
}
}
if (status == VL53L0X_ERROR_NONE) {
/* Retrieve FINAL-RANGE VCSEL Period */
status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_FINAL_RANGE,
¤t_vcsel_pulse_period_p_clk);
}
/* Retrieve FINAL-RANGE Timeout in Macro periods (MCLKS) */
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_read_word(VL53L0X_REG_FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI,
&final_range_encoded_time_out);
final_range_time_out_m_clks = VL53L0X_decode_timeout(final_range_encoded_time_out);
}
final_range_time_out_m_clks -= pre_range_time_out_m_clks;
timeout_us = VL53L0X_calc_timeout_us(final_range_time_out_m_clks,
current_vcsel_pulse_period_p_clk);
}
*p_time_out_micro_secs = timeout_us;
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_measurement_timing_budget_us(uint32_t *p_measurement_timing_budget_us)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
VL53L0X_SchedulerSequenceSteps_t scheduler_sequence_steps;
uint32_t final_range_timeout_us;
uint32_t msrc_dcc_tcc_timeout_us = 2000;
uint32_t start_overhead_us = 1910;
uint32_t end_overhead_us = 960;
uint32_t msrc_overhead_us = 660;
uint32_t tcc_overhead_us = 590;
uint32_t dss_overhead_us = 690;
uint32_t pre_range_overhead_us = 660;
uint32_t final_range_overhead_us = 550;
uint32_t pre_range_timeout_us = 0;
/* Start and end overhead times always present */
*p_measurement_timing_budget_us
= start_overhead_us + end_overhead_us;
status = VL53L0X_get_sequence_step_enables( &scheduler_sequence_steps);
if (status != VL53L0X_ERROR_NONE) { return status; }
if (scheduler_sequence_steps.TccOn ||
scheduler_sequence_steps.MsrcOn ||
scheduler_sequence_steps.DssOn) {
status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_MSRC,
&msrc_dcc_tcc_timeout_us);
if (status == VL53L0X_ERROR_NONE) {
if (scheduler_sequence_steps.TccOn) {
*p_measurement_timing_budget_us +=
msrc_dcc_tcc_timeout_us + tcc_overhead_us;
}
if (scheduler_sequence_steps.DssOn) {
*p_measurement_timing_budget_us +=
2 * (msrc_dcc_tcc_timeout_us + dss_overhead_us);
} else if (scheduler_sequence_steps.MsrcOn) {
*p_measurement_timing_budget_us +=
msrc_dcc_tcc_timeout_us + msrc_overhead_us;
}
}
}
if (status == VL53L0X_ERROR_NONE) {
if (scheduler_sequence_steps.PreRangeOn) {
status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_PRE_RANGE,
&pre_range_timeout_us);
*p_measurement_timing_budget_us +=
pre_range_timeout_us + pre_range_overhead_us;
}
}
if (status == VL53L0X_ERROR_NONE) {
if (scheduler_sequence_steps.FinalRangeOn) {
status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_FINAL_RANGE,
&final_range_timeout_us);
*p_measurement_timing_budget_us +=
(final_range_timeout_us + final_range_overhead_us);
}
}
if (status == VL53L0X_ERROR_NONE) {
CurrentParameters.MeasurementTimingBudget_us = *p_measurement_timing_budget_us;}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_device_parameters(VL53L0X_DeviceParameters_t *p_device_parameters)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
int i;
p_device_parameters->DeviceMode = CurrentParameters.DeviceMode;
if (status == VL53L0X_ERROR_NONE)
status = VL53L0X_get_inter_measurement_period_ms(&(p_device_parameters->InterMeasurementPeriod_ms));
if (status == VL53L0X_ERROR_NONE) {
p_device_parameters->XTalkCompensationEnable = 0;
}
if (status == VL53L0X_ERROR_NONE)
status = VL53L0X_get_x_talk_compensation_rate_MHz(&(p_device_parameters->XTalkCompensationRate_MHz));
if (status == VL53L0X_ERROR_NONE)
status = VL53L0X_get_offset_calibration_data_micro_meter(&(p_device_parameters->RangeOffset_um));
if (status == VL53L0X_ERROR_NONE) {
for (i = 0; i < VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS; i++) {
/* get first the values, then the enables.
* VL53L0X_GetLimitCheckValue will modify the enable
* flags
*/
if (status == VL53L0X_ERROR_NONE) {
status |= VL53L0X_get_limit_check_value( i,
&(p_device_parameters->LimitChecksValue[i]));
} else {
break;
}
if (status == VL53L0X_ERROR_NONE) {
status |= VL53L0X_get_limit_check_enable( i,
&(p_device_parameters->LimitChecksEnable[i]));
} else {
break;
}
}
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_get_wrap_around_check_enable(&(p_device_parameters->WrapAroundCheckEnable));
}
/* Need to be done at the end as it uses VCSELPulsePeriod */
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_get_measurement_timing_budget_us(&(p_device_parameters->MeasurementTimingBudget_us));
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_set_limit_check_value( uint16_t limit_check_id,
FixPoint1616_t limit_check_value)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t temp8;
temp8 = CurrentParameters.LimitChecksEnable[limit_check_id];
if (temp8 == 0) { /* disabled write only internal value */
CurrentParameters.LimitChecksValue[limit_check_id] = limit_check_value;
} else {
switch (limit_check_id) {
case VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE:/* internal computation: */
CurrentParameters.LimitChecksValue[VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE] = limit_check_value;
break;
case VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE:
status = VL53L0X_write_word(VL53L0X_REG_FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT,
VL53L0X_FP1616TOFP97(limit_check_value));
break;
case VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP:/* internal computation: */
CurrentParameters.LimitChecksValue[VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP] = limit_check_value;
break;
case VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD:/* internal computation: */
CurrentParameters.LimitChecksValue[VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD] = limit_check_value;
break;
case VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC:
case VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE:
status = VL53L0X_write_word(VL53L0X_REG_PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT,
VL53L0X_FP1616TOFP97(limit_check_value));
break;
default:
status = VL53L0X_ERROR_INVALID_PARAMS;
}
if (status == VL53L0X_ERROR_NONE) {
CurrentParameters.LimitChecksValue[limit_check_id] = limit_check_value;
}
}
return status;
}
// instead of passing VL53L0X_DeviceInfo_t *p_VL53L0X_device_info, directly fill Device_Info
VL53L0X_Error VL53L0X::VL53L0X_get_device_info()
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t revision_id;
uint8_t revision;
char *product_id_tmp;
status = VL53L0X_get_info_from_device( 2);
if (status == VL53L0X_ERROR_NONE) {
if (Data.ModuleId == 0) {
revision = 0;
VL53L0X_COPYSTRING(Device_Info.ProductId, "");
} else {
revision = Data.Revision;
product_id_tmp = Data.ProductId;
VL53L0X_COPYSTRING(Device_Info.ProductId, product_id_tmp);
}
}
if (status == VL53L0X_ERROR_NONE) {
if (revision == 0) {
VL53L0X_COPYSTRING(Device_Info.Name,
VL53L0X_STRING_DEVICE_INFO_NAME_TS0);
} else if ((revision <= 34) && (revision != 32)) {
VL53L0X_COPYSTRING(Device_Info.Name,
VL53L0X_STRING_DEVICE_INFO_NAME_TS1);
} else if (revision < 39) {
VL53L0X_COPYSTRING(Device_Info.Name,
VL53L0X_STRING_DEVICE_INFO_NAME_TS2);
} else {VL53L0X_COPYSTRING(Device_Info.Name,
VL53L0X_STRING_DEVICE_INFO_NAME_ES1);
}
VL53L0X_COPYSTRING(Device_Info.Type, VL53L0X_STRING_DEVICE_INFO_TYPE);
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_read_byte( VL53L0X_REG_IDENTIFICATION_MODEL_ID,
&Device_Info.ProductType);}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_read_byte(VL53L0X_REG_IDENTIFICATION_REVISION_ID,
&revision_id);
Device_Info.ProductRevisionMajor = 1;
Device_Info.ProductRevisionMinor =
(revision_id & 0xF0) >> 4;
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_interrupt_mask_status(uint32_t *p_interrupt_mask_status)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t byte;
status = VL53L0X_read_byte( VL53L0X_REG_RESULT_INTERRUPT_STATUS, &byte);
*p_interrupt_mask_status = byte & 0x07;
if (byte & 0x18) { status = VL53L0X_ERROR_RANGE_ERROR;}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_measurement_data_ready(uint8_t *p_measurement_data_ready)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t sys_range_status_register;
uint8_t interrupt_config;
uint32_t interrupt_mask;
interrupt_config = Data.Pin0GpioFunctionality;
if (interrupt_config ==
VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY) {
status = VL53L0X_get_interrupt_mask_status( &interrupt_mask);
if (interrupt_mask ==
VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY) {
*p_measurement_data_ready = 1;
} else {
*p_measurement_data_ready = 0;
}
} else {
status = VL53L0X_read_byte( VL53L0X_REG_RESULT_RANGE_STATUS,
&sys_range_status_register);
if (status == VL53L0X_ERROR_NONE) {
if (sys_range_status_register & 0x01) {
*p_measurement_data_ready = 1;
} else { *p_measurement_data_ready = 0; }
}
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_polling_delay(void)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
// do nothing
VL53L0X_OsDelay();
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_measurement_poll_for_completion(void)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t new_data_ready = 0;
uint32_t loop_nb;
loop_nb = 0;
do {
status = VL53L0X_get_measurement_data_ready( &new_data_ready);
if (status != 0) {
break; /* the error is set */
}
if (new_data_ready == 1) {
break; /* done note that status == 0 */
}
loop_nb++;
if (loop_nb >= VL53L0X_DEFAULT_MAX_LOOP) {
status = VL53L0X_ERROR_TIME_OUT;
break;
}
VL53L0X_polling_delay();
} while (1);
return status;
}
/* Group PAL Interrupt Functions */
VL53L0X_Error VL53L0X::VL53L0X_clear_interrupt_mask( uint32_t interrupt_mask)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t loop_count;
uint8_t byte;
/* clear bit 0 range interrupt, bit 1 error interrupt */
loop_count = 0;
do {
status = VL53L0X_write_byte(VL53L0X_REG_SYSTEM_INTERRUPT_CLEAR, 0x01);
status |= VL53L0X_write_byte(VL53L0X_REG_SYSTEM_INTERRUPT_CLEAR, 0x00);
status |= VL53L0X_read_byte(VL53L0X_REG_RESULT_INTERRUPT_STATUS, &byte);
loop_count++;
} while (((byte & 0x07) != 0x00)
&& (loop_count < 3)
&& (status == VL53L0X_ERROR_NONE));
if (loop_count >= 3) {
status = VL53L0X_ERROR_INTERRUPT_NOT_CLEARED;
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_perform_single_ref_calibration(uint8_t vhv_init_byte)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_byte( VL53L0X_REG_SYSRANGE_START,
VL53L0X_REG_SYSRANGE_MODE_START_STOP |
vhv_init_byte);
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_measurement_poll_for_completion();}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_clear_interrupt_mask( 0);}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_byte( VL53L0X_REG_SYSRANGE_START, 0x00);
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_ref_calibration_io( uint8_t read_not_write,
uint8_t vhv_settings, uint8_t phase_cal,
uint8_t *p_vhv_settings, uint8_t *p_phase_cal,
const uint8_t vhv_enable, const uint8_t phase_enable)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t phase_calint = 0;
/* Read VHV from device */
status |= VL53L0X_write_byte( 0xFF, 0x01);
status |= VL53L0X_write_byte( 0x00, 0x00);
status |= VL53L0X_write_byte( 0xFF, 0x00);
if (read_not_write) {
if (vhv_enable) {
status |= VL53L0X_read_byte( 0xCB, p_vhv_settings);}
if (phase_enable) {
status |= VL53L0X_read_byte( 0xEE, &phase_calint);}
} else {
if (vhv_enable) {
status |= VL53L0X_write_byte( 0xCB, vhv_settings);}
if (phase_enable) {
status |= VL53L0X_update_byte( 0xEE, 0x80, phase_cal);}
}
status |= VL53L0X_write_byte( 0xFF, 0x01);
status |= VL53L0X_write_byte( 0x00, 0x01);
status |= VL53L0X_write_byte( 0xFF, 0x00);
*p_phase_cal = (uint8_t)(phase_calint & 0xEF);
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_perform_vhv_calibration(uint8_t *p_vhv_settings, const uint8_t get_data_enable,
const uint8_t restore_config)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t sequence_config = 0;
uint8_t vhv_settings = 0;
uint8_t phase_cal = 0;
uint8_t phase_cal_int = 0;
/* store the value of the sequence config,
* this will be reset before the end of the function
*/
if (restore_config) {
sequence_config = Data.SequenceConfig;
}
/* Run VHV */
status = VL53L0X_write_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, 0x01);
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_perform_single_ref_calibration( 0x40);}
/* Read VHV from device */
if ((status == VL53L0X_ERROR_NONE) && (get_data_enable == 1)) {
status = VL53L0X_ref_calibration_io( 1, vhv_settings, phase_cal, /* Not used here */
p_vhv_settings, &phase_cal_int, 1, 0);
} else {*p_vhv_settings = 0; }
if ((status == VL53L0X_ERROR_NONE) && restore_config) {
/* restore the previous Sequence Config */
status = VL53L0X_write_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
sequence_config);
if (status == VL53L0X_ERROR_NONE) {
Data.SequenceConfig = sequence_config; }
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_perform_phase_calibration(uint8_t *p_phase_cal, const uint8_t get_data_enable,
const uint8_t restore_config)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t sequence_config = 0;
uint8_t vhv_settings = 0;
uint8_t phase_cal = 0;
uint8_t vhv_settingsint;
/* store the value of the sequence config,
* this will be reset before the end of the function */
if (restore_config) {
sequence_config = Data.SequenceConfig;
}
/* Run PhaseCal */
status = VL53L0X_write_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, 0x02);
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_perform_single_ref_calibration( 0x0);
}
/* Read PhaseCal from device */
if ((status == VL53L0X_ERROR_NONE) && (get_data_enable == 1)) {
status = VL53L0X_ref_calibration_io( 1,
vhv_settings, phase_cal, /* Not used here */
&vhv_settingsint, p_phase_cal,
0, 1);
} else {
*p_phase_cal = 0;
}
if ((status == VL53L0X_ERROR_NONE) && restore_config) {
/* restore the previous Sequence Config */
status = VL53L0X_write_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
sequence_config);
if (status == VL53L0X_ERROR_NONE) {
Data.SequenceConfig = sequence_config;
}
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_perform_ref_calibration(uint8_t *p_vhv_settings, uint8_t *p_phase_cal, uint8_t get_data_enable)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t sequence_config = 0;
/* store the value of the sequence config,
* this will be reset before the end of the function */
sequence_config = Data.SequenceConfig;
/* In the following function we don't save the config to optimize
* writes on device. Config is saved and restored only once. */
status = VL53L0X_perform_vhv_calibration(p_vhv_settings, get_data_enable, 0);
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_perform_phase_calibration(p_phase_cal, get_data_enable, 0); }
if (status == VL53L0X_ERROR_NONE) {
/* restore the previous Sequence Config */
status = VL53L0X_write_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
sequence_config);
if (status == VL53L0X_ERROR_NONE) {
Data.SequenceConfig = sequence_config; }
}
return status;
}
void VL53L0X::get_next_good_spad(uint8_t good_spad_array[], uint32_t size,
uint32_t curr, int32_t *p_next)
{ uint32_t start_index;
uint32_t fine_offset;
uint32_t c_spads_per_byte = 8;
uint32_t coarse_index;
uint32_t fine_index;
uint8_t data_byte;
uint8_t success = 0;
/* Starting with the current good spad, loop through the array to find
* the next. i.e. the next bit set in the sequence.
*
* The coarse index is the byte index of the array and the fine index is
* the index of the bit within each byte. */
*p_next = -1;
start_index = curr / c_spads_per_byte;
fine_offset = curr % c_spads_per_byte;
for (coarse_index = start_index; ((coarse_index < size) && !success);
coarse_index++) {
fine_index = 0;
data_byte = good_spad_array[coarse_index];
if (coarse_index == start_index) {
/* locate the bit position of the provided current
* spad bit before iterating */
data_byte >>= fine_offset;
fine_index = fine_offset;
}
while (fine_index < c_spads_per_byte) {
if ((data_byte & 0x1) == 1) {
success = 1;
*p_next = coarse_index * c_spads_per_byte + fine_index;
break;
}
data_byte >>= 1;
fine_index++;
}
}
}
uint8_t VL53L0X::is_aperture(uint32_t spad_index)
{ /* This function reports if a given spad index is an aperture SPAD by
* deriving the quadrant.*/
uint32_t quadrant;
uint8_t is_aperture = 1;
quadrant = spad_index >> 6;
if (refArrayQuadrants[quadrant] == REF_ARRAY_SPAD_0) {
is_aperture = 0;
}
return is_aperture;
}
VL53L0X_Error VL53L0X::enable_spad_bit(uint8_t spad_array[], uint32_t size,
uint32_t spad_index)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint32_t c_spads_per_byte = 8;
uint32_t coarse_index;
uint32_t fine_index;
coarse_index = spad_index / c_spads_per_byte;
fine_index = spad_index % c_spads_per_byte;
if (coarse_index >= size) {
status = VL53L0X_ERROR_REF_SPAD_INIT;
} else {
spad_array[coarse_index] |= (1 << fine_index);
}
return status;
}
VL53L0X_Error VL53L0X::set_ref_spad_map( uint8_t *p_ref_spad_array)
{ VL53L0X_Error status = VL53L0X_i2c_write(VL53L0X_REG_GLOBAL_CONFIG_SPAD_ENABLES_REF_0,
p_ref_spad_array, 6);
return status;
}
VL53L0X_Error VL53L0X::get_ref_spad_map( uint8_t *p_ref_spad_array)
{ VL53L0X_Error status = VL53L0X_read_multi(VL53L0X_REG_GLOBAL_CONFIG_SPAD_ENABLES_REF_0,
p_ref_spad_array,
6);
// VL53L0X_Error status = VL53L0X_ERROR_NONE;
// uint8_t count=0;
// for (count = 0; count < 6; count++)
// status = VL53L0X_RdByte( (VL53L0X_REG_GLOBAL_CONFIG_SPAD_ENABLES_REF_0 + count), &refSpadArray[count]);
return status;
}
VL53L0X_Error VL53L0X::enable_ref_spads(uint8_t aperture_spads,
uint8_t good_spad_array[],
uint8_t spad_array[],
uint32_t size,
uint32_t start,
uint32_t offset,
uint32_t spad_count,
uint32_t *p_last_spad)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint32_t index;
uint32_t i;
int32_t next_good_spad = offset;
uint32_t current_spad;
uint8_t check_spad_array[6];
/*
* This function takes in a spad array which may or may not have SPADS
* already enabled and appends from a given offset a requested number
* of new SPAD enables. The 'good spad map' is applied to
* determine the next SPADs to enable.
*
* This function applies to only aperture or only non-aperture spads.
* Checks are performed to ensure this.
*/
current_spad = offset;
for (index = 0; index < spad_count; index++) {
get_next_good_spad(good_spad_array, size, current_spad,
&next_good_spad);
if (next_good_spad == -1) {
status = VL53L0X_ERROR_REF_SPAD_INIT;
break;
}
/* Confirm that the next good SPAD is non-aperture */
if (is_aperture(start + next_good_spad) != aperture_spads) {
/* if we can't get the required number of good aperture
* spads from the current quadrant then this is an error
*/
status = VL53L0X_ERROR_REF_SPAD_INIT;
break;
}
current_spad = (uint32_t)next_good_spad;
enable_spad_bit(spad_array, size, current_spad);
current_spad++;
}
*p_last_spad = current_spad;
if (status == VL53L0X_ERROR_NONE) {
status = set_ref_spad_map( spad_array);
}
if (status == VL53L0X_ERROR_NONE) {
status = get_ref_spad_map( check_spad_array);
i = 0;
/* Compare spad maps. If not equal report error. */
while (i < size) {
if (spad_array[i] != check_spad_array[i]) {
status = VL53L0X_ERROR_REF_SPAD_INIT;
break;
}
i++;
}
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_set_device_mode( VL53L0X_DeviceModes device_mode)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
switch (device_mode) {
case VL53L0X_DEVICEMODE_SINGLE_RANGING:
case VL53L0X_DEVICEMODE_CONTINUOUS_RANGING:
case VL53L0X_DEVICEMODE_CONTINUOUS_TIMED_RANGING:
case VL53L0X_DEVICEMODE_GPIO_DRIVE:
case VL53L0X_DEVICEMODE_GPIO_OSC:
/* Supported modes */
CurrentParameters.DeviceMode = device_mode;
break;
default:
/* Unsupported mode */
status = VL53L0X_ERROR_MODE_NOT_SUPPORTED;
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_set_interrupt_thresholds(VL53L0X_DeviceModes device_mode, FixPoint1616_t threshold_low,
FixPoint1616_t threshold_high)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint16_t threshold16;
/* no dependency on DeviceMode for Ewok */
/* Need to divide by 2 because the FW will apply a x2 */
threshold16 = (uint16_t)((threshold_low >> 17) & 0x00fff);
status = VL53L0X_write_word( VL53L0X_REG_SYSTEM_THRESH_LOW, threshold16);
if (status == VL53L0X_ERROR_NONE) {
/* Need to divide by 2 because the FW will apply a x2 */
threshold16 = (uint16_t)((threshold_high >> 17) & 0x00fff);
status = VL53L0X_write_word( VL53L0X_REG_SYSTEM_THRESH_HIGH,
threshold16);
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_interrupt_thresholds(VL53L0X_DeviceModes device_mode, FixPoint1616_t *p_threshold_low,
FixPoint1616_t *p_threshold_high)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint16_t threshold16;
/* no dependency on DeviceMode for Ewok */
status = VL53L0X_read_word( VL53L0X_REG_SYSTEM_THRESH_LOW, &threshold16);
/* Need to multiply by 2 because the FW will apply a x2 */
*p_threshold_low = (FixPoint1616_t)((0x00fff & threshold16) << 17);
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_read_word( VL53L0X_REG_SYSTEM_THRESH_HIGH,
&threshold16);
/* Need to multiply by 2 because the FW will apply a x2 */
*p_threshold_high =
(FixPoint1616_t)((0x00fff & threshold16) << 17);
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_load_tuning_settings(uint8_t *p_tuning_setting_buffer)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
int i;
int index;
uint8_t msb;
uint8_t lsb;
uint8_t select_param;
uint16_t number_of_writes;
uint8_t address;
uint8_t local_buffer[4]; /* max */
uint16_t temp16;
index = 0;
while ((*(p_tuning_setting_buffer + index) != 0) &&
(status == VL53L0X_ERROR_NONE)) {
number_of_writes = *(p_tuning_setting_buffer + index);
index++;
if (number_of_writes == 0xFF) {
/* internal parameters */
select_param = *(p_tuning_setting_buffer + index);
index++;
switch (select_param) {
case 0: /* uint16_t SigmaEstRefArray -> 2 bytes */
msb = *(p_tuning_setting_buffer + index);
index++;
lsb = *(p_tuning_setting_buffer + index);
index++;
temp16 = VL53L0X_MAKEUINT16(lsb, msb);
Data.SigmaEstRefArray = temp16;
break;
case 1: /* uint16_t SigmaEstEffPulseWidth -> 2 bytes */
msb = *(p_tuning_setting_buffer + index);
index++;
lsb = *(p_tuning_setting_buffer + index);
index++;
temp16 = VL53L0X_MAKEUINT16(lsb, msb);
Data.SigmaEstEffPulseWidth = temp16;
break;
case 2: /* uint16_t SigmaEstEffAmbWidth -> 2 bytes */
msb = *(p_tuning_setting_buffer + index);
index++;
lsb = *(p_tuning_setting_buffer + index);
index++;
temp16 = VL53L0X_MAKEUINT16(lsb, msb);
Data.SigmaEstEffAmbWidth = temp16;
break;
case 3: /* uint16_t targetRefRate -> 2 bytes */
msb = *(p_tuning_setting_buffer + index);
index++;
lsb = *(p_tuning_setting_buffer + index);
index++;
temp16 = VL53L0X_MAKEUINT16(lsb, msb);
Data.targetRefRate = temp16;
break;
default: /* invalid parameter */
status = VL53L0X_ERROR_INVALID_PARAMS;
}
} else if (number_of_writes <= 4) {
address = *(p_tuning_setting_buffer + index);
index++;
for (i = 0; i < number_of_writes; i++) {
local_buffer[i] = *(p_tuning_setting_buffer +
index);
index++;
}
status = VL53L0X_i2c_write( address, local_buffer, number_of_writes);
} else { status = VL53L0X_ERROR_INVALID_PARAMS; }
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_check_and_load_interrupt_settings(uint8_t start_not_stopflag)
{ uint8_t interrupt_config;
FixPoint1616_t threshold_low;
FixPoint1616_t threshold_high;
VL53L0X_Error status = VL53L0X_ERROR_NONE;
interrupt_config = Data.Pin0GpioFunctionality;
if ((interrupt_config ==
VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_LOW) ||
(interrupt_config ==
VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_HIGH) ||
(interrupt_config ==
VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_OUT)) {
status = VL53L0X_get_interrupt_thresholds(VL53L0X_DEVICEMODE_CONTINUOUS_RANGING,
&threshold_low, &threshold_high);
if (((threshold_low > 255 * 65536) ||
(threshold_high > 255 * 65536)) &&
(status == VL53L0X_ERROR_NONE)) {
if (start_not_stopflag != 0) {
status = VL53L0X_load_tuning_settings(InterruptThresholdSettings);
} else {
status |= VL53L0X_write_byte( 0xFF, 0x04);
status |= VL53L0X_write_byte( 0x70, 0x00);
status |= VL53L0X_write_byte( 0xFF, 0x00);
status |= VL53L0X_write_byte( 0x80, 0x00);
}
}
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_start_measurement(void)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
VL53L0X_DeviceModes device_mode;
uint8_t byte;
uint8_t start_stop_byte = VL53L0X_REG_SYSRANGE_MODE_START_STOP;
uint32_t loop_nb;
/* Get Current DeviceMode */
device_mode = CurrentParameters.DeviceMode;
status = VL53L0X_write_byte( 0x80, 0x01);
status = VL53L0X_write_byte( 0xFF, 0x01);
status = VL53L0X_write_byte( 0x00, 0x00);
status = VL53L0X_write_byte( 0x91, Data.StopVariable);
status = VL53L0X_write_byte( 0x00, 0x01);
status = VL53L0X_write_byte( 0xFF, 0x00);
status = VL53L0X_write_byte( 0x80, 0x00);
switch (device_mode) {
case VL53L0X_DEVICEMODE_SINGLE_RANGING:
status = VL53L0X_write_byte( VL53L0X_REG_SYSRANGE_START, 0x01);
byte = start_stop_byte;
if (status == VL53L0X_ERROR_NONE) {
/* Wait until start bit has been cleared */
loop_nb = 0;
do {
if (loop_nb > 0)
status = VL53L0X_read_byte(VL53L0X_REG_SYSRANGE_START, &byte);
loop_nb = loop_nb + 1;
} while (((byte & start_stop_byte) == start_stop_byte)
&& (status == VL53L0X_ERROR_NONE)
&& (loop_nb < VL53L0X_DEFAULT_MAX_LOOP));
if (loop_nb >= VL53L0X_DEFAULT_MAX_LOOP) {
status = VL53L0X_ERROR_TIME_OUT;
}
}
break;
case VL53L0X_DEVICEMODE_CONTINUOUS_RANGING: /* Back-to-back mode */
/* Check if need to apply interrupt settings */
if (status == VL53L0X_ERROR_NONE)
{ status = VL53L0X_check_and_load_interrupt_settings( 1); }
status = VL53L0X_write_byte(VL53L0X_REG_SYSRANGE_START,
VL53L0X_REG_SYSRANGE_MODE_BACKTOBACK);
if (status == VL53L0X_ERROR_NONE) {
/* Set PAL State to Running */
Data.PalState = VL53L0X_STATE_RUNNING;
}
break;
case VL53L0X_DEVICEMODE_CONTINUOUS_TIMED_RANGING:
/* Continuous mode */
/* Check if need to apply interrupt settings */
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_check_and_load_interrupt_settings( 1);
}
status = VL53L0X_write_byte(VL53L0X_REG_SYSRANGE_START,
VL53L0X_REG_SYSRANGE_MODE_TIMED);
if (status == VL53L0X_ERROR_NONE)/* Set PAL State to Running */
{ Data.PalState = VL53L0X_STATE_RUNNING; }
break;
default:
/* Selected mode not supported */
status = VL53L0X_ERROR_MODE_NOT_SUPPORTED;
}
return status;
}
/* Group PAL Measurement Functions */
VL53L0X_Error VL53L0X::VL53L0X_perform_single_measurement(void)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
VL53L0X_DeviceModes device_mode;
/* Get Current DeviceMode */
device_mode = CurrentParameters.DeviceMode;
/* Start immediately to run a single ranging measurement in case of
* single ranging or single histogram */
if (status == VL53L0X_ERROR_NONE && device_mode == VL53L0X_DEVICEMODE_SINGLE_RANGING) {
status = VL53L0X_start_measurement(); }
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_measurement_poll_for_completion(); }
/* Change PAL State in case of single ranging or single histogram */
if (status == VL53L0X_ERROR_NONE && device_mode == VL53L0X_DEVICEMODE_SINGLE_RANGING) {
Data.PalState = VL53L0X_STATE_IDLE; }
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_x_talk_compensation_enable(uint8_t *p_x_talk_compensation_enable)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t temp8;
temp8 = CurrentParameters.XTalkCompensationEnable ;
*p_x_talk_compensation_enable = temp8;
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_total_xtalk_rate(VL53L0X_RangingMeasurementData_t *p_ranging_measurement_data,
FixPoint1616_t *p_total_xtalk_rate_MHz)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t xtalk_comp_enable;
FixPoint1616_t total_xtalk_MHz;
FixPoint1616_t xtalk_per_spad_MHz;
*p_total_xtalk_rate_MHz = 0;
status = VL53L0X_get_x_talk_compensation_enable( &xtalk_comp_enable);
if (status == VL53L0X_ERROR_NONE) {
if (xtalk_comp_enable) {
xtalk_per_spad_MHz = CurrentParameters.XTalkCompensationRate_MHz ;
/* FixPoint1616 * FixPoint 8:8 = FixPoint0824 */
total_xtalk_MHz =
p_ranging_measurement_data->EffectiveSpadRtnCount *
xtalk_per_spad_MHz;
/* FixPoint0824 >> 8 = FixPoint1616 */
*p_total_xtalk_rate_MHz =
(total_xtalk_MHz + 0x80) >> 8;
}
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_total_signal_rate(VL53L0X_RangingMeasurementData_t *p_ranging_measurement_data,
FixPoint1616_t *p_total_signal_rate_MHz)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
FixPoint1616_t total_xtalk_MHz;
*p_total_signal_rate_MHz =
p_ranging_measurement_data->SignalRateRtn_MHz;
status = VL53L0X_get_total_xtalk_rate(p_ranging_measurement_data, &total_xtalk_MHz);
if (status == VL53L0X_ERROR_NONE) {
*p_total_signal_rate_MHz += total_xtalk_MHz; }
return status;
}
/* To convert ms into register value */
uint32_t VL53L0X::VL53L0X_calc_timeout_mclks(uint32_t timeout_period_us,
uint8_t vcsel_period_pclks)
{ uint32_t macro_period_ps;
uint32_t macro_period_ns;
uint32_t timeout_period_mclks = 0;
macro_period_ps = VL53L0X_calc_macro_period_ps( vcsel_period_pclks);
macro_period_ns = (macro_period_ps + 500) / 1000;
timeout_period_mclks = (uint32_t)(((timeout_period_us * 1000)
+ (macro_period_ns / 2)) / macro_period_ns);
return timeout_period_mclks;
}
uint32_t VL53L0X::VL53L0X_isqrt(uint32_t num)
{ /* Implements an integer square root
* From: http://en.wikipedia.org/wiki/Methods_of_computing_square_roots */
uint32_t res = 0;
uint32_t bit = 1 << 30;
/* The second-to-top bit is set: 1 << 14 for 16-bits, 1 << 30 for 32 bits */
/* "bit" starts at the highest power of four <= the argument. */
while (bit > num) { bit >>= 2; }
while (bit != 0) {
if (num >= res + bit) {
num -= res + bit;
res = (res >> 1) + bit;
}
else { res >>= 1; }
bit >>= 2;
}
return res;
}
VL53L0X_Error VL53L0X::VL53L0X_calc_dmax(FixPoint1616_t total_signal_rate_MHz,
FixPoint1616_t total_corr_signal_rate_MHz,
FixPoint1616_t pw_mult,
uint32_t sigma_estimate_p1,
FixPoint1616_t sigma_estimate_p2,
uint32_t peak_vcsel_duration_us,
uint32_t *pd_max_mm)
{ const uint32_t c_sigma_limit = 18;
const FixPoint1616_t c_signal_limit = 0x4000; /* 0.25 */
const FixPoint1616_t c_sigma_est_ref = 0x00000042; /* 0.001 */
const uint32_t c_amb_eff_width_sigma_est_ns = 6;
const uint32_t c_amb_eff_width_d_max_ns = 7;
uint32_t dmax_cal_range_mm;
FixPoint1616_t dmax_cal_signal_rate_rtn_MHz;
FixPoint1616_t min_signal_needed;
FixPoint1616_t min_signal_needed_p1;
FixPoint1616_t min_signal_needed_p2;
FixPoint1616_t min_signal_needed_p3;
FixPoint1616_t min_signal_needed_p4;
FixPoint1616_t sigma_limit_tmp;
FixPoint1616_t sigma_est_sq_tmp;
FixPoint1616_t signal_limit_tmp;
FixPoint1616_t signal_at0_mm;
FixPoint1616_t dmax_dark;
FixPoint1616_t dmax_ambient;
FixPoint1616_t dmax_dark_tmp;
FixPoint1616_t sigma_est_p2_tmp;
uint32_t signal_rate_temp_MHz;
VL53L0X_Error status = VL53L0X_ERROR_NONE;
dmax_cal_range_mm = Data.DmaxCalRange_mm;
dmax_cal_signal_rate_rtn_MHz = Data.DmaxCalSignalRateRtn_MHz;
/* uint32 * FixPoint1616 = FixPoint1616 */
signal_at0_mm = dmax_cal_range_mm * dmax_cal_signal_rate_rtn_MHz;
/* FixPoint1616 >> 8 = FixPoint2408 */
signal_at0_mm = (signal_at0_mm + 0x80) >> 8;
signal_at0_mm *= dmax_cal_range_mm;
min_signal_needed_p1 = 0;
if (total_corr_signal_rate_MHz > 0) {
/* Shift by 10 bits to increase resolution prior to the division */
signal_rate_temp_MHz = total_signal_rate_MHz << 10;
/* Add rounding value prior to division */
min_signal_needed_p1 = signal_rate_temp_MHz +
(total_corr_signal_rate_MHz / 2);
/* FixPoint0626/FixPoint1616 = FixPoint2210 */
min_signal_needed_p1 /= total_corr_signal_rate_MHz;
/* Apply a factored version of the speed of light.
Correction to be applied at the end */
min_signal_needed_p1 *= 3;
/* FixPoint2210 * FixPoint2210 = FixPoint1220 */
min_signal_needed_p1 *= min_signal_needed_p1;
/* FixPoint1220 >> 16 = FixPoint2804 */
min_signal_needed_p1 = (min_signal_needed_p1 + 0x8000) >> 16;
}
min_signal_needed_p2 = pw_mult * sigma_estimate_p1;
/* FixPoint1616 >> 16 = uint32 */
min_signal_needed_p2 = (min_signal_needed_p2 + 0x8000) >> 16;
/* uint32 * uint32 = uint32 */
min_signal_needed_p2 *= min_signal_needed_p2;
/* Check sigmaEstimateP2
* If this value is too high there is not enough signal rate
* to calculate dmax value so set a suitable value to ensure
* a very small dmax. */
sigma_est_p2_tmp = (sigma_estimate_p2 + 0x8000) >> 16;
sigma_est_p2_tmp = (sigma_est_p2_tmp + c_amb_eff_width_sigma_est_ns / 2) /
c_amb_eff_width_sigma_est_ns;
sigma_est_p2_tmp *= c_amb_eff_width_d_max_ns;
if (sigma_est_p2_tmp > 0xffff) {
min_signal_needed_p3 = 0xfff00000;
} else {
/* DMAX uses a different ambient width from sigma, so apply correction.
* Perform division before multiplication to prevent overflow. */
sigma_estimate_p2 = (sigma_estimate_p2 + c_amb_eff_width_sigma_est_ns / 2) /
c_amb_eff_width_sigma_est_ns;
sigma_estimate_p2 *= c_amb_eff_width_d_max_ns;
/* FixPoint1616 >> 16 = uint32 */
min_signal_needed_p3 = (sigma_estimate_p2 + 0x8000) >> 16;
min_signal_needed_p3 *= min_signal_needed_p3;
}
/* FixPoint1814 / uint32 = FixPoint1814 */
sigma_limit_tmp = ((c_sigma_limit << 14) + 500) / 1000;
/* FixPoint1814 * FixPoint1814 = FixPoint3628 := FixPoint0428 */
sigma_limit_tmp *= sigma_limit_tmp;
/* FixPoint1616 * FixPoint1616 = FixPoint3232 */
sigma_est_sq_tmp = c_sigma_est_ref * c_sigma_est_ref;
/* FixPoint3232 >> 4 = FixPoint0428 */
sigma_est_sq_tmp = (sigma_est_sq_tmp + 0x08) >> 4;
/* FixPoint0428 - FixPoint0428 = FixPoint0428 */
sigma_limit_tmp -= sigma_est_sq_tmp;
/* uint32_t * FixPoint0428 = FixPoint0428 */
min_signal_needed_p4 = 4 * 12 * sigma_limit_tmp;
/* FixPoint0428 >> 14 = FixPoint1814 */
min_signal_needed_p4 = (min_signal_needed_p4 + 0x2000) >> 14;
/* uint32 + uint32 = uint32 */
min_signal_needed = (min_signal_needed_p2 + min_signal_needed_p3);
/* uint32 / uint32 = uint32 */
min_signal_needed += (peak_vcsel_duration_us / 2);
min_signal_needed /= peak_vcsel_duration_us;
/* uint32 << 14 = FixPoint1814 */
min_signal_needed <<= 14;
/* FixPoint1814 / FixPoint1814 = uint32 */
min_signal_needed += (min_signal_needed_p4 / 2);
min_signal_needed /= min_signal_needed_p4;
/* FixPoint3200 * FixPoint2804 := FixPoint2804*/
min_signal_needed *= min_signal_needed_p1;
/* Apply correction by dividing by 1000000.
* This assumes 10E16 on the numerator of the equation
* and 10E-22 on the denominator.
* We do this because 32bit fix point calculation can't
* handle the larger and smaller elements of this equation,
* i.e. speed of light and pulse widths.
*/
min_signal_needed = (min_signal_needed + 500) / 1000;
min_signal_needed <<= 4;
min_signal_needed = (min_signal_needed + 500) / 1000;
/* FixPoint1616 >> 8 = FixPoint2408 */
signal_limit_tmp = (c_signal_limit + 0x80) >> 8;
/* FixPoint2408/FixPoint2408 = uint32 */
if (signal_limit_tmp != 0) {
dmax_dark_tmp = (signal_at0_mm + (signal_limit_tmp / 2))
/ signal_limit_tmp;
} else { dmax_dark_tmp = 0; }
dmax_dark = VL53L0X_isqrt(dmax_dark_tmp);
/* FixPoint2408/FixPoint2408 = uint32 */
if (min_signal_needed != 0) {
dmax_ambient = (signal_at0_mm + min_signal_needed / 2)
/ min_signal_needed;
} else { dmax_ambient = 0; }
dmax_ambient = VL53L0X_isqrt(dmax_ambient);
*pd_max_mm = dmax_dark;
if (dmax_dark > dmax_ambient) { *pd_max_mm = dmax_ambient; }
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_calc_sigma_estimate(VL53L0X_RangingMeasurementData_t *p_ranging_measurement_data,
FixPoint1616_t *p_sigma_estimate, uint32_t *p_dmax_mm)
{ /* Expressed in 100ths of a ns, i.e. centi-ns */
const uint32_t c_pulse_effective_width_centi_ns = 800;
/* Expressed in 100ths of a ns, i.e. centi-ns */
const uint32_t c_ambient_effective_width_centi_ns = 600;
const FixPoint1616_t c_dflt_final_range_integration_time_milli_secs = 0x00190000; /* 25ms */
const uint32_t c_vcsel_pulse_width_ps = 4700; /* pico secs */
const FixPoint1616_t c_sigma_est_max = 0x028F87AE;
const FixPoint1616_t c_sigma_est_rtn_max = 0xF000;
const FixPoint1616_t c_amb_to_signal_ratio_max = 0xF0000000 /
c_ambient_effective_width_centi_ns;
/* Time Of Flight per mm (6.6 pico secs) */
const FixPoint1616_t c_tof_per_mm_ps = 0x0006999A;
const uint32_t c_16bit_rounding_param = 0x00008000;
const FixPoint1616_t c_max_x_talk_kcps = 0x00320000;
const uint32_t c_pll_period_ps = 1655;
uint32_t vcsel_total_events_rtn;
uint32_t final_range_timeout_micro_secs;
uint32_t pre_range_timeout_micro_secs;
uint32_t final_range_integration_time_milli_secs;
FixPoint1616_t sigma_estimate_p1;
FixPoint1616_t sigma_estimate_p2;
FixPoint1616_t sigma_estimate_p3;
FixPoint1616_t delta_t_ps;
FixPoint1616_t pw_mult;
FixPoint1616_t sigma_est_rtn;
FixPoint1616_t sigma_estimate;
FixPoint1616_t x_talk_correction;
FixPoint1616_t ambient_rate_kcps;
FixPoint1616_t peak_signal_rate_kcps;
FixPoint1616_t x_talk_comp_rate_MHz;
uint32_t x_talk_comp_rate_kcps;
VL53L0X_Error status = VL53L0X_ERROR_NONE;
FixPoint1616_t diff1_MHz;
FixPoint1616_t diff2_MHz;
FixPoint1616_t sqr1;
FixPoint1616_t sqr2;
FixPoint1616_t sqr_sum;
FixPoint1616_t sqrt_result_centi_ns;
FixPoint1616_t sqrt_result;
FixPoint1616_t total_signal_rate_MHz;
FixPoint1616_t corrected_signal_rate_MHz;
FixPoint1616_t sigma_est_ref;
uint32_t vcsel_width;
uint32_t final_range_macro_pclks;
uint32_t pre_range_macro_pclks;
uint32_t peak_vcsel_duration_us;
uint8_t final_range_vcsel_pclks;
uint8_t pre_range_vcsel_pclks;
/*! \addtogroup calc_sigma_estimate
* @{
*
* Estimates the range sigma
*/
x_talk_comp_rate_MHz = CurrentParameters.XTalkCompensationRate_MHz ;
/*
* We work in kcps rather than MHz as this helps keep within the
* confines of the 32 Fix1616 type.
*/
ambient_rate_kcps = (p_ranging_measurement_data->AmbientRateRtn_MHz * 1000) >> 16;
corrected_signal_rate_MHz = p_ranging_measurement_data->SignalRateRtn_MHz;
status = VL53L0X_get_total_signal_rate(p_ranging_measurement_data, &total_signal_rate_MHz);
status = VL53L0X_get_total_xtalk_rate(p_ranging_measurement_data, &x_talk_comp_rate_MHz);
/* Signal rate measurement provided by device is the
* peak signal rate, not average.
*/
peak_signal_rate_kcps = (total_signal_rate_MHz * 1000);
peak_signal_rate_kcps = (peak_signal_rate_kcps + 0x8000) >> 16;
x_talk_comp_rate_kcps = x_talk_comp_rate_MHz * 1000;
if (x_talk_comp_rate_kcps > c_max_x_talk_kcps) {
x_talk_comp_rate_kcps = c_max_x_talk_kcps;
}
if (status == VL53L0X_ERROR_NONE) {
/* Calculate final range macro periods */
final_range_timeout_micro_secs = Data.FinalRangeTimeout_us;
final_range_vcsel_pclks = Data.FinalRangeVcselPulsePeriod;
final_range_macro_pclks = VL53L0X_calc_timeout_mclks( final_range_timeout_micro_secs, final_range_vcsel_pclks);
/* Calculate pre-range macro periods */
pre_range_timeout_micro_secs = Data.PreRangeTimeout_us;
pre_range_vcsel_pclks = Data.PreRangeVcselPulsePeriod;
pre_range_macro_pclks = VL53L0X_calc_timeout_mclks(pre_range_timeout_micro_secs, pre_range_vcsel_pclks);
vcsel_width = 3;
if (final_range_vcsel_pclks == 8) {
vcsel_width = 2;
}
peak_vcsel_duration_us = vcsel_width * 2048 *
(pre_range_macro_pclks + final_range_macro_pclks);
peak_vcsel_duration_us = (peak_vcsel_duration_us + 500) / 1000;
peak_vcsel_duration_us *= c_pll_period_ps;
peak_vcsel_duration_us = (peak_vcsel_duration_us + 500) / 1000;
/* Fix1616 >> 8 = Fix2408 */
total_signal_rate_MHz = (total_signal_rate_MHz + 0x80) >> 8;
/* Fix2408 * uint32 = Fix2408 */
vcsel_total_events_rtn = total_signal_rate_MHz *
peak_vcsel_duration_us;
/* Fix2408 >> 8 = uint32 */
vcsel_total_events_rtn = (vcsel_total_events_rtn + 0x80) >> 8;
/* Fix2408 << 8 = Fix1616 = */
total_signal_rate_MHz <<= 8;
}
if (status != VL53L0X_ERROR_NONE) { return status; }
if (peak_signal_rate_kcps == 0) {
*p_sigma_estimate = c_sigma_est_max;
p_ranging_measurement_data->SigmaEstimate = c_sigma_est_max;
*p_dmax_mm = 0;
} else {
if (vcsel_total_events_rtn < 1) { vcsel_total_events_rtn = 1; }
sigma_estimate_p1 = c_pulse_effective_width_centi_ns;
/* ((FixPoint1616 << 16)* uint32)/uint32 = FixPoint1616 */
sigma_estimate_p2 = (ambient_rate_kcps << 16) / peak_signal_rate_kcps;
if (sigma_estimate_p2 > c_amb_to_signal_ratio_max) {
/* Clip to prevent overflow. Will ensure safe
* max result. */
sigma_estimate_p2 = c_amb_to_signal_ratio_max;
}
sigma_estimate_p2 *= c_ambient_effective_width_centi_ns;
sigma_estimate_p3 = 2 * VL53L0X_isqrt(vcsel_total_events_rtn * 12);
/* uint32 * FixPoint1616 = FixPoint1616 */
delta_t_ps = p_ranging_measurement_data->Range_mm * c_tof_per_mm_ps;
/* vcselRate - xtalkCompRate
* (uint32 << 16) - FixPoint1616 = FixPoint1616.
* Divide result by 1000 to convert to MHz.
* 500 is added to ensure rounding when integer division truncates. */
diff1_MHz = (((peak_signal_rate_kcps << 16) -
2 * x_talk_comp_rate_kcps) + 500) / 1000;
/* vcselRate + xtalkCompRate */
diff2_MHz = ((peak_signal_rate_kcps << 16) + 500) / 1000;
/* Shift by 8 bits to increase resolution prior to the division */
diff1_MHz <<= 8;
/* FixPoint0824/FixPoint1616 = FixPoint2408 */
x_talk_correction = diff1_MHz / diff2_MHz;
/* FixPoint2408 << 8 = FixPoint1616 */
x_talk_correction <<= 8;
if (p_ranging_measurement_data->RangeStatus != 0) {
pw_mult = 1 << 16;
} else {
/* FixPoint1616/uint32 = FixPoint1616 */
pw_mult = delta_t_ps / c_vcsel_pulse_width_ps; /* smaller than 1.0f */
/* FixPoint1616 * FixPoint1616 = FixPoint3232, however both
* values are small enough such that32 bits will not be exceeded. */
pw_mult *= ((1 << 16) - x_talk_correction);
/* (FixPoint3232 >> 16) = FixPoint1616 */
pw_mult = (pw_mult + c_16bit_rounding_param) >> 16;
/* FixPoint1616 + FixPoint1616 = FixPoint1616 */
pw_mult += (1 << 16);
/* At this point the value will be 1.xx, therefore if we square
* the value this will exceed 32 bits. To address this perform
* a single shift to the right before the multiplication. */
pw_mult >>= 1;
/* FixPoint1715 * FixPoint1715 = FixPoint3430 */
pw_mult = pw_mult * pw_mult;
/* (FixPoint3430 >> 14) = Fix1616 */
pw_mult >>= 14;
}
/* FixPoint1616 * uint32 = FixPoint1616 */
sqr1 = pw_mult * sigma_estimate_p1;
/* (FixPoint1616 >> 16) = FixPoint3200 */
sqr1 = (sqr1 + 0x8000) >> 16;
/* FixPoint3200 * FixPoint3200 = FixPoint6400 */
sqr1 *= sqr1;
sqr2 = sigma_estimate_p2;
/* (FixPoint1616 >> 16) = FixPoint3200 */
sqr2 = (sqr2 + 0x8000) >> 16;
/* FixPoint3200 * FixPoint3200 = FixPoint6400 */
sqr2 *= sqr2;
/* FixPoint64000 + FixPoint6400 = FixPoint6400 */
sqr_sum = sqr1 + sqr2;
/* SQRT(FixPoin6400) = FixPoint3200 */
sqrt_result_centi_ns = VL53L0X_isqrt(sqr_sum);
/* (FixPoint3200 << 16) = FixPoint1616 */
sqrt_result_centi_ns <<= 16;
/* Note that the Speed Of Light is expressed in um per 1E-10
* seconds (2997) Therefore to get mm/ns we have to divide by
* 10000
*/
sigma_est_rtn = (((sqrt_result_centi_ns + 50) / 100) /
sigma_estimate_p3);
sigma_est_rtn *= VL53L0X_SPEED_OF_LIGHT_IN_AIR;
/* Add 5000 before dividing by 10000 to ensure rounding. */
sigma_est_rtn += 5000;
sigma_est_rtn /= 10000;
if (sigma_est_rtn > c_sigma_est_rtn_max) {
/* Clip to prevent overflow. Will ensure safe
* max result. */
sigma_est_rtn = c_sigma_est_rtn_max;
}
final_range_integration_time_milli_secs =
(final_range_timeout_micro_secs + pre_range_timeout_micro_secs + 500) / 1000;
/* sigmaEstRef = 1mm * 25ms/final range integration time (inc pre-range)
* sqrt(FixPoint1616/int) = FixPoint2408)
*/
sigma_est_ref =
VL53L0X_isqrt((c_dflt_final_range_integration_time_milli_secs +
final_range_integration_time_milli_secs / 2) /
final_range_integration_time_milli_secs);
/* FixPoint2408 << 8 = FixPoint1616 */
sigma_est_ref <<= 8;
sigma_est_ref = (sigma_est_ref + 500) / 1000;
/* FixPoint1616 * FixPoint1616 = FixPoint3232 */
sqr1 = sigma_est_rtn * sigma_est_rtn;
/* FixPoint1616 * FixPoint1616 = FixPoint3232 */
sqr2 = sigma_est_ref * sigma_est_ref;
/* sqrt(FixPoint3232) = FixPoint1616 */
sqrt_result = VL53L0X_isqrt((sqr1 + sqr2));
/*
* Note that the Shift by 4 bits increases resolution prior to
* the sqrt, therefore the result must be shifted by 2 bits to
* the right to revert back to the FixPoint1616 format.
*/
sigma_estimate = 1000 * sqrt_result;
if ((peak_signal_rate_kcps < 1) || (vcsel_total_events_rtn < 1) ||
(sigma_estimate > c_sigma_est_max)) {
sigma_estimate = c_sigma_est_max;
}
*p_sigma_estimate = (uint32_t)(sigma_estimate);
p_ranging_measurement_data->SigmaEstimate = *p_sigma_estimate;
status = VL53L0X_calc_dmax(total_signal_rate_MHz,
corrected_signal_rate_MHz,
pw_mult,
sigma_estimate_p1,
sigma_estimate_p2,
peak_vcsel_duration_us,
p_dmax_mm);
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_pal_range_status(uint8_t device_range_status,
FixPoint1616_t signal_rate,
uint16_t effective_spad_rtn_count,
VL53L0X_RangingMeasurementData_t *p_ranging_measurement_data,
uint8_t *p_pal_range_status)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t none_flag;
uint8_t sigma_limitflag = 0;
uint8_t signal_ref_clipflag = 0;
uint8_t range_ignore_thresholdflag = 0;
uint8_t sigma_limit_check_enable = 0;
uint8_t signal_rate_final_range_limit_check_enable = 0;
uint8_t signal_ref_clip_limit_check_enable = 0;
uint8_t range_ignore_threshold_limit_check_enable = 0;
FixPoint1616_t sigma_estimate;
FixPoint1616_t sigma_limit_value;
FixPoint1616_t signal_ref_clip_value;
FixPoint1616_t range_ignore_threshold_value;
FixPoint1616_t signal_rate_per_spad;
uint8_t device_range_status_internal = 0;
uint16_t tmp_word = 0;
uint8_t temp8;
uint32_t dmax_mm = 0;
FixPoint1616_t last_signal_ref_MHz;
/* VL53L0X has a good ranging when the value of the
* DeviceRangeStatus = 11. This function will replace the value 0 with
* the value 11 in the DeviceRangeStatus.
* In addition, the SigmaEstimator is not included in the VL53L0X
* DeviceRangeStatus, this will be added in the PalRangeStatus. */
device_range_status_internal = ((device_range_status & 0x78) >> 3);
if (device_range_status_internal == 0 ||
device_range_status_internal == 5 ||
device_range_status_internal == 7 ||
device_range_status_internal == 12 ||
device_range_status_internal == 13 ||
device_range_status_internal == 14 ||
device_range_status_internal == 15
) {
none_flag = 1;
} else {
none_flag = 0;
}
/* Check if Sigma limit is enabled, if yes then do comparison with limit
* value and put the result back into pPalRangeStatus. */
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_get_limit_check_enable(VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
&sigma_limit_check_enable);
}
if ((sigma_limit_check_enable != 0) && (status == VL53L0X_ERROR_NONE)) {
/* compute the Sigma and check with limit */
status = VL53L0X_calc_sigma_estimate(p_ranging_measurement_data, &sigma_estimate, &dmax_mm);
if (status == VL53L0X_ERROR_NONE) { p_ranging_measurement_data->RangeDMax_mm = dmax_mm; }
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_get_limit_check_value(VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
&sigma_limit_value);
if ((sigma_limit_value > 0) && (sigma_estimate > sigma_limit_value))
{ sigma_limitflag = 1; } /* Limit Fail */
}
}
/* Check if Signal ref clip limit is enabled, if yes then do comparison
* with limit value and put the result back into pPalRangeStatus. */
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_get_limit_check_enable(VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
&signal_ref_clip_limit_check_enable);
}
if ((signal_ref_clip_limit_check_enable != 0) &&
(status == VL53L0X_ERROR_NONE)) {
status = VL53L0X_get_limit_check_value(VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
&signal_ref_clip_value);
/* Read LastSignalRef_MHz from device */
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_byte( 0xFF, 0x01);
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_read_word(VL53L0X_REG_RESULT_PEAK_SIGNAL_RATE_REF,
&tmp_word);
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_byte( 0xFF, 0x00);
}
last_signal_ref_MHz = VL53L0X_FP97TOFP1616(tmp_word);
Data.LastSignalRef_MHz = last_signal_ref_MHz;
if ((signal_ref_clip_value > 0) &&
(last_signal_ref_MHz > signal_ref_clip_value)) {
/* Limit Fail */
signal_ref_clipflag = 1;
}
}
/*
* Check if Signal ref clip limit is enabled, if yes then do comparison
* with limit value and put the result back into pPalRangeStatus.
* EffectiveSpadRtnCount has a format 8.8
* If (Return signal rate < (1.5 x Xtalk x number of Spads)) : FAIL
*/
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_get_limit_check_enable(VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
&range_ignore_threshold_limit_check_enable);
}
if ((range_ignore_threshold_limit_check_enable != 0) &&
(status == VL53L0X_ERROR_NONE)) {
/* Compute the signal rate per spad */
if (effective_spad_rtn_count == 0) {
signal_rate_per_spad = 0;
} else {
signal_rate_per_spad = (FixPoint1616_t)((256 * signal_rate)
/ effective_spad_rtn_count);
}
status = VL53L0X_get_limit_check_value(VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
&range_ignore_threshold_value);
if ((range_ignore_threshold_value > 0) &&
(signal_rate_per_spad < range_ignore_threshold_value)) {
/* Limit Fail add 2^6 to range status */
range_ignore_thresholdflag = 1;
}
}
if (status == VL53L0X_ERROR_NONE) {
if (none_flag == 1) {
*p_pal_range_status = 255; /* NONE */
} else if (device_range_status_internal == 1 ||
device_range_status_internal == 2 ||
device_range_status_internal == 3) {
*p_pal_range_status = 5; /* HW fail */
} else if (device_range_status_internal == 6 ||
device_range_status_internal == 9) {
*p_pal_range_status = 4; /* Phase fail */
} else if (device_range_status_internal == 8 ||
device_range_status_internal == 10 ||
signal_ref_clipflag == 1) {
*p_pal_range_status = 3; /* Min range */
} else if (device_range_status_internal == 4 ||
range_ignore_thresholdflag == 1) {
*p_pal_range_status = 2; /* Signal Fail */
} else if (sigma_limitflag == 1) {
*p_pal_range_status = 1; /* Sigma Fail */
} else {
*p_pal_range_status = 0; /* Range Valid */
}
}
/* DMAX only relevant during range error */
if (*p_pal_range_status == 0) {
p_ranging_measurement_data->RangeDMax_mm = 0;
}
/* fill the Limit Check Status */
status = VL53L0X_get_limit_check_enable(VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,
&signal_rate_final_range_limit_check_enable);
if (status == VL53L0X_ERROR_NONE) {
if ((sigma_limit_check_enable == 0) || (sigma_limitflag == 1)) {
temp8 = 1;
} else {
temp8 = 0;
}
CurrentParameters.LimitChecksStatus[VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE] = temp8;
if ((device_range_status_internal == 4) ||
(signal_rate_final_range_limit_check_enable == 0)) {
temp8 = 1;
} else {
temp8 = 0;
}
CurrentParameters.LimitChecksStatus[VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE] = temp8;
if ((signal_ref_clip_limit_check_enable == 0) ||
(signal_ref_clipflag == 1)) {
temp8 = 1;
} else {
temp8 = 0;
}
CurrentParameters.LimitChecksStatus[VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP] = temp8;
if ((range_ignore_threshold_limit_check_enable == 0) ||
(range_ignore_thresholdflag == 1)) {
temp8 = 1;
} else {
temp8 = 0;
}
CurrentParameters.LimitChecksStatus[VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD] = temp8;
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_ranging_measurement_data(VL53L0X_RangingMeasurementData_t *p_ranging_measurement_data)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t device_range_status;
uint8_t range_fractional_enable;
uint8_t pal_range_status;
uint8_t x_talk_compensation_enable;
uint16_t ambient_rate;
FixPoint1616_t signal_rate;
uint16_t x_talk_compensation_rate_MHz;
uint16_t effective_spad_rtn_count;
uint16_t tmpuint16;
uint16_t xtalk_range_milli_meter;
uint16_t linearity_corrective_gain;
uint8_t localBuffer[12];
/* use multi read even if some registers are not useful, result will
* be more efficient start reading at 0x14 dec20
* end reading at 0x21 dec33 total 14 bytes to read */
status = VL53L0X_read_multi( 0x14, localBuffer, 12);
if (status == VL53L0X_ERROR_NONE) {
tmpuint16 = VL53L0X_MAKEUINT16(localBuffer[11], localBuffer[10]);
/* cut1.1 if SYSTEM__RANGE_CONFIG if 1 range is 2bits fractional
*(format 11.2) else no fractional */
signal_rate = VL53L0X_FP97TOFP1616(VL53L0X_MAKEUINT16(localBuffer[7], localBuffer[6]));
/* peak_signal_count_rate_rtn_MHz */
p_ranging_measurement_data->SignalRateRtn_MHz = signal_rate;
ambient_rate = VL53L0X_MAKEUINT16(localBuffer[9], localBuffer[8]);
p_ranging_measurement_data->AmbientRateRtn_MHz =
VL53L0X_FP97TOFP1616(ambient_rate);
effective_spad_rtn_count = VL53L0X_MAKEUINT16(localBuffer[3],
localBuffer[2]);
/* EffectiveSpadRtnCount is 8.8 format */
p_ranging_measurement_data->EffectiveSpadRtnCount =
effective_spad_rtn_count;
device_range_status = localBuffer[0];
/* Get Linearity Corrective Gain */
linearity_corrective_gain = Data.LinearityCorrectiveGain;
/* Get ranging configuration */
range_fractional_enable = Data.RangeFractionalEnable;
if (linearity_corrective_gain != 1000) {
tmpuint16 = (uint16_t)((linearity_corrective_gain * tmpuint16 + 500) / 1000);
/* Implement Xtalk */
x_talk_compensation_rate_MHz = CurrentParameters.XTalkCompensationRate_MHz ;
x_talk_compensation_enable = CurrentParameters.XTalkCompensationEnable ;
if (x_talk_compensation_enable) {
if ((signal_rate
- ((x_talk_compensation_rate_MHz
* effective_spad_rtn_count) >> 8))
<= 0) {
if (range_fractional_enable) {
xtalk_range_milli_meter = 8888;
} else {
xtalk_range_milli_meter = 8888 << 2;
}
} else {
xtalk_range_milli_meter =
(tmpuint16 * signal_rate)
/ (signal_rate
- ((x_talk_compensation_rate_MHz
* effective_spad_rtn_count)
>> 8));
}
tmpuint16 = xtalk_range_milli_meter;
}
}
if (range_fractional_enable) {
p_ranging_measurement_data->Range_mm =
(uint16_t)((tmpuint16) >> 2);
p_ranging_measurement_data->RangeFractionalPart =
(uint8_t)((tmpuint16 & 0x03) << 6);
} else {
p_ranging_measurement_data->Range_mm = tmpuint16;
p_ranging_measurement_data->RangeFractionalPart = 0;
}
/* For a standard definition of RangeStatus, this should
* return 0 in case of good result after a ranging
* The range status depends on the device so call a device
* specific function to obtain the right Status.
*/
status |= VL53L0X_get_pal_range_status( device_range_status,
signal_rate, effective_spad_rtn_count,
p_ranging_measurement_data, &pal_range_status);
if (status == VL53L0X_ERROR_NONE) {
p_ranging_measurement_data->RangeStatus = pal_range_status;}
}
if (status == VL53L0X_ERROR_NONE) { /* Copy last read data into Device buffer */
LastRangeMeasure.Range_mm = p_ranging_measurement_data->Range_mm;
LastRangeMeasure.RangeFractionalPart = p_ranging_measurement_data->RangeFractionalPart;
LastRangeMeasure.RangeDMax_mm = p_ranging_measurement_data->RangeDMax_mm;
LastRangeMeasure.SignalRateRtn_MHz = p_ranging_measurement_data->SignalRateRtn_MHz;
LastRangeMeasure.AmbientRateRtn_MHz = p_ranging_measurement_data->AmbientRateRtn_MHz;
LastRangeMeasure.EffectiveSpadRtnCount = p_ranging_measurement_data->EffectiveSpadRtnCount;
LastRangeMeasure.RangeStatus = p_ranging_measurement_data->RangeStatus;
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_perform_single_ranging_measurement(VL53L0X_RangingMeasurementData_t *p_ranging_measurement_data)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
/* This function will do a complete single ranging
* Here we fix the mode! */
CurrentParameters.DeviceMode = VL53L0X_DEVICEMODE_SINGLE_RANGING;
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_perform_single_measurement(); }
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_get_ranging_measurement_data(p_ranging_measurement_data); }
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_clear_interrupt_mask( 0);}
return status;
}
VL53L0X_Error VL53L0X::perform_ref_signal_measurement(uint16_t *p_ref_signal_rate)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
VL53L0X_RangingMeasurementData_t ranging_measurement_data;
uint8_t sequence_config = 0;
/* store the value of the sequence config,
* this will be reset before the end of the function*/
sequence_config = Data.SequenceConfig;
/*
* This function performs a reference signal rate measurement.
*/
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_byte(VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, 0xC0);}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_perform_single_ranging_measurement(&ranging_measurement_data); }
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_byte( 0xFF, 0x01); }
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_read_word(VL53L0X_REG_RESULT_PEAK_SIGNAL_RATE_REF,
p_ref_signal_rate);}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_byte( 0xFF, 0x00);}
if (status == VL53L0X_ERROR_NONE) {
/* restore the previous Sequence Config */
status = VL53L0X_write_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
sequence_config);
if (status == VL53L0X_ERROR_NONE) {
Data.SequenceConfig = sequence_config;
}
}
return status;
}
VL53L0X_Error VL53L0X::wrapped_VL53L0X_perform_ref_spad_management(uint32_t *ref_spad_count,
uint8_t *is_aperture_spads)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t last_spad_array[6];
uint8_t start_select = 0xB4;
uint32_t minimum_spad_count = 3;
uint32_t max_spad_count = 44;
uint32_t current_spad_index = 0;
uint32_t last_spad_index = 0;
int32_t next_good_spad = 0;
uint16_t target_ref_rate = 0x0A00; /* 20 MHz in 9:7 format */
uint16_t peak_signal_rate_ref;
uint32_t need_apt_spads = 0;
uint32_t index = 0;
uint32_t spad_array_size = 6;
uint32_t signal_rate_diff = 0;
uint32_t last_signal_rate_diff = 0;
uint8_t complete = 0;
uint8_t vhv_settings = 0;
uint8_t phase_cal = 0;
uint32_t ref_spad_count_int = 0;
uint8_t is_aperture_spads_int = 0;
/*
* The reference SPAD initialization procedure determines the minimum
* amount of reference spads to be enables to achieve a target reference
* signal rate and should be performed once during initialization.
*
* Either aperture or non-aperture spads are applied but never both.
* Firstly non-aperture spads are set, begining with 5 spads, and
* increased one spad at a time until the closest measurement to the
* target rate is achieved.
*
* If the target rate is exceeded when 5 non-aperture spads are enabled,
* initialization is performed instead with aperture spads.
*
* When setting spads, a 'Good Spad Map' is applied.
*
* This procedure operates within a SPAD window of interest of a maximum
* 44 spads.
* The start point is currently fixed to 180, which lies towards the end
* of the non-aperture quadrant and runs in to the adjacent aperture
* quadrant.
*/
target_ref_rate = Data.targetRefRate;
/*
* Initialize Spad arrays.
* Currently the good spad map is initialised to 'All good'.
* This is a short term implementation. The good spad map will be
* provided as an input.
* Note that there are 6 bytes. Only the first 44 bits will be used to
* represent spads.
*/
for (index = 0; index < spad_array_size; index++) {
Data.RefSpadEnables[index] = 0;
}
status = VL53L0X_write_byte( 0xFF, 0x01);
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_byte(VL53L0X_REG_DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00);
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_byte(VL53L0X_REG_DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C);
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_byte( 0xFF, 0x00);
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_byte(VL53L0X_REG_GLOBAL_CONFIG_REF_EN_START_SELECT,
start_select);
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_byte(VL53L0X_REG_POWER_MANAGEMENT_GO1_POWER_FORCE, 0);
}
/* Perform ref calibration */
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_perform_ref_calibration( &vhv_settings,
&phase_cal, 0);
}
if (status == VL53L0X_ERROR_NONE) {
/* Enable Minimum NON-APERTURE Spads */
current_spad_index = 0;
last_spad_index = current_spad_index;
need_apt_spads = 0;
status = enable_ref_spads(need_apt_spads,
Data.RefGoodSpadMap,
Data.RefSpadEnables,
spad_array_size,
start_select,
current_spad_index,
minimum_spad_count,
&last_spad_index);
}
if (status == VL53L0X_ERROR_NONE) {
current_spad_index = last_spad_index;
status = perform_ref_signal_measurement(&peak_signal_rate_ref);
if ((status == VL53L0X_ERROR_NONE) &&
(peak_signal_rate_ref > target_ref_rate)) {
/* Signal rate measurement too high,
* switch to APERTURE SPADs */
for (index = 0; index < spad_array_size; index++) {
Data.RefSpadEnables[index] = 0;
}
/* Increment to the first APERTURE spad */
while ((is_aperture(start_select + current_spad_index)
== 0) && (current_spad_index < max_spad_count)) {
current_spad_index++;
}
need_apt_spads = 1;
status = enable_ref_spads(need_apt_spads,
Data.RefGoodSpadMap,
Data.RefSpadEnables,
spad_array_size,
start_select,
current_spad_index,
minimum_spad_count,
&last_spad_index);
if (status == VL53L0X_ERROR_NONE) {
current_spad_index = last_spad_index;
status = perform_ref_signal_measurement(&peak_signal_rate_ref);
if ((status == VL53L0X_ERROR_NONE) &&
(peak_signal_rate_ref > target_ref_rate)) {
/* Signal rate still too high after
* setting the minimum number of
* APERTURE spads. Can do no more
* therefore set the min number of
* aperture spads as the result.
*/
is_aperture_spads_int = 1;
ref_spad_count_int = minimum_spad_count;
}
}
} else {
need_apt_spads = 0;
}
}
if ((status == VL53L0X_ERROR_NONE) &&
(peak_signal_rate_ref < target_ref_rate)) {
/* At this point, the minimum number of either aperture
* or non-aperture spads have been set. Proceed to add
* spads and perform measurements until the target
* reference is reached.
*/
is_aperture_spads_int = need_apt_spads;
ref_spad_count_int = minimum_spad_count;
memcpy(last_spad_array, Data.RefSpadEnables,
spad_array_size);
last_signal_rate_diff = abs(peak_signal_rate_ref -
target_ref_rate);
complete = 0;
while (!complete) {
get_next_good_spad(Data.RefGoodSpadMap,
spad_array_size, current_spad_index,
&next_good_spad);
if (next_good_spad == -1) {
status = VL53L0X_ERROR_REF_SPAD_INIT;
break;
}
/* Cannot combine Aperture and Non-Aperture spads, so
* ensure the current spad is of the correct type.
*/
if (is_aperture((uint32_t)start_select + next_good_spad) !=
need_apt_spads) {
/* At this point we have enabled the maximum
* number of Aperture spads.
*/
complete = 1;
break;
}
(ref_spad_count_int)++;
current_spad_index = next_good_spad;
status = enable_spad_bit(Data.RefSpadEnables,
spad_array_size, current_spad_index);
if (status == VL53L0X_ERROR_NONE) {
current_spad_index++;
/* Proceed to apply the additional spad and
* perform measurement. */
status = set_ref_spad_map(Data.RefSpadEnables);
}
if (status != VL53L0X_ERROR_NONE) {
break;
}
status = perform_ref_signal_measurement(&peak_signal_rate_ref);
if (status != VL53L0X_ERROR_NONE) {
break;
}
signal_rate_diff = abs(peak_signal_rate_ref - target_ref_rate);
if (peak_signal_rate_ref > target_ref_rate) {
/* Select the spad map that provides the
* measurement closest to the target rate,
* either above or below it.
*/
if (signal_rate_diff > last_signal_rate_diff) {
/* Previous spad map produced a closer
* measurement, so choose this. */
status = set_ref_spad_map(last_spad_array);
memcpy(Data.RefSpadEnables,
last_spad_array, spad_array_size);
(ref_spad_count_int)--;
}
complete = 1;
} else {
/* Continue to add spads */
last_signal_rate_diff = signal_rate_diff;
memcpy(last_spad_array,
Data.RefSpadEnables,
spad_array_size);
}
} /* while */
}
if (status == VL53L0X_ERROR_NONE) {
*ref_spad_count = ref_spad_count_int;
*is_aperture_spads = is_aperture_spads_int;
Data.RefSpadsInitialised = 1;
Data.ReferenceSpadCount = (uint8_t)(*ref_spad_count);
Data.ReferenceSpadType = *is_aperture_spads;
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_set_reference_spads(uint32_t count, uint8_t is_aperture_spads)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint32_t current_spad_index = 0;
uint8_t start_select = 0xB4;
uint32_t spad_array_size = 6;
uint32_t max_spad_count = 44;
uint32_t last_spad_index;
uint32_t index;
/*
* This function applies a requested number of reference spads, either
* aperture or
* non-aperture, as requested.
* The good spad map will be applied.
*/
status = VL53L0X_write_byte( 0xFF, 0x01);
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_byte(VL53L0X_REG_DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00);
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_byte( VL53L0X_REG_DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C);
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_byte( 0xFF, 0x00);
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_byte(VL53L0X_REG_GLOBAL_CONFIG_REF_EN_START_SELECT,
start_select);
}
for (index = 0; index < spad_array_size; index++) {
Data.RefSpadEnables[index] = 0;
}
if (is_aperture_spads) {
/* Increment to the first APERTURE spad */
while ((is_aperture(start_select + current_spad_index) == 0) &&
(current_spad_index < max_spad_count)) {
current_spad_index++;
}
}
status = enable_ref_spads(is_aperture_spads,
Data.RefGoodSpadMap,
Data.RefSpadEnables,
spad_array_size,
start_select,
current_spad_index,
count,
&last_spad_index);
if (status == VL53L0X_ERROR_NONE) {
Data.RefSpadsInitialised = 1;
Data.ReferenceSpadCount = (uint8_t)(count);
Data.ReferenceSpadType = is_aperture_spads;
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_perform_ref_calibration( uint8_t *p_vhv_settings,
uint8_t *p_phase_cal)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
status = VL53L0X_perform_ref_calibration( p_vhv_settings, p_phase_cal, 1);
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_perform_ref_spad_management(uint32_t *ref_spad_count, uint8_t *is_aperture_spads)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
status = wrapped_VL53L0X_perform_ref_spad_management( ref_spad_count,
is_aperture_spads);
return status;
}
/* Group PAL Init Functions */
VL53L0X_Error VL53L0X::VL53L0X_set_device_address( uint8_t device_address)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
status = VL53L0X_write_byte( VL53L0X_REG_I2C_SLAVE_DEVICE_ADDRESS,
device_address / 2);
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_set_gpio_config( uint8_t pin,
VL53L0X_DeviceModes device_mode, VL53L0X_GpioFunctionality functionality,
VL53L0X_InterruptPolarity polarity)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t data;
if (pin != 0) {
status = VL53L0X_ERROR_GPIO_NOT_EXISTING;
} else if (device_mode == VL53L0X_DEVICEMODE_GPIO_DRIVE) {
if (polarity == VL53L0X_INTERRUPTPOLARITY_LOW) {
data = 0x10;
} else {data = 1;}
status = VL53L0X_write_byte(VL53L0X_REG_GPIO_HV_MUX_ACTIVE_HIGH, data);
} else {
if (device_mode == VL53L0X_DEVICEMODE_GPIO_OSC) {
status |= VL53L0X_write_byte( 0xff, 0x01);
status |= VL53L0X_write_byte( 0x00, 0x00);
status |= VL53L0X_write_byte( 0xff, 0x00);
status |= VL53L0X_write_byte( 0x80, 0x01);
status |= VL53L0X_write_byte( 0x85, 0x02);
status |= VL53L0X_write_byte( 0xff, 0x04);
status |= VL53L0X_write_byte( 0xcd, 0x00);
status |= VL53L0X_write_byte( 0xcc, 0x11);
status |= VL53L0X_write_byte( 0xff, 0x07);
status |= VL53L0X_write_byte( 0xbe, 0x00);
status |= VL53L0X_write_byte( 0xff, 0x06);
status |= VL53L0X_write_byte( 0xcc, 0x09);
status |= VL53L0X_write_byte( 0xff, 0x00);
status |= VL53L0X_write_byte( 0xff, 0x01);
status |= VL53L0X_write_byte( 0x00, 0x00);
} else {
if (status == VL53L0X_ERROR_NONE) {
switch (functionality) {
case VL53L0X_GPIOFUNCTIONALITY_OFF:
data = 0x00;
break;
case VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_LOW:
data = 0x01;
break;
case VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_HIGH:
data = 0x02;
break;
case VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_OUT:
data = 0x03;
break;
case VL53L0X_GPIOFUNCTIONALITY_NEW_MEASURE_READY:
data = 0x04;
break;
default:
status = VL53L0X_ERROR_GPIO_FUNCTIONALITY_NOT_SUPPORTED;
}
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_byte(VL53L0X_REG_SYSTEM_INTERRUPT_CONFIG_GPIO, data);
}
if (status == VL53L0X_ERROR_NONE) {
if (polarity == VL53L0X_INTERRUPTPOLARITY_LOW) {
data = 0;
} else { data = (uint8_t)(1 << 4); }
status = VL53L0X_update_byte(VL53L0X_REG_GPIO_HV_MUX_ACTIVE_HIGH, 0xEF, data);
}
if (status == VL53L0X_ERROR_NONE) {
Data.Pin0GpioFunctionality = functionality; }
if (status == VL53L0X_ERROR_NONE) { status = VL53L0X_clear_interrupt_mask( 0); }
}
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_fraction_enable( uint8_t *p_enabled)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
status = VL53L0X_read_byte( VL53L0X_REG_SYSTEM_RANGE_CONFIG, p_enabled);
if (status == VL53L0X_ERROR_NONE) { *p_enabled = (*p_enabled & 1); }
return status;
}
uint16_t VL53L0X::VL53L0X_encode_timeout(uint32_t timeout_macro_clks)
{ /*!Encode timeout in macro periods in (LSByte * 2^MSByte) + 1 format*/
uint16_t encoded_timeout = 0;
uint32_t ls_byte = 0;
uint16_t ms_byte = 0;
if (timeout_macro_clks > 0) {
ls_byte = timeout_macro_clks - 1;
while ((ls_byte & 0xFFFFFF00) > 0) {
ls_byte = ls_byte >> 1;
ms_byte++;
}
encoded_timeout = (ms_byte << 8) + (uint16_t)(ls_byte & 0x000000FF);
}
return encoded_timeout;
}
VL53L0X_Error VL53L0X::set_sequence_step_timeout(VL53L0X_SequenceStepId sequence_step_id,
uint32_t timeout_micro_secs)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t current_vcsel_pulse_period_p_clk;
uint8_t msrc_encoded_time_out;
uint16_t pre_range_encoded_time_out;
uint16_t pre_range_time_out_m_clks;
uint16_t msrc_range_time_out_m_clks;
uint32_t final_range_time_out_m_clks;
uint16_t final_range_encoded_time_out;
VL53L0X_SchedulerSequenceSteps_t scheduler_sequence_steps;
if ((sequence_step_id == VL53L0X_SEQUENCESTEP_TCC) ||
(sequence_step_id == VL53L0X_SEQUENCESTEP_DSS) ||
(sequence_step_id == VL53L0X_SEQUENCESTEP_MSRC)) {
status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,
¤t_vcsel_pulse_period_p_clk);
if (status == VL53L0X_ERROR_NONE) {
msrc_range_time_out_m_clks = VL53L0X_calc_timeout_mclks(timeout_micro_secs,
(uint8_t)current_vcsel_pulse_period_p_clk);
if (msrc_range_time_out_m_clks > 256) {
msrc_encoded_time_out = 255;
} else {
msrc_encoded_time_out =
(uint8_t)msrc_range_time_out_m_clks - 1;
}
Data.LastEncodedTimeout = msrc_encoded_time_out;
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_byte(VL53L0X_REG_MSRC_CONFIG_TIMEOUT_MACROP,
msrc_encoded_time_out);
}
} else {
if (sequence_step_id == VL53L0X_SEQUENCESTEP_PRE_RANGE) {
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,
¤t_vcsel_pulse_period_p_clk);
pre_range_time_out_m_clks =
VL53L0X_calc_timeout_mclks(timeout_micro_secs,
(uint8_t)current_vcsel_pulse_period_p_clk);
pre_range_encoded_time_out = VL53L0X_encode_timeout(pre_range_time_out_m_clks);
Data.LastEncodedTimeout = pre_range_encoded_time_out;
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_word(VL53L0X_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
pre_range_encoded_time_out);
}
if (status == VL53L0X_ERROR_NONE) {
Data.PreRangeTimeout_us = timeout_micro_secs;
}
} else if (sequence_step_id == VL53L0X_SEQUENCESTEP_FINAL_RANGE) {
/* For the final range timeout, the pre-range timeout
* must be added. To do this both final and pre-range
* timeouts must be expressed in macro periods MClks
* because they have different vcsel periods. */
VL53L0X_get_sequence_step_enables(&scheduler_sequence_steps);
pre_range_time_out_m_clks = 0;
if (scheduler_sequence_steps.PreRangeOn) {
/* Retrieve PRE-RANGE VCSEL Period */
status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,
¤t_vcsel_pulse_period_p_clk);
/* Retrieve PRE-RANGE Timeout in Macro periods
* (MCLKS) */
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_read_word( 0x51, &pre_range_encoded_time_out);
pre_range_time_out_m_clks =
VL53L0X_decode_timeout( pre_range_encoded_time_out);
}
}
/* Calculate FINAL RANGE Timeout in Macro Periods
* (MCLKS) and add PRE-RANGE value
*/
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_get_vcsel_pulse_period( VL53L0X_VCSEL_PERIOD_FINAL_RANGE,
¤t_vcsel_pulse_period_p_clk);
}
if (status == VL53L0X_ERROR_NONE) {
final_range_time_out_m_clks =
VL53L0X_calc_timeout_mclks( timeout_micro_secs,
(uint8_t) current_vcsel_pulse_period_p_clk);
final_range_time_out_m_clks += pre_range_time_out_m_clks;
final_range_encoded_time_out =
VL53L0X_encode_timeout(final_range_time_out_m_clks);
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_word( 0x71, final_range_encoded_time_out);
}
if (status == VL53L0X_ERROR_NONE) {
Data.FinalRangeTimeout_us = timeout_micro_secs;
}
}
} else {
status = VL53L0X_ERROR_INVALID_PARAMS;
}
}
return status;
}
VL53L0X_Error VL53L0X::wrapped_VL53L0X_set_measurement_timing_budget_us(uint32_t measurement_timing_budget_us)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint32_t final_range_timing_budget_us;
VL53L0X_SchedulerSequenceSteps_t scheduler_sequence_steps;
uint32_t msrc_dcc_tcc_timeout_us = 2000;
uint32_t start_overhead_us = 1910;
uint32_t end_overhead_us = 960;
uint32_t msrc_overhead_us = 660;
uint32_t tcc_overhead_us = 590;
uint32_t dss_overhead_us = 690;
uint32_t pre_range_overhead_us = 660;
uint32_t final_range_overhead_us = 550;
uint32_t pre_range_timeout_us = 0;
uint32_t c_min_timing_budget_us = 20000;
uint32_t sub_timeout = 0;
if (measurement_timing_budget_us < c_min_timing_budget_us)
{ status = VL53L0X_ERROR_INVALID_PARAMS;
return status;
}
final_range_timing_budget_us =
measurement_timing_budget_us - (start_overhead_us + end_overhead_us);
status = VL53L0X_get_sequence_step_enables( &scheduler_sequence_steps);
if (status == VL53L0X_ERROR_NONE &&
(scheduler_sequence_steps.TccOn ||
scheduler_sequence_steps.MsrcOn ||
scheduler_sequence_steps.DssOn)) {
/* TCC, MSRC and DSS all share the same timeout */
status = get_sequence_step_timeout( VL53L0X_SEQUENCESTEP_MSRC,
&msrc_dcc_tcc_timeout_us);
/* Subtract the TCC, MSRC and DSS timeouts if they are
* enabled. */
if (status != VL53L0X_ERROR_NONE) {
return status;
}
/* TCC */
if (scheduler_sequence_steps.TccOn) {
sub_timeout = msrc_dcc_tcc_timeout_us
+ tcc_overhead_us;
if (sub_timeout <
final_range_timing_budget_us) {
final_range_timing_budget_us -=
sub_timeout;
} else {
/* Requested timeout too big. */
status = VL53L0X_ERROR_INVALID_PARAMS;
}
}
if (status != VL53L0X_ERROR_NONE) {return status;}
/* DSS */
if (scheduler_sequence_steps.DssOn) {
sub_timeout = 2 * (msrc_dcc_tcc_timeout_us +
dss_overhead_us);
if (sub_timeout < final_range_timing_budget_us) {
final_range_timing_budget_us
-= sub_timeout;
} else {
/* Requested timeout too big. */
status = VL53L0X_ERROR_INVALID_PARAMS;
}
} else if (scheduler_sequence_steps.MsrcOn) {
/* MSRC */
sub_timeout = msrc_dcc_tcc_timeout_us +
msrc_overhead_us;
if (sub_timeout < final_range_timing_budget_us) {
final_range_timing_budget_us
-= sub_timeout;
} else {
/* Requested timeout too big. */
status = VL53L0X_ERROR_INVALID_PARAMS;
}
}
}
if (status != VL53L0X_ERROR_NONE) { return status; }
if (scheduler_sequence_steps.PreRangeOn) {
/* Subtract the Pre-range timeout if enabled. */
status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_PRE_RANGE,
&pre_range_timeout_us);
sub_timeout = pre_range_timeout_us +
pre_range_overhead_us;
if (sub_timeout < final_range_timing_budget_us) {
final_range_timing_budget_us -= sub_timeout;
} else {
/* Requested timeout too big. */
status = VL53L0X_ERROR_INVALID_PARAMS;
}
}
if (status == VL53L0X_ERROR_NONE &&
scheduler_sequence_steps.FinalRangeOn) {
final_range_timing_budget_us -=
final_range_overhead_us;
/* Final Range Timeout
* Note that the final range timeout is determined by the timing
* budget and the sum of all other timeouts within the sequence.
* If there is no room for the final range timeout, then an error
* will be set. Otherwise the remaining time will be applied to
* the final range.
*/
status = set_sequence_step_timeout(VL53L0X_SEQUENCESTEP_FINAL_RANGE,
final_range_timing_budget_us);
CurrentParameters.MeasurementTimingBudget_us = measurement_timing_budget_us;
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_set_measurement_timing_budget_us(uint32_t measurement_timing_budget_us)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
status = wrapped_VL53L0X_set_measurement_timing_budget_us(measurement_timing_budget_us);
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_set_sequence_step_enable(VL53L0X_SequenceStepId sequence_step_id, uint8_t sequence_step_enabled)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t sequence_config = 0;
uint8_t sequence_config_new = 0;
uint32_t measurement_timing_budget_us;
status = VL53L0X_read_byte( VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, &sequence_config);
sequence_config_new = sequence_config;
if (status == VL53L0X_ERROR_NONE) {
if (sequence_step_enabled == 1) {
/* Enable requested sequence step
*/
switch (sequence_step_id) {
case VL53L0X_SEQUENCESTEP_TCC:
sequence_config_new |= 0x10;
break;
case VL53L0X_SEQUENCESTEP_DSS:
sequence_config_new |= 0x28;
break;
case VL53L0X_SEQUENCESTEP_MSRC:
sequence_config_new |= 0x04;
break;
case VL53L0X_SEQUENCESTEP_PRE_RANGE:
sequence_config_new |= 0x40;
break;
case VL53L0X_SEQUENCESTEP_FINAL_RANGE:
sequence_config_new |= 0x80;
break;
default:
status = VL53L0X_ERROR_INVALID_PARAMS;
}
} else {
/* Disable requested sequence step */
switch (sequence_step_id) {
case VL53L0X_SEQUENCESTEP_TCC:
sequence_config_new &= 0xef;
break;
case VL53L0X_SEQUENCESTEP_DSS:
sequence_config_new &= 0xd7;
break;
case VL53L0X_SEQUENCESTEP_MSRC:
sequence_config_new &= 0xfb;
break;
case VL53L0X_SEQUENCESTEP_PRE_RANGE:
sequence_config_new &= 0xbf;
break;
case VL53L0X_SEQUENCESTEP_FINAL_RANGE:
sequence_config_new &= 0x7f;
break;
default:
status = VL53L0X_ERROR_INVALID_PARAMS;
}
}
}
if (sequence_config_new != sequence_config) {
/* Apply New Setting */
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_byte(VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, sequence_config_new);
}
if (status == VL53L0X_ERROR_NONE) {
Data.SequenceConfig = sequence_config_new;}
/* Recalculate timing budget */
if (status == VL53L0X_ERROR_NONE) {
measurement_timing_budget_us = CurrentParameters.MeasurementTimingBudget_us ;
VL53L0X_set_measurement_timing_budget_us(measurement_timing_budget_us);
}
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_set_limit_check_enable( uint16_t limit_check_id,
uint8_t limit_check_enable)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
FixPoint1616_t temp_fix1616 = 0;
uint8_t limit_check_enable_int = 0;
uint8_t limit_check_disable = 0;
uint8_t temp8;
if (limit_check_id >= VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS) {
status = VL53L0X_ERROR_INVALID_PARAMS;
} else {
if (limit_check_enable == 0) {
temp_fix1616 = 0;
limit_check_enable_int = 0;
limit_check_disable = 1;
} else {
temp_fix1616 = CurrentParameters.LimitChecksValue[limit_check_id];
limit_check_disable = 0;
/* this to be sure to have either 0 or 1 */
limit_check_enable_int = 1;
}
switch (limit_check_id) {
case VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE:
/* internal computation: */
CurrentParameters.LimitChecksEnable[VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE] = limit_check_enable_int;
break;
case VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE:
status = VL53L0X_write_word( VL53L0X_REG_FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT,
VL53L0X_FP1616TOFP97(temp_fix1616));
break;
case VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP:/* internal computation: */
CurrentParameters.LimitChecksEnable[VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP] = limit_check_enable_int;
break;
case VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD:/* internal computation: */
CurrentParameters.LimitChecksEnable[VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD] = limit_check_enable_int;
break;
case VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC:
temp8 = (uint8_t)(limit_check_disable << 1);
status = VL53L0X_update_byte(VL53L0X_REG_MSRC_CONFIG_CONTROL,
0xFE, temp8);
break;
case VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE:
temp8 = (uint8_t)(limit_check_disable << 4);
status = VL53L0X_update_byte(VL53L0X_REG_MSRC_CONFIG_CONTROL,
0xEF, temp8);
break;
default:
status = VL53L0X_ERROR_INVALID_PARAMS;
}
}
if (status == VL53L0X_ERROR_NONE) {
if (limit_check_enable == 0) {
CurrentParameters.LimitChecksEnable[limit_check_id] = 0;
} else {
CurrentParameters.LimitChecksEnable[limit_check_id] = 1;
}
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_static_init(void)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
VL53L0X_DeviceParameters_t current_parameters = {0};
uint8_t *p_tuning_setting_buffer;
uint16_t tempword = 0;
uint8_t tempbyte = 0;
uint8_t use_internal_tuning_settings = 0;
uint32_t count = 0;
uint8_t is_aperture_spads = 0;
uint32_t ref_spad_count = 0;
uint8_t aperture_spads = 0;
uint8_t vcsel_pulse_period_pclk;
uint32_t seq_timeout_micro_secs;
status = VL53L0X_get_info_from_device( 1);
/* set the ref spad from NVM */
count = (uint32_t)Data.ReferenceSpadCount;
aperture_spads = Data.ReferenceSpadType;
/* NVM value invalid */
if ((aperture_spads > 1) ||
((aperture_spads == 1) && (count > 32)) ||
((aperture_spads == 0) && (count > 12))) {
status = wrapped_VL53L0X_perform_ref_spad_management( &ref_spad_count,
&is_aperture_spads);
} else {
status = VL53L0X_set_reference_spads( count, aperture_spads);
}
/* Initialize tuning settings buffer to prevent compiler warning. */
p_tuning_setting_buffer = DefaultTuningSettings;
if (status == VL53L0X_ERROR_NONE) {
use_internal_tuning_settings = Data.UseInternalTuningSettings;
if (use_internal_tuning_settings == 0) {
p_tuning_setting_buffer = Data.pTuningSettingsPointer; }
else { p_tuning_setting_buffer = DefaultTuningSettings; }
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_load_tuning_settings( p_tuning_setting_buffer); }
/* Set interrupt config to new sample ready */
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_set_gpio_config( 0, 0,
VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY,
VL53L0X_INTERRUPTPOLARITY_LOW);
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_byte( 0xFF, 0x01);
status |= VL53L0X_read_word ( 0x84, &tempword);
status |= VL53L0X_write_byte( 0xFF, 0x00);
}
if (status == VL53L0X_ERROR_NONE) {
Data.OscFrequency_MHz = VL53L0X_FP412TOFP1616(tempword) ;
}
/* After static init, some device parameters may be changed,
* so update them */
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_get_device_parameters( ¤t_parameters);
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_get_fraction_enable( &tempbyte);
if (status == VL53L0X_ERROR_NONE) {
Data.RangeFractionalEnable = tempbyte;
}
}
if (status == VL53L0X_ERROR_NONE) {
CurrentParameters = current_parameters;
}
/* read the sequence config and save it */
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_read_byte(VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, &tempbyte);
if (status == VL53L0X_ERROR_NONE) {
Data.SequenceConfig = tempbyte;
}
}
/* Disable MSRC and TCC by default */
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_set_sequence_step_enable(VL53L0X_SEQUENCESTEP_TCC, 0);
}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_set_sequence_step_enable(VL53L0X_SEQUENCESTEP_MSRC, 0);
}
/* Set PAL State to standby */
if (status == VL53L0X_ERROR_NONE) {
Data.PalState = VL53L0X_STATE_IDLE;
}
/* Store pre-range vcsel period */
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_PRE_RANGE,&vcsel_pulse_period_pclk);
}
if (status == VL53L0X_ERROR_NONE) {
Data.PreRangeVcselPulsePeriod = vcsel_pulse_period_pclk;
}
/* Store final-range vcsel period */
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_get_vcsel_pulse_period(VL53L0X_VCSEL_PERIOD_FINAL_RANGE,
&vcsel_pulse_period_pclk);
}
if (status == VL53L0X_ERROR_NONE) {
Data.FinalRangeVcselPulsePeriod = vcsel_pulse_period_pclk;
}
/* Store pre-range timeout */
if (status == VL53L0X_ERROR_NONE) {
status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_PRE_RANGE,&seq_timeout_micro_secs);
}
if (status == VL53L0X_ERROR_NONE) {
Data.PreRangeTimeout_us = seq_timeout_micro_secs;
}
/* Store final-range timeout */
if (status == VL53L0X_ERROR_NONE) {
status = get_sequence_step_timeout(VL53L0X_SEQUENCESTEP_FINAL_RANGE,&seq_timeout_micro_secs);
}
if (status == VL53L0X_ERROR_NONE) {
Data.FinalRangeTimeout_us = seq_timeout_micro_secs;
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_stop_measurement(void)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
status = VL53L0X_write_byte( VL53L0X_REG_SYSRANGE_START,
VL53L0X_REG_SYSRANGE_MODE_SINGLESHOT);
status = VL53L0X_write_byte( 0xFF, 0x01);
status = VL53L0X_write_byte( 0x00, 0x00);
status = VL53L0X_write_byte( 0x91, 0x00);
status = VL53L0X_write_byte( 0x00, 0x01);
status = VL53L0X_write_byte( 0xFF, 0x00);
if (status == VL53L0X_ERROR_NONE) {
/* Set PAL State to Idle */
Data.PalState = VL53L0X_STATE_IDLE;
}
/* Check if need to apply interrupt settings */
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_check_and_load_interrupt_settings( 0);
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_get_stop_completed_status(uint32_t *p_stop_status)
{ VL53L0X_Error status = VL53L0X_ERROR_NONE;
uint8_t byte = 0;
status = VL53L0X_write_byte( 0xFF, 0x01);
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_read_byte( 0x04, &byte);}
if (status == VL53L0X_ERROR_NONE) {
status = VL53L0X_write_byte( 0xFF, 0x0); }
*p_stop_status = byte;
if (byte == 0) {
status = VL53L0X_write_byte( 0x80, 0x01);
status = VL53L0X_write_byte( 0xFF, 0x01);
status = VL53L0X_write_byte( 0x00, 0x00);
status = VL53L0X_write_byte( 0x91,Data.StopVariable);
status = VL53L0X_write_byte( 0x00, 0x01);
status = VL53L0X_write_byte( 0xFF, 0x00);
status = VL53L0X_write_byte( 0x80, 0x00);
}
return status;
}
/******************************************************************************/
/****************** Write and read functions from I2C *************************/
VL53L0X_Error VL53L0X::VL53L0X_read_multi( uint8_t index, uint8_t *p_data, uint32_t count)
{ if (count >= VL53L0X_MAX_I2C_XFER_SIZE) {
return VL53L0X_ERROR_INVALID_PARAMS;}
else { return VL53L0X_i2c_read(index, p_data, (uint16_t)count); }
}
VL53L0X_Error VL53L0X::VL53L0X_write_byte( uint8_t index, uint8_t data)
{ return VL53L0X_i2c_write(index, &data, 1);
}
VL53L0X_Error VL53L0X::VL53L0X_write_word( uint8_t index, uint16_t data)
{ int status;
uint8_t buffer[2];
buffer[0] = data >> 8;
buffer[1] = data & 0x00FF;
status = VL53L0X_i2c_write(index, (uint8_t *)buffer, 2);
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_write_dword( uint8_t index, uint32_t data)
{ int status;
uint8_t buffer[4];
buffer[0] = (data >> 24) & 0xFF;
buffer[1] = (data >> 16) & 0xFF;
buffer[2] = (data >> 8) & 0xFF;
buffer[3] = (data >> 0) & 0xFF;
status = VL53L0X_i2c_write(index, (uint8_t *)buffer, 4);
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_read_byte( uint8_t index, uint8_t *p_data)
{ return VL53L0X_i2c_read(index, p_data, 1); }
VL53L0X_Error VL53L0X::VL53L0X_read_word( uint8_t index, uint16_t *p_data)
{ int status;
uint8_t buffer[2] = {0, 0};
status = VL53L0X_i2c_read(index, buffer, 2);
if (!status) {*p_data = (buffer[0] << 8) + buffer[1];}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_read_dword( uint8_t index, uint32_t *p_data)
{ int status;
uint8_t buffer[4] = {0, 0, 0, 0};
status = VL53L0X_i2c_read(index, buffer, 4);
if (!status) { *p_data = (buffer[0] << 24) + (buffer[1] << 16) + (buffer[2] << 8) + buffer[3]; }
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_update_byte( uint8_t index, uint8_t and_data, uint8_t or_data)
{ int status;
uint8_t buffer = 0;
/* read data direct onto buffer */
status = VL53L0X_i2c_read(index, &buffer, 1);
if (!status) {
buffer = (buffer & and_data) | or_data;
status = VL53L0X_i2c_write(index, &buffer, (uint8_t)1);
}
return status;
}
VL53L0X_Error VL53L0X::VL53L0X_i2c_write(uint8_t RegisterAddr, uint8_t *p_data,
uint16_t NumByteToWrite)
{ /** Writes a buffer towards the I2C peripheral device. */
static uint8_t tmp[VL53L0X_MAX_I2C_XFER_SIZE];
if(NumByteToWrite >= VL53L0X_MAX_I2C_XFER_SIZE) return -2;
/* First, send device address. Then, send data and STOP condition */
tmp[0] = RegisterAddr;
memcpy(tmp+1, p_data, NumByteToWrite);
if (_dev_i2c->write(I2cDevAddr, (const char*)tmp, NumByteToWrite+1, false) != 0 )
{ return -1; }
return 0;
}
VL53L0X_Error VL53L0X::VL53L0X_i2c_read(uint8_t RegisterAddr, uint8_t *p_data, uint16_t NumByteToRead)
{ /** Reads a buffer from the I2C peripheral device. */
/* First Send device address, with no STOP condition */
int ret = _dev_i2c->write(I2cDevAddr, (const char*)&RegisterAddr, 1, true);
/* all ok ? then Read data, with STOP condition */
if (ret == 0) { ret = _dev_i2c->read(I2cDevAddr, (char*)p_data, NumByteToRead, false); }
if (ret != 0 ){ return -1; }
return 0;
}