Temp and Humidity sensor device driver.

Dependents:   KL05Z_DHT11 SeeedStudio_Grove_Sensors_Demo Seeed_Grove_Temp_Humidity_Example roam_v1 ... more

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers DHT.cpp Source File

DHT.cpp

00001 /*
00002  *  DHT Library for  Digital-output Humidity and Temperature sensors
00003  *
00004  *  Works with DHT11, DHT22
00005  *             SEN11301P,  Grove - Temperature&Humidity Sensor     (Seeed Studio)
00006  *             SEN51035P,  Grove - Temperature&Humidity Sensor Pro (Seeed Studio)
00007  *             AM2302   ,  temperature-humidity sensor
00008  *             HM2303   ,  Digital-output humidity and temperature sensor
00009  *
00010  *  Copyright (C) Wim De Roeve
00011  *                based on DHT22 sensor library by HO WING KIT
00012  *                Arduino DHT11 library
00013  *
00014  * Permission is hereby granted, free of charge, to any person obtaining a copy
00015  * of this software and associated documnetation files (the "Software"), to deal
00016  * in the Software without restriction, including without limitation the rights
00017  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
00018  * copies of the Software, and to permit persons to  whom the Software is
00019  * furished to do so, subject to the following conditions:
00020  *
00021  * The above copyright notice and this permission notice shall be included in
00022  * all copies or substantial portions of the Software.
00023  *
00024  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
00025  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
00026  * FITNESS OR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
00027  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
00028  * LIABILITY WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
00029  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
00030  * THE SOFTWARE.
00031  */
00032 
00033 #include "DHT.h"
00034 
00035 #define DHT_DATA_BIT_COUNT 40
00036 
00037 DHT::DHT(PinName pin, eType DHTtype)
00038 {
00039     _pin = pin;
00040     _DHTtype = DHTtype;
00041     _firsttime = true;
00042 }
00043 
00044 DHT::~DHT()
00045 {
00046     
00047 }
00048 
00049 eError DHT::stall(DigitalInOut &io, int const level, int const max_time)
00050 {
00051     int cnt = 0;
00052     while (level == io) {
00053         if (cnt > max_time) {
00054             return ERROR_NO_PATIENCE;
00055         }
00056         cnt++;
00057         wait_us(1);
00058     }
00059     return ERROR_NONE;
00060 }
00061 
00062 eError DHT::readData()
00063 {
00064     uint8_t i = 0, j = 0, b = 0, data_valid = 0;
00065     uint32_t bit_value[DHT_DATA_BIT_COUNT] = {0};
00066 
00067     eError err = ERROR_NONE;
00068     time_t currentTime = time(NULL);
00069 
00070     DigitalInOut DHT_io(_pin);
00071 
00072     // IO must be in hi state to start
00073     if (ERROR_NONE != stall(DHT_io, 0, 250)) {
00074         return BUS_BUSY;
00075     }
00076 
00077     // start the transfer
00078     DHT_io.output();
00079     DHT_io = 0;
00080     wait_ms(18);
00081     DHT_io = 1;
00082     wait_us(30);
00083     DHT_io.input();
00084     // wait till the sensor grabs the bus
00085     if (ERROR_NONE != stall(DHT_io, 1, 100)) {
00086         return ERROR_NOT_PRESENT;
00087     }
00088     // sensor should signal low 80us and then hi 80us
00089     if (ERROR_NONE != stall(DHT_io, 0, 100)) {
00090         return ERROR_SYNC_TIMEOUT;
00091     }
00092     if (ERROR_NONE != stall(DHT_io, 1, 100)) {
00093         return ERROR_NO_PATIENCE;
00094     }
00095     // capture the data
00096     for (i = 0; i < 5; i++) {
00097         for (j = 0; j < 8; j++) {
00098             if (ERROR_NONE != stall(DHT_io, 0, 75)) {
00099                 return ERROR_DATA_TIMEOUT;
00100             }
00101             // logic 0 is 28us max, 1 is 70us
00102             wait_us(40);
00103             bit_value[i*8+j] = DHT_io;
00104             if (ERROR_NONE != stall(DHT_io, 1, 50)) {
00105                 return ERROR_DATA_TIMEOUT;
00106             }
00107         }
00108     }
00109     // store the data
00110     for (i = 0; i < 5; i++) {
00111         b=0;
00112         for (j=0; j<8; j++) {
00113             if (bit_value[i*8+j] == 1) {
00114                 b |= (1 << (7-j));
00115             }
00116         }
00117         DHT_data[i]=b;
00118     }
00119 
00120     // uncomment to see the checksum error if it exists
00121     //printf(" 0x%02x + 0x%02x + 0x%02x + 0x%02x = 0x%02x \n", DHT_data[0], DHT_data[1], DHT_data[2], DHT_data[3], DHT_data[4]);
00122     data_valid = DHT_data[0] + DHT_data[1] + DHT_data[2] + DHT_data[3];
00123     if (DHT_data[4] == data_valid) {
00124         _lastReadTime = currentTime;
00125         _lastTemperature = CalcTemperature();
00126         _lastHumidity = CalcHumidity();
00127 
00128     } else {
00129         err = ERROR_CHECKSUM;
00130     }
00131 
00132     return err;
00133 
00134 }
00135 
00136 float DHT::CalcTemperature()
00137 {
00138     int v;
00139 
00140     switch (_DHTtype) {
00141         case DHT11:
00142             v = DHT_data[2];
00143             return float(v);
00144         case DHT22:
00145             v = DHT_data[2] & 0x7F;
00146             v *= 256;
00147             v += DHT_data[3];
00148             v /= 10;
00149             if (DHT_data[2] & 0x80)
00150                 v *= -1;
00151             return float(v);
00152     }
00153     return 0;
00154 }
00155 
00156 float DHT::ReadHumidity()
00157 {
00158     return _lastHumidity;
00159 }
00160 
00161 float DHT::ConvertCelciustoFarenheit(float const celsius)
00162 {
00163     return celsius * 9 / 5 + 32;
00164 }
00165 
00166 float DHT::ConvertCelciustoKelvin(float const celsius)
00167 {
00168     return celsius + 273.15f;
00169 }
00170 
00171 // dewPoint function NOAA
00172 // reference: http://wahiduddin.net/calc/density_algorithms.htm
00173 float DHT::CalcdewPoint(float const celsius, float const humidity)
00174 {
00175     float A0= 373.15f/(273.15f + celsius);
00176     float SUM = -7.90298 * (A0-1);
00177     SUM += 5.02808f * log10(A0);
00178     SUM += -1.3816e-7 * (pow(10, (11.344f*(1-1/A0)))-1) ;
00179     SUM += 8.1328e-3 * (pow(10,(-3.49149*(A0-1)))-1) ;
00180     SUM += log10(1013.246);
00181     float VP = pow(10, SUM-3) * humidity;
00182     float T = log(VP/0.61078f);   // temp var
00183     return (241.88f * T) / (17.558f-T);
00184 }
00185 
00186 // delta max = 0.6544 wrt dewPoint()
00187 // 5x faster than dewPoint()
00188 // reference: http://en.wikipedia.org/wiki/Dew_point
00189 float DHT::CalcdewPointFast(float const celsius, float const humidity)
00190 {
00191     float a = 17.271;
00192     float b = 237.7;
00193     float temp = (a * celsius) / (b + celsius) + log(humidity/100);
00194     float Td = (b * temp) / (a - temp);
00195     return Td;
00196 }
00197 
00198 float DHT::ReadTemperature(eScale Scale)
00199 {
00200     if (Scale == FARENHEIT)
00201         return ConvertCelciustoFarenheit(_lastTemperature);
00202     else if (Scale == KELVIN)
00203         return ConvertCelciustoKelvin(_lastTemperature);
00204     else
00205         return _lastTemperature;
00206 }
00207 
00208 float DHT::CalcHumidity()
00209 {
00210     int v;
00211 
00212     switch (_DHTtype) {
00213         case DHT11:
00214             v = DHT_data[0];
00215             return float(v);
00216         case DHT22:
00217             v = DHT_data[0];
00218             v *= 256;
00219             v += DHT_data[1];
00220             v /= 10;
00221             return float(v);
00222     }
00223     return 0;
00224 }
00225 
00226