Example of using Xbus library to communicate with an MTi-1 series device using a full-duplex UART connection.

Dependencies:   mbed-rtos mbed Xbus

Fork of MTi-1_example by Alex Young

Important Information

This example is deprecated and no longer maintained. There are new embedded examples available in the MT SDK folder of the MT Software Suite. For more information please visit: https://xsenstechnologies.force.com/knowledgebase/s/article/Introduction-to-the-MT-SDK-programming-examples-for-MTi-devices

Overview

The example program demonstrates connecting to an MTi-1 series device, restoring communications settings to default if necessary, and configuring the MTi to send data. For an MTi-1 the device is configured to send inertial sensor data, while MTi-2 and MTi-3 devices are configured to output orientation data using the onboard XKF3i filter.

Communication with the MTi-1 series device is implemented using a either a full-duplex UART, I2C or SPI bus. A reset line is used to reset the MTi during initialization. Data is output to a host PC terminal using a second UART.

For more information on the MTi-1 series communication protocol please refer to the datasheet: https://www.xsens.com/download/pdf/documentation/mti-1/mti-1-series_datasheet.pdf

Supported Platforms

The program has been tested on the following mbed platforms:

Using the Example

  1. To use the example program connect one of the supported mbed boards to the host PC and download the application from the mbed online compiler to the target device.
  2. With the mbed board unpowered (USB disconnected) wire the mbed board to the MTi-1 development board. The following connections are required:
    • In all cases:
      • 5V (or 3V3) main supply to VDD (P300-1)
      • MCU IO voltage (IORef) to VDDIO (P300-2)
      • GND to GND (P300-3)
      • MT_NRESET to nRST (P300-5)
    • For I2C communication:
      • MT_SCL to I2C_SCL (P300-9)
      • MT_SDA to I2C_SDA (P300-11)
      • MT_DRDY to DRDY (P300-15)
      • MT_ADD0 to ADD0 (P300-17)
      • MT_ADD1 to ADD1 (P300-19)
      • MT_ADD2 to ADD2 (P300-21)
    • For SPI communication:
      • MT_DRDY to DRDY (P300-15)
      • MT_SCLK to SPI_SCK (P300-17)
      • MT_MISO to SPI_MISO (P300-19)
      • MT_MOSI to SPI_MOSI (P300-21)
      • MT_nCS to SPI_nCS (P300-23)
    • For UART communication:
      • MT_RX to UART_TX (P300-9)
      • MT_TX to UART_RX (P300-11)

For more information on the MTi-1 development board please refer to the MTi-1 series user manual: https://www.xsens.com/download/pdf/documentation/mti-1/mti-1-series_dk_user_manual.pdf

Information

Check the defines at the top of main.cpp to determine which IO pins are used for the MT_xxx connections on each mbed platform.

Information

The active peripheral (I2C, SPI or UART) is selected on the MTi-1 development board through the PSEL0 and PSEL1 switches. Look on the bottom of the development board for the correct settings.

  1. Connect to the target using a serial terminal. The application is configured for:
    • Baudrate = 921600
    • Stop bits = 1
    • No parity bits
    • No flow control
  2. Reset the mbed board.
  3. You should be presented with a simple user interface as shown below:
MTi-1 series embedded example firmware.
Device ready for operation.
Found device with ID: 03880011.
Device is an MTi-3: Attitude Heading Reference System.
Output configuration set to:
        Packet counter: 65535 Hz
        Sample time fine: 65535 Hz
        Quaternion: 100 Hz
        Status word: 65535 Hz

Press 'm' to start measuring and 'c' to return to config mode.

main.cpp

Committer:
Alex Young
Date:
2015-05-21
Revision:
37:3e87bf647c68
Parent:
36:21198d933917
Child:
38:d8d410d1662c

File content as of revision 37:3e87bf647c68:

/*!
 * \file
 * \copyright
 * Copyright (C) Xsens Technologies B.V., 2015.  All rights reserved.
 *
 * This source code is intended for use only by Xsens Technologies BV and
 * those that have explicit written permission to use it from
 * Xsens Technologies BV.
 *
 * THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
 * KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
 * PARTICULAR PURPOSE.
 */

#include "mbed.h"
#include "rtos.h"
#include "xbusparser.h"
#include "xbusmessage.h"

#define MEMORY_POOL_SIZE (4)
#define RESPONSE_QUEUE_SIZE (1)
#define MAX_XBUS_DATA_SIZE (128)

static Serial pc(PA_2, PA_3);
static Serial mt(PB_9, PB_8);
/*!
 * \brief MT reset line.
 *
 * MT is held in reset on startup.
 */
static DigitalOut mtReset(PA_10, 0);
static XbusParser* xbusParser;

MemoryPool<XbusMessage, MEMORY_POOL_SIZE> g_messagePool;
MemoryPool<uint8_t[MAX_XBUS_DATA_SIZE], MEMORY_POOL_SIZE> g_messageDataPool;
Queue<XbusMessage, RESPONSE_QUEUE_SIZE> g_responseQueue;

static void* allocateMessageData(size_t bufSize)
{
	return bufSize < MAX_XBUS_DATA_SIZE ? g_messageDataPool.alloc() : NULL;
}

static void deallocateMessageData(void const* buffer)
{
	g_messageDataPool.free((uint8_t(*)[MAX_XBUS_DATA_SIZE])buffer);
}

static void mtLowLevelHandler(void)
{
	while (mt.readable())
	{
		XbusParser_parseByte(xbusParser, mt.getc());
	}
}

static void sendMessage(XbusMessage const* m)
{
	uint8_t buf[64];
	size_t rawLength = XbusMessage_format(buf, m);
	for (size_t i = 0; i < rawLength; ++i)
	{
		mt.putc(buf[i]);
	}
}

static XbusMessage const* doTransaction(XbusMessage const* m)
{
	sendMessage(m);

	osEvent ev = g_responseQueue.get(500);
	return ev.status == osEventMessage ? (XbusMessage*)ev.value.p : NULL;
}

/*!
 * \brief RAII object to manage message memory deallocation.
 *
 * Will automatically free the memory used by a XbusMessage when going out
 * of scope.
 */
class XbusMessageMemoryManager
{
	public:
		XbusMessageMemoryManager(XbusMessage const* message)
			: m_message(message)
		{
		}

		~XbusMessageMemoryManager()
		{
			if (m_message)
			{
				if (m_message->data)
					deallocateMessageData(m_message->data);
				g_messagePool.free(const_cast<XbusMessage*>(m_message));
			}
		}

	private:
		XbusMessage const* m_message;
};

static void dumpResponse(XbusMessage const* response)
{
	switch (response->mid)
	{
		case XMID_GotoConfigAck:
			pc.printf("Device went to config mode\n");
			break;

		case XMID_DeviceId:
			pc.printf("Device ID: %08X\n", *(uint32_t*)response->data);
			break;

		case XMID_OutputConfig:
			{
				pc.printf("Output configuration\n");
				OutputConfiguration* conf = (OutputConfiguration*)response->data;
				for (int i = 0; i < response->length; ++i)
				{
					pc.printf("\t%s: %d Hz\n", XbusMessage_dataDescription(conf->dtype), conf->freq);
					++conf;
				}
			}
			break;

		case XMID_Error:
			pc.printf("Device error!");
			break;

		default:
			pc.printf("Received response MID=%X, length=%d\n", response->mid, response->length);
			break;
	}
}

static void sendCommand(XsMessageId cmdId)
{
	XbusMessage m = {cmdId};
	XbusMessage const* response = doTransaction(&m);
	XbusMessageMemoryManager janitor(response);

	if (response)
	{
		dumpResponse(response);
	}
	else
	{
		pc.printf("Timeout waiting for response.\n");
	}
}

static void handlePcCommand(char cmd)
{
	switch (cmd)
	{
		case 'c':
			sendCommand(XMID_GotoConfig);
			break;

		case 'm':
			sendCommand(XMID_GotoMeasurement);
			break;

		case 'd':
			sendCommand(XMID_ReqDid);
			break;

		case 'o':
			sendCommand(XMID_ReqOutputConfig);
			break;
	}
}

static void handleDataMessage(struct XbusMessage const* message)
{
	pc.printf("MTData2:");
	uint16_t counter;
	if (XbusMessage_getDataItem(&counter, XDI_PacketCounter, message))
	{
		pc.printf(" Packet counter: %5d", counter);
	}
	float ori[4];
	if (XbusMessage_getDataItem(ori, XDI_Quaternion, message))
	{
		pc.printf(" Orientation: (% .3f, % .3f, % .3f, % .3f)", ori[0], ori[1],
				ori[2], ori[3]);
	}
	uint32_t status;
	if (XbusMessage_getDataItem(&status, XDI_StatusWord, message))
	{
		pc.printf(" Status:%X", status);
	}
	pc.printf("\n");
	deallocateMessageData(message->data);
}

static void mtMessageHandler(struct XbusMessage const* message)
{
	if (message->mid == XMID_MtData2)
	{
		handleDataMessage(message);
	}
	else
	{
		XbusMessage* m = g_messagePool.alloc();
		memcpy(m, message, sizeof(XbusMessage));
		g_responseQueue.put(m);
	}
}

static void configureSerialPorts(void)
{
	pc.baud(921600);
	pc.format(8, Serial::None, 2);

	mt.baud(115200);
	mt.format(8, Serial::None, 2);
	mt.attach(mtLowLevelHandler, Serial::RxIrq);
}

static uint32_t readDeviceId(void)
{
	XbusMessage reqDid = {XMID_ReqDid};
	XbusMessage const* didRsp = doTransaction(&reqDid);
	XbusMessageMemoryManager janitor(didRsp);
	uint32_t deviceId = 0;
	if (didRsp)
	{
		if (didRsp->mid == XMID_DeviceId)
		{
			deviceId = *(uint32_t*)didRsp->data;
		}
	}
	return deviceId;
}

static bool setOutputConfiguration(OutputConfiguration const* conf, uint8_t elements)
{
	XbusMessage outputConfMsg = {XMID_SetOutputConfig, elements, (void*)conf};
	XbusMessage const* outputConfRsp = doTransaction(&outputConfMsg);
	XbusMessageMemoryManager janitor(outputConfRsp);
	if (outputConfRsp)
	{
		if (outputConfRsp->mid == XMID_OutputConfig)
		{
			pc.printf("Output configuration set to:\n");
			OutputConfiguration* conf = (OutputConfiguration*)outputConfRsp->data;
			for (int i = 0; i < outputConfRsp->length; ++i)
			{
				pc.printf("\t%s: %d Hz\n", XbusMessage_dataDescription(conf->dtype), conf->freq);
				++conf;
			}
			return true;
		}
		else
		{
			dumpResponse(outputConfRsp);
		}
	}
	else
	{
		pc.printf("Failed to set output configuration.\n");
	}
	return false;
}

static bool configureMotionTracker(void)
{
	uint32_t deviceId = readDeviceId();

	if (deviceId)
	{
		uint8_t deviceType = (deviceId >> 24) & 0x0F;
		pc.printf("Found MTi-%d\n", deviceType);

		if (deviceType == 1)
		{
			OutputConfiguration conf[] = {
				{XDI_PacketCounter, 65535},
				{XDI_SampleTimeFine, 65535},
				{XDI_Acceleration, 100},
				{XDI_RateOfTurn, 100},
				{XDI_MagneticField, 100}
			};
			return setOutputConfiguration(conf,
					sizeof(conf) / sizeof(OutputConfiguration));
		}
		else
		{
			OutputConfiguration conf[] = {
				{XDI_PacketCounter, 65535},
				{XDI_SampleTimeFine, 65535},
				{XDI_Quaternion, 100},
				{XDI_StatusWord, 65535}
			};
			return setOutputConfiguration(conf,
					sizeof(conf) / sizeof(OutputConfiguration));
		}
	}

	return false;
}

/*!
 * \brief Wait for a wakeup message from the MTi.
 * \param timeout Time to wait to receive the wakeup message.
 * \return true if wakeup received within timeout, else false.
 *
 * The MTi sends a XMID_Wakeup message once it has completed its bootup
 * procedure. If this is acknowledged by a XMID_WakeupAck message then the MTi
 * will stay in configuration mode. Otherwise it will automatically enter
 * measurement mode with the stored output configuration.
 */
bool waitForWakeup(uint32_t timeout)
{
	osEvent ev = g_responseQueue.get(timeout);
	if (ev.status == osEventMessage)
	{
		XbusMessage const* m = (XbusMessage const*)ev.value.p;
		XbusMessageMemoryManager janitor(m);
		return m->mid == XMID_Wakeup;
	}
	return false;
}

/*!
 * \brief Send wakeup acknowledge message to MTi.
 *
 * Sending a wakeup acknowledge will cause the device to stay in configuration
 * mode instead of automatically transitioning to measurement mode with the
 * stored output configuration.
 */
void sendWakeupAck(void)
{
	XbusMessage ack = {XMID_WakeupAck};
	sendMessage(&ack);
	pc.printf("Device ready for operation.\n");
}

/*!
 * \brief Restore communication with the MTi.
 *
 * On bootup the MTi will listen for a magic byte to signal that it should
 * return to default baudrate and output configuration. This can be used to
 * recover from a bad or unknown configuration.
 */
void restoreCommunication(void)
{
	pc.printf("Restoring communication with device... ");
	mtReset = 0;
	Thread::wait(1);
	mtReset = 1;

	do
	{
		mt.putc(0xDE);
	}
	while (!waitForWakeup(1));
	pc.printf("done\n");

	sendWakeupAck();
}

/*!
 * \brief Releases the MTi reset line and waits for a wakeup message.
 *
 * If no wakeup message is received within 1 second the restore communications
 * procedure is done to reset the MTi to default baudrate and output configuration.
 */
static void wakeupMotionTracker(void)
{
	mtReset.write(1); // Release MT from reset.
	if (waitForWakeup(1000))
	{
		sendWakeupAck();
	}
	else
	{
		restoreCommunication();
	}
}

int main(void)
{
	XbusParserCallback xbusCallback = {};
	xbusCallback.allocateBuffer = allocateMessageData;
	xbusCallback.deallocateBuffer = deallocateMessageData;
	xbusCallback.handleMessage = mtMessageHandler;

	xbusParser = XbusParser_create(&xbusCallback);
	configureSerialPorts();
	wakeupMotionTracker();
	if (configureMotionTracker())
	{
		for (;;)
		{
			while (pc.readable())
			{
				handlePcCommand(pc.getc());
			}
		}
	}
	else
	{
		pc.printf("Failed to configure motion tracker.\n");
		return -1;
	}
}