main_imu, MPU6050 , racolta_dati sono per il funzionamento dell' accelerometro. my_img_sd è una libreria per gestire i dati su un sd sulla quale vengono forniti solamente le funzioni di lettura e scrittura a blocchi i file trasmetti sono la definizione e implementazione delle funzioni del protoccolo per la gestione dell' invio dei dati con il relativo formato

Dependencies:   mbed

Files at this revision

API Documentation at this revision

Comitter:
rattokiller
Date:
Sun Nov 05 14:20:26 2017 +0000
Commit message:
librerie utili

Changed in this revision

MPU6050.h Show annotated file Show diff for this revision Revisions of this file
main_imu.h Show annotated file Show diff for this revision Revisions of this file
mbed.bld Show annotated file Show diff for this revision Revisions of this file
my_img_sd.h Show annotated file Show diff for this revision Revisions of this file
racolta_dati.h Show annotated file Show diff for this revision Revisions of this file
trasmetti.cpp Show annotated file Show diff for this revision Revisions of this file
trasmetti.h Show annotated file Show diff for this revision Revisions of this file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/MPU6050.h	Sun Nov 05 14:20:26 2017 +0000
@@ -0,0 +1,580 @@
+#ifndef MPU6050_H
+#define MPU6050_H
+ 
+#include "mpu_setting.h"
+
+// Set initial input parameters
+enum Ascale {
+  AFS_2G = 0,
+  AFS_4G,
+  AFS_8G,
+  AFS_16G
+};
+
+enum Gscale {
+  GFS_250DPS = 0,
+  GFS_500DPS,
+  GFS_1000DPS,
+  GFS_2000DPS
+};
+
+// Specify sensor full scale
+int Gscale = GFS_250DPS;
+int Ascale = AFS_4G;
+
+//Set up I2C, (SDA,SCL)
+
+//I2C i2c(I2C_SDA, I2C_SCL);
+
+//I2C i2c(PC_9, PA_8); /* setting port i2c imu */
+I2C i2c(PF_0, PF_1); //sda, scl -> usare la 3.3 V
+//I2C i2c(PB_9,PB_8);
+
+DigitalOut myled(LED1);
+   
+float aRes, gRes; // scale resolutions per LSB for the sensors
+  
+// Pin definitions
+int intPin = 12;  // These can be changed, 2 and 3 are the Arduinos ext int pins
+
+int16_t accelCount[3];  // Stores the 16-bit signed accelerometer sensor output
+float ax, ay, az;       // Stores the real accel value in g's
+int16_t gyroCount[3];   // Stores the 16-bit signed gyro sensor output
+float gx, gy, gz;       // Stores the real gyro value in degrees per seconds
+float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
+int16_t tempCount;   // Stores the real internal chip temperature in degrees Celsius
+float temperature;
+float SelfTest[6];
+
+int delt_t = 0; // used to control display output rate
+int count = 0;  // used to control display output rate
+
+// parameters for 6 DoF sensor fusion calculations
+float PI = 3.14159265358979323846f;
+float GyroMeasError = PI * (60.0f / 180.0f);     // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
+float beta = sqrt(3.0f / 4.0f) * GyroMeasError;  // compute beta
+float GyroMeasDrift = PI * (1.0f / 180.0f);      // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
+float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift;  // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
+float pitch, yaw, roll;
+float deltat = 0.0f;                              // integration interval for both filter schemes
+int lastUpdate = 0, firstUpdate = 0, Now = 0;     // used to calculate integration interval                               // used to calculate integration interval
+float q[4] = {1.0f, 0.0f, 0.0f, 0.0f};            // vector to hold quaternion
+
+class MPU6050 {
+ 
+    protected:
+ 
+    public:
+  //===================================================================================================================
+//====== Set of useful function to access acceleratio, gyroscope, and temperature data
+//===================================================================================================================
+
+    void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
+{
+   char data_write[2];
+   data_write[0] = subAddress;
+   data_write[1] = data;
+   i2c.write(address, data_write, 2, 0);
+}
+
+    char readByte(uint8_t address, uint8_t subAddress)
+{
+    char data[1]; // `data` will store the register data     
+    char data_write[1];
+    data_write[0] = subAddress;
+    i2c.write(address, data_write, 1, 1); // no stop
+    i2c.read(address, data, 1, 0); 
+    return data[0]; 
+}
+
+    void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
+{     
+    char data[14];
+    char data_write[1];
+    data_write[0] = subAddress;
+    i2c.write(address, data_write, 1, 1); // no stop
+    i2c.read(address, data, count, 0); 
+    for(int ii = 0; ii < count; ii++) {
+     dest[ii] = data[ii];
+    }
+} 
+ 
+
+void getGres() {
+  switch (Gscale)
+  {
+    // Possible gyro scales (and their register bit settings) are:
+    // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS  (11). 
+        // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
+    case GFS_250DPS:
+          gRes = 250.0/32768.0;
+          break;
+    case GFS_500DPS:
+          gRes = 500.0/32768.0;
+          break;
+    case GFS_1000DPS:
+          gRes = 1000.0/32768.0;
+          break;
+    case GFS_2000DPS:
+          gRes = 2000.0/32768.0;
+          break;
+  }
+}
+
+void getAres() {
+  switch (Ascale)
+  {
+    // Possible accelerometer scales (and their register bit settings) are:
+    // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs  (11). 
+        // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
+    case AFS_2G:
+          aRes = 2.0/32768.0;
+          break;
+    case AFS_4G:
+          aRes = 4.0/32768.0;
+          break;
+    case AFS_8G:
+          aRes = 8.0/32768.0;
+          break;
+    case AFS_16G:
+          aRes = 16.0/32768.0;
+          break;
+  }
+}
+
+
+void readAccelData(int16_t * destination)
+{
+  uint8_t rawData[6];  // x/y/z accel register data stored here
+  readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers into data array
+  destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
+  destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
+  destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
+}
+
+void readGyroData(int16_t * destination)
+{
+  uint8_t rawData[6];  // x/y/z gyro register data stored here
+  readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
+  destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
+  destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
+  destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
+}
+
+int16_t readTempData()
+{
+  uint8_t rawData[2];  // x/y/z gyro register data stored here
+  readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]);  // Read the two raw data registers sequentially into data array 
+  return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ;  // Turn the MSB and LSB into a 16-bit value
+}
+
+
+
+// Configure the motion detection control for low power accelerometer mode
+void LowPowerAccelOnly()
+{
+
+// The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly
+// Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration
+// above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a 
+// threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out
+// consideration for these threshold evaluations; otherwise, the flags would be set all the time!
+  
+  uint8_t c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6]
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c |  0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running
+
+  c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5]
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c |  0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running
+    
+  c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
+  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
+// Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold
+  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG,  c | 0x00);  // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter
+
+  c = readByte(MPU6050_ADDRESS, CONFIG);
+  writeByte(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0]
+  writeByte(MPU6050_ADDRESS, CONFIG, c |  0x00);  // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate
+    
+  c = readByte(MPU6050_ADDRESS, INT_ENABLE);
+  writeByte(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF);  // Clear all interrupts
+  writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x40);  // Enable motion threshold (bits 5) interrupt only
+  
+// Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold
+// for at least the counter duration
+  writeByte(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg
+  writeByte(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1  ms; LSB is 1 ms @ 1 kHz rate
+  
+  wait(0.1);  // Add delay for accumulation of samples
+  
+  c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
+  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
+  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c |  0x07);  // Set ACCEL_HPF to 7; hold the initial accleration value as a referance
+   
+  c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7]
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c |  0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2])  
+
+  c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c |  0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts
+
+}
+
+
+void resetMPU6050() {
+  // reset device
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
+  wait(0.1);
+  }
+  
+  
+void initMPU6050()
+{  
+ // Initialize MPU6050 device
+ // wake up device
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors 
+  wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt  
+
+ // get stable time source
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);  // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
+
+ // Configure Gyro and Accelerometer
+ // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; 
+ // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
+ // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
+  writeByte(MPU6050_ADDRESS, CONFIG, 0x03);  
+ 
+ // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
+  writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04);  // Use a 200 Hz rate; the same rate set in CONFIG above
+ 
+ // Set gyroscope full scale range
+ // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
+  uint8_t c =  readByte(MPU6050_ADDRESS, GYRO_CONFIG);
+  writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
+  writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
+  writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 0); // Set full scale range for the gyro
+   
+ // Set accelerometer configuration
+  c =  readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
+  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
+  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
+  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 0); // Set full scale range for the accelerometer 
+
+  // Configure Interrupts and Bypass Enable
+  // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips 
+  // can join the I2C bus and all can be controlled by the Arduino as master
+   writeByte(MPU6050_ADDRESS, INT_PIN_CFG, 0x22);    
+   writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x01);  // Enable data ready (bit 0) interrupt
+}
+
+// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
+// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
+void calibrateMPU6050(float * dest1, float * dest2)
+{  
+  uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
+  uint16_t ii, packet_count, fifo_count;
+  int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
+  
+// reset device, reset all registers, clear gyro and accelerometer bias registers
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
+  wait_ms(100);  
+   
+// get stable time source
+// Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);  
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00); 
+  wait_ms(200);
+  
+// Configure device for bias calculation
+  writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00);   // Disable all interrupts
+  writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00);      // Disable FIFO
+  writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00);   // Turn on internal clock source
+  writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
+  writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00);    // Disable FIFO and I2C master modes
+  writeByte(MPU6050_ADDRESS, USER_CTRL, 0x0C);    // Reset FIFO and DMP
+  wait_ms(20);
+  
+// Configure MPU6050 gyro and accelerometer for bias calculation
+  writeByte(MPU6050_ADDRESS, CONFIG, 0x01);      // Set low-pass filter to 188 Hz
+  writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
+  writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00);  // Set gyro full-scale to 250 degrees per second, maximum sensitivity
+  writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
+ 
+  uint16_t  gyrosensitivity  = 131;   // = 131 LSB/degrees/sec
+  uint16_t  accelsensitivity = 16384;  // = 16384 LSB/g
+
+// Configure FIFO to capture accelerometer and gyro data for bias calculation
+  writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40);   // Enable FIFO  
+  writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78);     // Enable gyro and accelerometer sensors for FIFO  (max size 1024 bytes in MPU-6050)
+  wait_us(78250); // accumulate 80 samples in 80 milliseconds = 960 bytes
+
+// At end of sample accumulation, turn off FIFO sensor read
+  writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00);        // Disable gyro and accelerometer sensors for FIFO
+  readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
+  fifo_count = ((uint16_t)data[0] << 8) | data[1];
+  packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
+   // pc.printf("packet = %d", packet_count);
+    
+  for (ii = 0; ii < packet_count; ii++) {
+    int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
+    readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
+    accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]  ) ;  // Form signed 16-bit integer for each sample in FIFO
+    accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]  ) ;
+    accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]  ) ;    
+    gyro_temp[0]  = (int16_t) (((int16_t)data[6] << 8) | data[7]  ) ;
+    gyro_temp[1]  = (int16_t) (((int16_t)data[8] << 8) | data[9]  ) ;
+    gyro_temp[2]  = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
+    
+    accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
+    accel_bias[1] += (int32_t) accel_temp[1];
+    accel_bias[2] += (int32_t) accel_temp[2];
+    gyro_bias[0]  += (int32_t) gyro_temp[0];
+    gyro_bias[1]  += (int32_t) gyro_temp[1];
+    gyro_bias[2]  += (int32_t) gyro_temp[2];
+            
+}
+
+pc.printf("packet = %d, filo = %d", packet_count,fifo_count);  
+    accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
+    accel_bias[1] /= (int32_t) packet_count;
+    accel_bias[2] /= (int32_t) packet_count;
+    gyro_bias[0]  /= (int32_t) packet_count;
+    gyro_bias[1]  /= (int32_t) packet_count;
+    gyro_bias[2]  /= (int32_t) packet_count;
+    
+  if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;}  // Remove gravity from the z-axis accelerometer bias calculation
+  else {accel_bias[2] += (int32_t) accelsensitivity;}
+ 
+// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
+  data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
+  data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
+  data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
+  data[3] = (-gyro_bias[1]/4)       & 0xFF;
+  data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
+  data[5] = (-gyro_bias[2]/4)       & 0xFF;
+
+// Push gyro biases to hardware registers
+  writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]); 
+  writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]);
+  writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]);
+  writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]);
+  writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]);
+  writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]);
+
+  dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
+  dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
+  dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
+
+// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
+// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
+// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
+// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
+// the accelerometer biases calculated above must be divided by 8.
+
+  int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
+  readBytes(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
+  accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+  readBytes(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]);
+  accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+  readBytes(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
+  accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+  
+  uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
+  uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
+  
+  for(ii = 0; ii < 3; ii++) {
+    if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
+  }
+
+  // Construct total accelerometer bias, including calculated average accelerometer bias from above
+  accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
+  accel_bias_reg[1] -= (accel_bias[1]/8);
+  accel_bias_reg[2] -= (accel_bias[2]/8);
+ 
+  data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
+  data[1] = (accel_bias_reg[0])      & 0xFF;
+  data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+  data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
+  data[3] = (accel_bias_reg[1])      & 0xFF;
+  data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+  data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
+  data[5] = (accel_bias_reg[2])      & 0xFF;
+  data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+
+  // Push accelerometer biases to hardware registers
+//  writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]);  
+//  writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]);
+//  writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]);
+//  writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]);  
+//  writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]);
+//  writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]);
+
+// Output scaled accelerometer biases for manual subtraction in the main program
+   dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; 
+   dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
+   dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
+printf("set acc : x= %f\t,y= %f\tz= %f\r\n;",accelBias[0],accelBias[1],accelBias[2]);
+    
+}
+
+
+// Accelerometer and gyroscope self test; check calibration wrt factory settings
+void MPU6050SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
+{
+   uint8_t rawData[4] = {0, 0, 0, 0};
+   uint8_t selfTest[6];
+   float factoryTrim[6];
+   
+   // Configure the accelerometer for self-test
+   writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g
+   writeByte(MPU6050_ADDRESS, GYRO_CONFIG,  0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
+   wait(0.25);  // Delay a while to let the device execute the self-test
+   rawData[0] = readByte(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results
+   rawData[1] = readByte(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results
+   rawData[2] = readByte(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results
+   rawData[3] = readByte(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results
+   // Extract the acceleration test results first
+   selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer
+   selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer
+   selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer
+   // Extract the gyration test results first
+   selfTest[3] = rawData[0]  & 0x1F ; // XG_TEST result is a five-bit unsigned integer
+   selfTest[4] = rawData[1]  & 0x1F ; // YG_TEST result is a five-bit unsigned integer
+   selfTest[5] = rawData[2]  & 0x1F ; // ZG_TEST result is a five-bit unsigned integer   
+   // Process results to allow final comparison with factory set values
+   factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation
+   factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation
+   factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation
+   factoryTrim[3] =  ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) ));             // FT[Xg] factory trim calculation
+   factoryTrim[4] =  (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) ));             // FT[Yg] factory trim calculation
+   factoryTrim[5] =  ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) ));             // FT[Zg] factory trim calculation
+   
+ //  Output self-test results and factory trim calculation if desired
+ //  Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]);
+ //  Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]);
+ //  Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]);
+ //  Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]);
+
+ // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
+ // To get to percent, must multiply by 100 and subtract result from 100
+   for (int i = 0; i < 6; i++) {
+     destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences
+   }
+   
+}
+
+
+// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
+// (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
+// which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative
+// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
+// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
+// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
+        void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz)
+        {
+            float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];         // short name local variable for readability
+            float norm;                                               // vector norm
+            float f1, f2, f3;                                         // objective funcyion elements
+            float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements
+            float qDot1, qDot2, qDot3, qDot4;
+            float hatDot1, hatDot2, hatDot3, hatDot4;
+            float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz;  // gyro bias error
+
+            // Auxiliary variables to avoid repeated arithmetic
+            float _halfq1 = 0.5f * q1;
+            float _halfq2 = 0.5f * q2;
+            float _halfq3 = 0.5f * q3;
+            float _halfq4 = 0.5f * q4;
+            float _2q1 = 2.0f * q1;
+            float _2q2 = 2.0f * q2;
+            float _2q3 = 2.0f * q3;
+            float _2q4 = 2.0f * q4;
+//            float _2q1q3 = 2.0f * q1 * q3;
+//            float _2q3q4 = 2.0f * q3 * q4;
+
+            // Normalise accelerometer measurement
+            norm = sqrt(ax * ax + ay * ay + az * az);
+            if (norm == 0.0f) return; // handle NaN
+            norm = 1.0f/norm;
+            ax *= norm;
+            ay *= norm;
+            az *= norm;
+            
+            // Compute the objective function and Jacobian
+            f1 = _2q2 * q4 - _2q1 * q3 - ax;
+            f2 = _2q1 * q2 + _2q3 * q4 - ay;
+            f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az;
+            J_11or24 = _2q3;
+            J_12or23 = _2q4;
+            J_13or22 = _2q1;
+            J_14or21 = _2q2;
+            J_32 = 2.0f * J_14or21;
+            J_33 = 2.0f * J_11or24;
+          
+            // Compute the gradient (matrix multiplication)
+            hatDot1 = J_14or21 * f2 - J_11or24 * f1;
+            hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3;
+            hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1;
+            hatDot4 = J_14or21 * f1 + J_11or24 * f2;
+            
+            // Normalize the gradient
+            norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4);
+            hatDot1 /= norm;
+            hatDot2 /= norm;
+            hatDot3 /= norm;
+            hatDot4 /= norm;
+            
+            // Compute estimated gyroscope biases
+            gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3;
+            gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2;
+            gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1;
+            
+            // Compute and remove gyroscope biases
+            gbiasx += gerrx * deltat * zeta;
+            gbiasy += gerry * deltat * zeta;
+            gbiasz += gerrz * deltat * zeta;
+ //           gx -= gbiasx;
+ //           gy -= gbiasy;
+ //           gz -= gbiasz;
+            
+            // Compute the quaternion derivative
+            qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz;
+            qDot2 =  _halfq1 * gx + _halfq3 * gz - _halfq4 * gy;
+            qDot3 =  _halfq1 * gy - _halfq2 * gz + _halfq4 * gx;
+            qDot4 =  _halfq1 * gz + _halfq2 * gy - _halfq3 * gx;
+
+            // Compute then integrate estimated quaternion derivative
+            q1 += (qDot1 -(beta * hatDot1)) * deltat;
+            q2 += (qDot2 -(beta * hatDot2)) * deltat;
+            q3 += (qDot3 -(beta * hatDot3)) * deltat;
+            q4 += (qDot4 -(beta * hatDot4)) * deltat;
+
+            // Normalize the quaternion
+            norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion
+            norm = 1.0f/norm;
+            q[0] = q1 * norm;
+            q[1] = q2 * norm;
+            q[2] = q3 * norm;
+            q[3] = q4 * norm;
+            
+        }
+    
+    void calibrate_manual_MPU6050(float * dest1, float * dest2){
+        //giroscopio
+    dest1[0] = 0;//(float) gyro_bias[0]/(float) gyrosensitivity;
+    dest1[1] =0;// ((float) gyro_bias[1]/(float) gyrosensitivity;
+    dest1[2] = 0;//(float) gyro_bias[2]/(float) gyrosensitivity;
+  
+        //acceletomtro
+    dest2[0] = 0;//(float)accel_bias[0]/(float)accelsensitivity; 
+    dest2[1] = 0;//float)accel_bias[1]/(float)accelsensitivity;
+    dest2[2] = 0;//(float)accel_bias[2]/(float)accelsensitivity;
+    
+    
+    }
+        
+  
+  };
+#endif
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/main_imu.h	Sun Nov 05 14:20:26 2017 +0000
@@ -0,0 +1,175 @@
+/* MPU6050 Basic Example Code
+ by: Kris Winer
+ date: May 1, 2014
+ license: Beerware - Use this code however you'd like. If you 
+ find it useful you can buy me a beer some time.
+ 
+ Demonstrate  MPU-6050 basic functionality including initialization, accelerometer trimming, sleep mode functionality as well as
+ parameterizing the register addresses. Added display functions to allow display to on breadboard monitor. 
+ No DMP use. We just want to get out the accelerations, temperature, and gyro readings.
+ 
+ SDA and SCL should have external pull-up resistors (to 3.3V).
+ 10k resistors worked for me. They should be on the breakout
+ board.
+ 
+ Hardware setup:
+ MPU6050 Breakout --------- Arduino
+ 3.3V --------------------- 3.3V
+ SDA ----------------------- A4
+ SCL ----------------------- A5
+ GND ---------------------- GND
+ 
+  Note: The MPU6050 is an I2C sensor and uses the Arduino Wire library. 
+ Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1.
+ We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file.
+ We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ  to 400000L /twi.h utility file.
+ */
+ #include "MPU6050.h"
+void calcola_dati();
+float sum = 0;
+uint32_t sumCount = 0;
+
+MPU6050 mpu6050;
+Timer t;
+
+Thread calcolo_q;
+
+//void pc_trasmisione(int n,char* s);
+bool inPosition=true;
+
+
+#include "racolta_dati.h" 
+  char buffer[100];
+
+
+void main_imu() // prendere tutto questo main e meterno in main_imu, rinominarlo e aviorlo da qui.
+{
+  //  char n;     pacco posta;
+  
+    using namespace mydati;
+     
+      dati_imu myimu;
+      
+
+
+
+
+
+  //Set up I2C
+  i2c.frequency(100000);  // use fast (400 kHz) I2C   
+  t.start();        
+  
+ 
+        
+        
+  wait_ms(350);
+  
+    inPosition=pul;//vero se non è premuto
+ if(inPosition)pc.printf("pulsante premuto!");
+  
+        // Read the WHO_AM_I register, this is a good test of communication
+ uint8_t whoami = mpu6050.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050);  // Read WHO_AM_I register for MPU-6050
+ pc.printf("\t\tI AM 0x%x\n\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r");
+ 
+
+  if (whoami == 0x68) // WHO_AM_I should always be 0x68
+  {  
+    pc.printf("MPU6050 is online...");
+    wait_ms(50);
+  
+
+    
+    mpu6050.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
+    pc.printf("x-axis self test: acceleration trim within : "); pc.printf("%d", SelfTest[0]); pc.printf("% of factory value \n\r");
+    pc.printf("y-axis self test: acceleration trim within : "); pc.printf("%d", SelfTest[1]); pc.printf("% of factory value \n\r");
+    pc.printf("z-axis self test: acceleration trim within : "); pc.printf("%d", SelfTest[2]); pc.printf("% of factory value \n\r");
+    pc.printf("x-axis self test: gyration trim within : "); pc.printf("%d", SelfTest[3]); pc.printf("% of factory value \n\r");
+    pc.printf("y-axis self test: gyration trim within : "); pc.printf("%d", SelfTest[4]); pc.printf("% of factory value \n\r");
+    pc.printf("z-axis self test: gyration trim within : "); pc.printf("%d", SelfTest[5]); pc.printf("% of factory value \n\r");
+    wait(1);
+
+    if(inPosition && SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) 
+    {
+    mpu6050.resetMPU6050(); // Reset registers to default in preparation for device calibration
+    mpu6050.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers  
+    mpu6050.initMPU6050(); pc.printf("MPU6050 initialized for active data mode....\n\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
+
+   
+    wait(2);
+    pc.printf("set acc : x= %f\t,y= %f\tz= %f\r\n;",accelBias[0],accelBias[1],accelBias[2]);
+       }
+    else
+    {
+    pc.printf("Device did not the pass self-test!\n\r");
+ 
+  
+      }
+    }
+    else
+    {
+    pc.printf("Could not connect to MPU6050: \n\n\r");
+    pc.printf("%#x \n",  whoami);
+ 
+ 
+   
+        while(1) ; // Loop forever if communication doesn't happen
+  }
+    
+
+
+ calcolo_q.start(calcola_dati);
+ 
+ while(1) {
+   
+   wait_ms(100);
+   
+   sprintf(buffer,"\tax = %6.1f\tay = %6.1f\taz = %6.1f\t\t", 1000*ax,1000*ay,1000*az);
+  //sprintf(buffer,"ciao");
+   wait_ms(10);
+
+   #if test
+   
+   
+   //sprintf(buffer,"\tax = %6.1f\tay = %6.1f\taz = %6.1f  mg\t\t", 1000*ax,100*ay,100*az); 
+    
+    
+    pc.printf("\tax = %6.1f", 1000*ax); 
+    pc.printf(" ay = %6.1f", 1000*ay); 
+    pc.printf(" az = %6.1f  mg\t\t", 1000*az); 
+
+    pc.printf("gx = %6.1f", gx); 
+    pc.printf(" gy = %6.1f", gy); 
+    pc.printf(" gz = %6.1f  deg/s\t", gz);
+   //  pc.printf("Yaw: %.2f , Pitch: %.2f, Roll: %.2f", yaw, pitch, roll);
+     pc.printf("\t temperature = %.2f  C\n\r", temperature);     
+    // pc.printf("q0 = %f\tq1 = %f\tq2 = %f\tq3 = %f\n\r", q[0],q[1],q[2],q[3]);
+    
+        n=strlen(buffer);
+        posta.n=n+1;
+    
+        posta.txt=buffer;
+        
+     //   telemetria.ins_in_coda(&posta);
+        
+        wait_ms(1);
+      // telemetria.invio();
+        wait_ms(1);
+    
+ //   pc.printf("q0 = %f\tq1 = %f\tq2 = %f\tq3 = %f\n\r", q[0],q[1],q[2],q[3]);
+ 
+ #endif
+ 
+ 
+        myimu.set_all(ax,ay,az,gx,gy,gz,0,0,0,temperature);
+        wait_ms(2);
+        myimu.invia();
+        wait_ms(2);
+  //da sostituire con la funzione della classe sensore imu
+
+        
+        
+        //myled= !myled;
+}
+
+}
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mbed.bld	Sun Nov 05 14:20:26 2017 +0000
@@ -0,0 +1,1 @@
+http://mbed.org/users/mbed_official/code/mbed/builds/fb8e0ae1cceb
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/my_img_sd.h	Sun Nov 05 14:20:26 2017 +0000
@@ -0,0 +1,215 @@
+#ifndef img_sd_h
+#define img_sd_h
+
+
+
+#define BLOCK_START_ADDR         0     /* Block start address      */  
+
+#define BLOCKSIZE                512   /* Block Size in Bytes      */
+#define NUM_OF_BLOCKS            2     /* Total number of blocks   */
+#define BUFFER_WORDS_SIZE        ((BLOCKSIZE * NUM_OF_BLOCKS) >> 2) /* Total data size in bytes */
+
+#include <mbed.h>
+
+Serial pc(USBTX, USBRX); // tx, rx
+
+void stampa_B(uint32_t b[],int n,int x,int y,int x0,int y0,int x_0,int y_0);
+void riemp_B(uint32_t b[],int n,int x0,int y0,int x,int y);
+
+
+void serializza_img(uint32_t** img ,int x,int y,uint64_t addr){
+    
+    int n_b=4*x*y/BLOCKSIZE +1;
+    uint32_t Buffer[BLOCKSIZE];
+    Buffer[0]=n_b;
+    Buffer[1]=0;
+    Buffer[2]=x;
+    Buffer[3]=y;
+    //  pc.printf("n_b= %d\r\n",n_b);
+    riemp_B(&Buffer[4],124,0,0,x,y);
+    if(sd.WriteBlocks(Buffer,addr, BLOCKSIZE, 1) == SD_OK)
+                pc.printf("SD OK");
+    int incx,incy;
+    incx=128/y;
+    incy=128%y;
+    int x0,y0;
+    x0=124/y;
+    y0=124%y;
+    for(int i=1;i<n_b;i++){
+         // pc.printf("sto caricando il buffer..  ");
+          riemp_B(Buffer,128,x0,y0,x,y);
+          if(sd.WriteBlocks(Buffer,addr+BLOCKSIZE*i, BLOCKSIZE,1) != SD_OK)
+              pc.printf("Errore i= %d",i);
+        x0+=incx;
+        y0+=incy;
+        if(y0>=y){
+        x0++;
+        y0-=y;
+        }
+              
+    }
+        
+    //pc.printf("ok, serializato!\r\n");
+  
+
+    
+}
+unsigned int  N_bk = 120;
+
+void leggi_img(int x_0,int y_0,uint64_t addr){
+    int x,y;
+    uint32_t Buffer[N_bk*BLOCKSIZE+1];
+    int n_b=0;
+    if(sd.ReadBlocks(Buffer, addr, BLOCKSIZE,1)== SD_OK){
+       // pc.printf("SD READ : OK.\r\n");
+
+        n_b=Buffer[0];
+        x=Buffer[2];
+        y=Buffer[3];
+   //  pc.printf("nb= %d\r\n",n_b);
+    //  pc.printf("x =  %d - y= %d\r\n",x,y);
+    }
+    if(n_b<N_bk)N_bk=n_b;
+    stampa_B(&Buffer[4],124,x,y,0,0,x_0,y_0);
+    int incx,incy;
+    incx=N_bk*128/y;
+    incy=(N_bk*128)%y;
+    int x0,y0;
+    x0=124/y;
+    y0=124%y;
+    
+
+   // pc.printf("x= %d, y= %d, x0= %d, yo= %d, y_00= %d\r\n",x,y,x0,y0,y_0);
+    for(int i=1;i<n_b;i+=N_bk)
+    
+        if(sd.ReadBlocks(Buffer, addr+BLOCKSIZE*i, BLOCKSIZE,N_bk)== SD_OK){
+       // pc.printf("SD READ %d: OK.\r\n",i);
+        stampa_B(Buffer,128*N_bk,x,y,x0,y0,x_0,y_0);
+        x0+=incx;
+        y0+=incy;
+        if(y0>=y){
+        x0++;
+        y0-=y;
+        }
+   
+    }
+   
+    
+ //   pc.printf("finito !");
+
+}
+
+
+void riemp_B(uint32_t b[],int n,int x0,int y0,int x,int y){
+ 
+   // pc.printf("ok\r\n");
+}
+
+void stampa_B(uint32_t b[],int n,int x,int y,int x0,int y0,int x_0,int y_0){
+   int cont=0;
+   int y1=y0;
+   int j;
+   
+  for(int i=x0;i<x;i++)
+        for(j=y1;j<y;j++){
+             y1=0;
+             lcd.DrawPixel(j+x_0,x-i+y_0,b[(i-x0)*y+j-y0]);
+            //cont++;
+        if(++cont==n)return;
+    } 
+}
+
+void scrivi_dato(uint32_t Buffer[],uint64_t addr,int n=1){
+    //pc.baud(921600);
+if(addr>=start_addr_dato){
+     if(sd.WriteBlocks(Buffer,addr, BLOCKSIZE*n,1) != SD_OK){
+              pc.printf("\t\t\t\t ->  Errore scrittura : ");
+              pc.printf("addres = %x \r\n",addr);
+              }
+    else 
+        { 
+        //  pc.printf("non salvato:\t%s\r\n",(char*)Buffer);
+               // pc.printf("addres = %x ",addr);
+
+        //slave.address(0xA0);
+         
+         }
+ }
+ else pc.printf("errore indirizzo non valido, addr= %d -- addr_Base = %d\r\n",addr,start_addr_dato);       
+}
+
+void printa_dato(uint32_t Buffer[],uint64_t addr){
+if(addr>=start_addr_dato)
+     if(sd.ReadBlocks(Buffer,addr, BLOCKSIZE,1) != SD_OK)
+                pc.printf("errore lettura");
+    else    pc.printf("Dato letto: %s",(char*)Buffer);
+}
+
+void scrivi_dato_progresione(uint32_t Buffer[]){
+   /*
+   uint32_t B[512];
+   sd.ReadBlocks((uint32_t*)B,0, BLOCKSIZE,1);
+   B[10]++;
+   sd.WriteBlocks((uint32_t*)B,0, BLOCKSIZE,1);
+   
+   scrivi_dato(Buffer,512*B[10]);
+   */
+   static int u=0;
+   
+   static int n=-1;
+   const int k=32;
+   static uint32_t Dato_B[BLOCKSIZE*k];
+   static int B[BLOCKSIZE];
+   uint64_t addr;
+   //pc.printf("n=%d",n);
+    if(n<0){pc.printf("inizio scritura\r\n");sd.ReadBlocks((uint32_t*)B,0, BLOCKSIZE,1);n=0;
+        if(B[10]<start_addr_dato/512)pc.printf("problemone, l' indirizzo salvato non è valido!\r\n");
+        }
+    //pc.printf("inizio scritura");
+    
+    if(n==k-1){
+    
+    //sd.ReadBlocks((uint32_t*)B,0, BLOCKSIZE,1);
+    sd.ReadBlocks((uint32_t*)B,0, BLOCKSIZE,1);
+    strcpy((char*)Dato_B[BLOCKSIZE*n],(char*)Buffer);
+    addr=B[10];
+    addr=BLOCKSIZE*addr;
+     
+    scrivi_dato(Dato_B,addr,k);
+    
+    u++;
+    //if(u==640||u==800||u==2240||u==2976||u==2720)B[10]=B[10]+2*k;else
+     B[10]=B[10]+k;
+    
+    sd.WriteBlocks((uint32_t*)B,0, BLOCKSIZE,1);
+    
+    n=0;
+   }
+   else {strcpy((char*)Dato_B[BLOCKSIZE*n],(char*)Buffer);n++;}
+   
+   
+  
+}
+
+void printa_dato_progressione(){
+    
+    pc.printf("\r\n Sto per legere in progresione ... ");
+    uint32_t B[BLOCKSIZE];
+    sd.ReadBlocks((uint32_t*)B,0, BLOCKSIZE,1);
+    int n=B[10];
+    pc.printf("n=%d\r\n",n-start_addr_dato/512);
+    for(int i=start_addr_dato;i<n*BLOCKSIZE;i+=BLOCKSIZE)
+    printa_dato((uint32_t*)B,i);
+    
+    pc.printf("\tfine\r\n"); 
+}
+
+void cancella_dati(){
+    
+ int  B[512];
+        pc.printf("\n dati cancellati \n");
+        B[10]=start_addr_dato/512;
+        sd.WriteBlocks((uint32_t*)B,0, BLOCKSIZE,1);    
+}
+
+#endif
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/racolta_dati.h	Sun Nov 05 14:20:26 2017 +0000
@@ -0,0 +1,104 @@
+
+void calcola_dati(){
+    while(true){
+    wait_us(20);
+  // If data ready bit set, all data registers have new data
+  if(mpu6050.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) {  // check if data ready interrupt
+    mpu6050.readAccelData(accelCount);  // Read the x/y/z adc values
+    mpu6050.getAres();
+    
+    // Now we'll calculate the accleration value into actual g's
+    ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
+    ay = (float)accelCount[1]*aRes - accelBias[1];   
+    az = (float)accelCount[2]*aRes - accelBias[2];  
+   
+    mpu6050.readGyroData(gyroCount);  // Read the x/y/z adc values
+    mpu6050.getGres();
+ 
+    // Calculate the gyro value into actual degrees per second
+    gx = (float)gyroCount[0]*gRes; // - gyroBias[0];  // get actual gyro value, this depends on scale being set
+    gy = (float)gyroCount[1]*gRes; // - gyroBias[1];  
+    gz = (float)gyroCount[2]*gRes; // - gyroBias[2];   
+
+    tempCount = mpu6050.readTempData();  // Read the x/y/z adc values
+    temperature = (tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
+   }  
+   
+    Now = t.read_us();
+    deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
+    lastUpdate = Now;
+    
+    sum += deltat;
+    sumCount++;
+    
+    if(lastUpdate - firstUpdate > 10000000.0f) {
+     beta = 0.04;  // decrease filter gain after stabilized
+     zeta = 0.015; // increasey bias drift gain after stabilized
+    }
+    
+   // Pass gyro rate as rad/s
+  gx=(int)gx;gy=(int)gy;gz=(int)gz;
+  
+  ax=((int)10000*ax)/10000;
+  ay=((int)10000*ay)/10000;
+  az=((int)10000*az)/10000;
+  
+  q[0]=((int)10000*q[0])/10000;
+    q[1]=((int)10000*q[1])/10000;
+  q[2]=((int)10000*q[2])/10000;
+  q[3]=((int)10000*q[3])/10000;
+   
+    mpu6050.MadgwickQuaternionUpdate(ax, ay,az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
+
+    // Serial print and/or display at 0.5 s rate independent of data rates
+    delt_t = t.read_ms() - count;
+    if (delt_t > 500) { // update LCD once per half-second independent of read rate
+#if false
+    pc.printf("\tax = %6.1f", 1000*ax); 
+    pc.printf(" ay = %6.1f", 1000*ay); 
+    pc.printf(" az = %6.1f  mg\t\t", 1000*az); 
+
+    pc.printf("gx = %6.1f", gx); 
+    pc.printf(" gy = %6.1f", gy); 
+    pc.printf(" gz = %6.1f  deg/s\t\t\t", gz); 
+     pc.printf("\t\t temperature = %f  C\n\r", temperature);     
+
+    
+ //   pc.printf("q0 = %f\tq1 = %f\tq2 = %f\tq3 = %f\n\r", q[0],q[1],q[2],q[3]);
+ #endif
+ //   pc.printf("q1 = %f\n\r", q[1]); pc.printf("q2 = %f\n\r", q[2]); pc.printf("q3 = %f\n\r", q[3]);      
+    
+
+     
+
+    
+  // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
+  // In this coordinate system, the positive z-axis is down toward Earth. 
+  // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
+  // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
+  // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
+  // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
+  // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
+  // applied in the correct order which for this configuration is yaw, pitch, and then roll.
+  // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
+  
+  //sbagliato -> da fare tutto da capo. usare solo l' accelerometro per pich e rol, lo yaw non serve.
+  
+    yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]),2.0f *(q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]));   //<--- quel coglione ha sbagliato a scrive l' equazione con i quaternioni
+    pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
+    roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]),2.0f* (q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]));
+    pitch *= 180.0f / PI;
+    yaw   *= 180.0f / PI; 
+    roll  *= 180.0f / PI;
+    
+
+ // pc.printf("Yaw, Pitch, Roll: %.2f %.2f %.2f", yaw, pitch, roll);
+   //  pc.printf("\taverage rate = %f\n\r", (float) sumCount/sum);
+      
+  
+    count = t.read_ms(); 
+    sum = 0;
+    sumCount = 0; 
+    }
+    }
+}
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/trasmetti.cpp	Sun Nov 05 14:20:26 2017 +0000
@@ -0,0 +1,185 @@
+#define tra_cpp
+#include "trasmetti.h"
+#include <cstring>
+//#include <iostream>
+
+namespace mydati{
+
+
+
+bool trasmetti::ins_in_testa(pacco* d,char priorita){
+    coda* app;
+    app =new coda;
+    if(!app)return false;
+    app->dato=d;
+    app->priorita=priorita;
+    n++;
+    app->suc=testa;
+    testa=app;
+    delete [] d->txt;
+    return true;
+    
+}
+bool trasmetti::ins_in_coda(pacco* d,char priorita){
+
+    coda* app;
+    app =new coda;
+    if(!app)return false;
+ //   pc.printf("funzione ins coda 1 \r\n");
+ 
+    app->dato=d;
+ 
+    /*
+    app->dato=new pacco;
+    app->dato->n=d->n;
+    app->dato->txt=new char[d->n];
+    strcpy(app->dato->txt,d->txt);
+    delete [] d->txt;
+    */
+
+    if(!n){testa=fine=app;  n++;return true;}
+//pc.printf("funzione ins coda 3 \r\n");
+        fine->suc=app;
+        fine=app;
+        fine->suc=0;
+        n++;
+        return true; 
+};
+bool trasmetti::ins_priorita(pacco* d,char priorita){
+
+    coda* app;
+    app =new coda;
+    if(!app)return false;
+    app->dato=d;
+
+    app->priorita=priorita;
+
+    if(!n){app->suc=0;testa=fine=app;   n++;return true;}
+    if(testa->priorita<priorita){n++;app->suc=testa; testa=app;return true;}
+    
+    coda* cerca = testa;
+    if(n!=1){   bool tr =true;
+    while(cerca->suc->suc!=0&&tr)
+        if(cerca->suc->priorita>=priorita)
+        {
+        cerca=cerca->suc;       
+        }
+        else tr=false;
+        
+    app->suc=cerca->suc;
+    cerca->suc=app;
+    n++;
+    return true;
+    }
+        fine->suc=app;
+        fine=app;
+        fine->suc=0;
+        n++;
+        return true; 
+};
+
+bool trasmetti::invio(){ // iovio i dati!
+  
+ if(!n)return false;
+ pacco* app;
+ extract(&app); 
+
+if(!pc_trasmisione(app->n,app->txt))return false;
+ delete [] app->txt;
+ delete app;
+
+ return true;
+}
+void trasmetti::extract(pacco** d){
+    if(n!=0){
+    
+    coda* app=testa;
+    *d=testa->dato;
+    testa=testa->suc;
+    n--;
+
+    delete app;
+    }
+    
+}
+bool dati_imu::invia(char p){
+    //da agiungere una stringa per il protocolla dei tipo dei dati... 
+    //es #nomeclasse@dati
+    pacco* app;
+    app= new pacco;
+    app->n=nb_classe;
+    app->txt=new char[nb_classe+1];
+    sprintf(app->txt,"A%03.0f%03.0f%03.0f%04.0f%04.0f%04.0f#%d",1000*ax+off_set_a,1000*ay+off_set_a,1000*az+off_set_a,10*gx+off_set_g,10*gy+off_set_g,10*gz+off_set_g,number());
+    
+    
+    //app->txt=buffer;
+    /*
+    app->txt=new char[strlen(buffer)+1];
+    //printf("ximu %d X \n",strlen(buffer));
+    strcpy(app->txt,buffer);
+   */ 
+    //*funzione se si vuole usare la trasmisione binaria
+    //memcpy((void*)app->txt,(void*)this,nb_classe);
+    
+    
+    
+    return telemetria.ins_in_coda(app,p);
+}
+
+
+
+
+bool  estensimetro::invia(char p){
+    pacco* app;
+    app= new pacco;
+    app->n=nb_classe;
+    app->txt=new char[nb_classe+1];
+    sprintf(app->txt,"B%04.0f%04.0f%04.0f%04.0f#%d",ad,as,pd,ps,number());
+     
+    
+    
+    return telemetria.ins_in_coda(app,p);
+}
+
+bool  ruota_fonica::invia(char p){
+    pacco* app;
+    app= new pacco;
+    app->n=nb_classe;
+     app->txt=new char[nb_classe+1];
+     
+    sprintf(app->txt,"C%04.0f%04.0f%04.0f%04.0f#%d",ad,as,pd,ps,number());
+    //sprintf(app->txt,"C%04.0f%04.0f#%d",ad,as,pd,ps,number());
+    
+    
+    return telemetria.ins_in_coda(app,p);
+}
+
+bool  motore::invia(char p){
+    pacco* app;
+    app= new pacco;
+    app->n=nb_classe;
+    //char buffer[50];
+    app->txt=new char[nb_classe+1];
+    
+   
+    if(P_olio>10){pc.printf("errore olio troppo alto");P_olio=9.9;}
+    
+    if(velocita>10000){pc.printf("errore velocita troppo alta!");velocita=9999;}
+    //D 2000 7700 80800 9400 22 5#2
+    sprintf(app->txt,"D%03d%03d%05.0f%04.0f%02.0f%d#%d",T_acqua,T_olio,RMP,velocita,10*P_olio,marcia,number());
+  //  pc.printf("funzione motore.invia \r\n");
+    return telemetria.ins_in_coda(app,p);
+}
+bool allert::invia(const char* s){
+    
+    
+    pacco* app;
+    app= new pacco;
+    app->n=strlen(s+1);
+    //app->txt=new char[app->n+1];
+    app->txt=(char*)s;
+    
+    return telemetria.ins_in_testa(app);
+    }
+}
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/trasmetti.h	Sun Nov 05 14:20:26 2017 +0000
@@ -0,0 +1,225 @@
+//#ifndef mydati_h
+//#odefine mydati_h
+#include "mbed.h"
+
+
+
+Serial pc(USBTX, USBRX); // tx, rx
+
+#ifndef mydati_h
+#define mydati_h
+extern Serial pc;
+extern Serial device;
+extern Serial device2;
+
+namespace  mydati{
+
+bool pc_trasmisione(int,char* s);
+
+    struct pacco{
+    char* txt;
+    char n;
+    };
+    
+class trasmetti{ /* classe superiore che ha il compito di interagire con l' altra scheda,
+                 le altre sottoclassi si intrfacciano a lei */
+private:
+    int addr_slave;
+    I2C* master;
+    char conteggio;
+
+    struct coda{
+    char priorita;
+    pacco* dato;
+    coda* suc;
+    };
+    coda* testa;
+    coda* fine;
+    char n;
+    void extract(pacco**);
+public:
+trasmetti():n(0){testa=fine=0;}
+
+void set_add(int a){addr_slave=a;}
+void set_master(I2C* a){master=a;}
+
+bool ins_in_coda(pacco* ,char priorita= 0);
+bool ins_priorita(pacco* ,char priorita= 0);
+bool ins_in_testa(pacco* ,char priorita= 0);
+
+bool pc_trasmisione(int n,char* s);
+
+bool invio();
+}
+//serve perche deve essere unina per tutti e quindi di variabile di qeusta classe ne deve essere creata solo una
+#ifdef tra_cpp 
+telemetria;
+#else
+;
+extern trasmetti telemetria;
+#endif
+class sensore{ //classe generia appezotata, da riempire sucesivamente per oblicare alle altri figlie di implemetare la funzione
+    private:
+    static const int max_n=10;
+    int n;
+    
+    public:
+    sensore():n(-1){}
+    virtual bool invia(char p=0)=0;
+    int number(){n++;n=n%max_n;return n;}
+    virtual ~sensore(){}
+};
+
+
+/*le sucesive classi hanno il compito di legere i dati dal sensore 
+e di inviari interfaciandosi con la classe di sopra, 
+le funzioni che prendoi i dati vengono cambiate, c'è un set_all che viene implementato in mbed, 
+l' altro serve a me per testare il tutto con il cp
+*/
+class dati_imu : public sensore{
+private:
+static const char priorita_imu =5;
+static const int nb_classe =25;
+    float ax,ay,az;
+    float gx,gy,gz;
+    float pich,roll,yaw;
+    float temp;
+    static const int off_set_a=2000;
+    static const int off_set_g=1000;
+public:
+//dati_imu():sensore(),ax(0),ay(0),az(0),gx(0),gy(0),gz(0),pich(0),roll(0),yaw(0),temp(0){}
+
+void set_all(float a,float b,float c,float d,float e,float f,float g,float h, float i, float t){ // da elimiare i parametri di ingresso, essa chiamera una funzione dedicata
+    ax=a;ay=b;az=c;gx=d;gy=e;gz=f;pich=g;roll=h;yaw=i;temp=t;   
+    }
+void set_all(); 
+
+virtual bool invia(char p=priorita_imu);
+};
+
+class estensimetro : public sensore{
+    private:
+        static const char priorita_estensimetro =4;
+        static const int nb_classe =17;
+        float ad,as,pd,ps; // a= anteriore p= posteriore
+    public:
+        void set_all(float vad,float vas,float vpd,float vps){ad=vad; as=vas; pd=vpd; ps=vps;}
+        void set_all(); 
+        virtual bool invia(char p=priorita_estensimetro);
+};
+
+class ruota_fonica : public sensore{
+    private:
+        static const char priorita_ruota_fonica =4;
+        static const int nb_classe =17;
+        float ad,as,pd,ps; // a= anteriore p= posteriore
+    public:
+        void set_all(float vad,float vas,float vpd,float vps){ad=vad; as=vas; pd=vpd; ps=vps;}
+        void set_all(){}
+        virtual bool invia(char p=priorita_ruota_fonica);
+};
+
+class motore : public sensore{
+    private:
+        static const char priorita_motore =4;
+        static const int nb_classe =24;
+        float  P_olio,RMP,velocita;
+        char marcia,T_acqua,T_olio;
+    public:
+        motore():P_olio(0),RMP(0),velocita(0),marcia(0),T_acqua(0),T_olio(0){}
+        void set_all(char Ta,char To,float Po,float vrmp,float vel, char m){T_acqua=Ta; T_olio=To;P_olio=Po;RMP=vrmp;velocita=vel;marcia=m;}
+        void set_1(float a,char b){RMP=a;T_acqua=b;}
+        void set_velocita_gear(float a,char b){velocita=a;marcia=b;}
+        void set_T_oil(char a){T_olio=a;}
+        void set_P_oil(float a){P_olio=a;}
+        
+        char get_marcia()const{return marcia;}
+        char get_Tacq()const{return T_acqua;}
+        char get_Tolio()const{return T_olio;}
+        float get_Polio()const{return P_olio;}
+        float get_rmp()const{return RMP;}
+        float get_vel()const{return velocita;}
+        
+        virtual bool invia(char p=priorita_motore);
+};
+
+class allert{
+    public:
+    bool invia(const char*);
+};
+#ifdef tra_cpp 
+
+void led_rpm(int rpm, char a[]){
+    
+    int r=rpm;
+
+    if(r==0)a[0]=a[1]=0xff;
+    else if(r<3000){a[0]=0xfb;a[1]=0xef;}
+    else if(r<(3000+1333)){a[0]=0xf3;a[1]=0b11001111;}
+    else if(r<(3000+1333*2)){a[0]=0xe3;a[1]=0b11000111;}
+    else if(r<(3000+1333*3)){a[0]=0xc3;a[1]=0b11000011;}
+    else if(r<(3000+1333*4)){a[0]=0x83;a[1]=0b11000001;}
+    else if(r<(3000+1333*5)){a[0]=0x03;a[1]=0b11000000;}
+    else if(r<(11000)){a[0]=0x01;a[1]=0b10000000;}
+    else {a[0]=0x00;a[1]=0x00;}
+}
+
+
+bool trasmetti::pc_trasmisione(int n,char* s)
+{// da implementae con funzione che invia i dati su
+char ss[30];
+
+for(int i=0;i<20;i++)ss[5+i]='X';
+strcpy(ss,s);
+
+
+/*da portare in setting e trovare un modo epr farli risultare qui*/
+const int addr = 0x70;
+const int addr1 = 0x72;
+
+
+
+char nn[2];
+
+char a[2];
+
+nn[0]=22;
+int rpm;
+
+//master->frequency(100000);//da portare in setting e non farlo sempre
+
+//aggiungere condizione di return false se il write fallisce !
+        wait_us(10);  
+        
+        master->write(addr_slave,ss,nn[0]);
+        wait_us(1);
+        master->stop();
+        
+        
+  #define led_genny
+    
+    #ifdef led_genny
+         if(s[0]=='D'){
+            rpm=(s[7]-'0')*10000+(s[8]-'0')*1000+(s[9]-'0')*100+(s[10]-'0')*10+s[11]-'0';    
+            led_rpm(rpm,a);
+            master->write(addr, a, 1);    // Send command string
+            master->stop();
+            master->write(addr1, &a[1], 1);    // Send command string
+            master->stop();
+          }
+        
+        
+   #endif     
+        
+    
+    //  device.printf("%s@",s);
+     // device2.printf("%s@",s);
+     
+      // pc.printf("%s\r\n",ss); 
+         
+
+return true;    
+}
+#endif
+}
+#endif
\ No newline at end of file