main_imu, MPU6050 , racolta_dati sono per il funzionamento dell' accelerometro. my_img_sd è una libreria per gestire i dati su un sd sulla quale vengono forniti solamente le funzioni di lettura e scrittura a blocchi i file trasmetti sono la definizione e implementazione delle funzioni del protoccolo per la gestione dell' invio dei dati con il relativo formato

Dependencies:   mbed

Committer:
rattokiller
Date:
Sun Nov 05 14:20:26 2017 +0000
Revision:
0:a9753886e1e0
librerie utili

Who changed what in which revision?

UserRevisionLine numberNew contents of line
rattokiller 0:a9753886e1e0 1 #ifndef MPU6050_H
rattokiller 0:a9753886e1e0 2 #define MPU6050_H
rattokiller 0:a9753886e1e0 3
rattokiller 0:a9753886e1e0 4 #include "mpu_setting.h"
rattokiller 0:a9753886e1e0 5
rattokiller 0:a9753886e1e0 6 // Set initial input parameters
rattokiller 0:a9753886e1e0 7 enum Ascale {
rattokiller 0:a9753886e1e0 8 AFS_2G = 0,
rattokiller 0:a9753886e1e0 9 AFS_4G,
rattokiller 0:a9753886e1e0 10 AFS_8G,
rattokiller 0:a9753886e1e0 11 AFS_16G
rattokiller 0:a9753886e1e0 12 };
rattokiller 0:a9753886e1e0 13
rattokiller 0:a9753886e1e0 14 enum Gscale {
rattokiller 0:a9753886e1e0 15 GFS_250DPS = 0,
rattokiller 0:a9753886e1e0 16 GFS_500DPS,
rattokiller 0:a9753886e1e0 17 GFS_1000DPS,
rattokiller 0:a9753886e1e0 18 GFS_2000DPS
rattokiller 0:a9753886e1e0 19 };
rattokiller 0:a9753886e1e0 20
rattokiller 0:a9753886e1e0 21 // Specify sensor full scale
rattokiller 0:a9753886e1e0 22 int Gscale = GFS_250DPS;
rattokiller 0:a9753886e1e0 23 int Ascale = AFS_4G;
rattokiller 0:a9753886e1e0 24
rattokiller 0:a9753886e1e0 25 //Set up I2C, (SDA,SCL)
rattokiller 0:a9753886e1e0 26
rattokiller 0:a9753886e1e0 27 //I2C i2c(I2C_SDA, I2C_SCL);
rattokiller 0:a9753886e1e0 28
rattokiller 0:a9753886e1e0 29 //I2C i2c(PC_9, PA_8); /* setting port i2c imu */
rattokiller 0:a9753886e1e0 30 I2C i2c(PF_0, PF_1); //sda, scl -> usare la 3.3 V
rattokiller 0:a9753886e1e0 31 //I2C i2c(PB_9,PB_8);
rattokiller 0:a9753886e1e0 32
rattokiller 0:a9753886e1e0 33 DigitalOut myled(LED1);
rattokiller 0:a9753886e1e0 34
rattokiller 0:a9753886e1e0 35 float aRes, gRes; // scale resolutions per LSB for the sensors
rattokiller 0:a9753886e1e0 36
rattokiller 0:a9753886e1e0 37 // Pin definitions
rattokiller 0:a9753886e1e0 38 int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins
rattokiller 0:a9753886e1e0 39
rattokiller 0:a9753886e1e0 40 int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
rattokiller 0:a9753886e1e0 41 float ax, ay, az; // Stores the real accel value in g's
rattokiller 0:a9753886e1e0 42 int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
rattokiller 0:a9753886e1e0 43 float gx, gy, gz; // Stores the real gyro value in degrees per seconds
rattokiller 0:a9753886e1e0 44 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
rattokiller 0:a9753886e1e0 45 int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius
rattokiller 0:a9753886e1e0 46 float temperature;
rattokiller 0:a9753886e1e0 47 float SelfTest[6];
rattokiller 0:a9753886e1e0 48
rattokiller 0:a9753886e1e0 49 int delt_t = 0; // used to control display output rate
rattokiller 0:a9753886e1e0 50 int count = 0; // used to control display output rate
rattokiller 0:a9753886e1e0 51
rattokiller 0:a9753886e1e0 52 // parameters for 6 DoF sensor fusion calculations
rattokiller 0:a9753886e1e0 53 float PI = 3.14159265358979323846f;
rattokiller 0:a9753886e1e0 54 float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
rattokiller 0:a9753886e1e0 55 float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
rattokiller 0:a9753886e1e0 56 float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
rattokiller 0:a9753886e1e0 57 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
rattokiller 0:a9753886e1e0 58 float pitch, yaw, roll;
rattokiller 0:a9753886e1e0 59 float deltat = 0.0f; // integration interval for both filter schemes
rattokiller 0:a9753886e1e0 60 int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval
rattokiller 0:a9753886e1e0 61 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
rattokiller 0:a9753886e1e0 62
rattokiller 0:a9753886e1e0 63 class MPU6050 {
rattokiller 0:a9753886e1e0 64
rattokiller 0:a9753886e1e0 65 protected:
rattokiller 0:a9753886e1e0 66
rattokiller 0:a9753886e1e0 67 public:
rattokiller 0:a9753886e1e0 68 //===================================================================================================================
rattokiller 0:a9753886e1e0 69 //====== Set of useful function to access acceleratio, gyroscope, and temperature data
rattokiller 0:a9753886e1e0 70 //===================================================================================================================
rattokiller 0:a9753886e1e0 71
rattokiller 0:a9753886e1e0 72 void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
rattokiller 0:a9753886e1e0 73 {
rattokiller 0:a9753886e1e0 74 char data_write[2];
rattokiller 0:a9753886e1e0 75 data_write[0] = subAddress;
rattokiller 0:a9753886e1e0 76 data_write[1] = data;
rattokiller 0:a9753886e1e0 77 i2c.write(address, data_write, 2, 0);
rattokiller 0:a9753886e1e0 78 }
rattokiller 0:a9753886e1e0 79
rattokiller 0:a9753886e1e0 80 char readByte(uint8_t address, uint8_t subAddress)
rattokiller 0:a9753886e1e0 81 {
rattokiller 0:a9753886e1e0 82 char data[1]; // `data` will store the register data
rattokiller 0:a9753886e1e0 83 char data_write[1];
rattokiller 0:a9753886e1e0 84 data_write[0] = subAddress;
rattokiller 0:a9753886e1e0 85 i2c.write(address, data_write, 1, 1); // no stop
rattokiller 0:a9753886e1e0 86 i2c.read(address, data, 1, 0);
rattokiller 0:a9753886e1e0 87 return data[0];
rattokiller 0:a9753886e1e0 88 }
rattokiller 0:a9753886e1e0 89
rattokiller 0:a9753886e1e0 90 void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
rattokiller 0:a9753886e1e0 91 {
rattokiller 0:a9753886e1e0 92 char data[14];
rattokiller 0:a9753886e1e0 93 char data_write[1];
rattokiller 0:a9753886e1e0 94 data_write[0] = subAddress;
rattokiller 0:a9753886e1e0 95 i2c.write(address, data_write, 1, 1); // no stop
rattokiller 0:a9753886e1e0 96 i2c.read(address, data, count, 0);
rattokiller 0:a9753886e1e0 97 for(int ii = 0; ii < count; ii++) {
rattokiller 0:a9753886e1e0 98 dest[ii] = data[ii];
rattokiller 0:a9753886e1e0 99 }
rattokiller 0:a9753886e1e0 100 }
rattokiller 0:a9753886e1e0 101
rattokiller 0:a9753886e1e0 102
rattokiller 0:a9753886e1e0 103 void getGres() {
rattokiller 0:a9753886e1e0 104 switch (Gscale)
rattokiller 0:a9753886e1e0 105 {
rattokiller 0:a9753886e1e0 106 // Possible gyro scales (and their register bit settings) are:
rattokiller 0:a9753886e1e0 107 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
rattokiller 0:a9753886e1e0 108 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
rattokiller 0:a9753886e1e0 109 case GFS_250DPS:
rattokiller 0:a9753886e1e0 110 gRes = 250.0/32768.0;
rattokiller 0:a9753886e1e0 111 break;
rattokiller 0:a9753886e1e0 112 case GFS_500DPS:
rattokiller 0:a9753886e1e0 113 gRes = 500.0/32768.0;
rattokiller 0:a9753886e1e0 114 break;
rattokiller 0:a9753886e1e0 115 case GFS_1000DPS:
rattokiller 0:a9753886e1e0 116 gRes = 1000.0/32768.0;
rattokiller 0:a9753886e1e0 117 break;
rattokiller 0:a9753886e1e0 118 case GFS_2000DPS:
rattokiller 0:a9753886e1e0 119 gRes = 2000.0/32768.0;
rattokiller 0:a9753886e1e0 120 break;
rattokiller 0:a9753886e1e0 121 }
rattokiller 0:a9753886e1e0 122 }
rattokiller 0:a9753886e1e0 123
rattokiller 0:a9753886e1e0 124 void getAres() {
rattokiller 0:a9753886e1e0 125 switch (Ascale)
rattokiller 0:a9753886e1e0 126 {
rattokiller 0:a9753886e1e0 127 // Possible accelerometer scales (and their register bit settings) are:
rattokiller 0:a9753886e1e0 128 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
rattokiller 0:a9753886e1e0 129 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
rattokiller 0:a9753886e1e0 130 case AFS_2G:
rattokiller 0:a9753886e1e0 131 aRes = 2.0/32768.0;
rattokiller 0:a9753886e1e0 132 break;
rattokiller 0:a9753886e1e0 133 case AFS_4G:
rattokiller 0:a9753886e1e0 134 aRes = 4.0/32768.0;
rattokiller 0:a9753886e1e0 135 break;
rattokiller 0:a9753886e1e0 136 case AFS_8G:
rattokiller 0:a9753886e1e0 137 aRes = 8.0/32768.0;
rattokiller 0:a9753886e1e0 138 break;
rattokiller 0:a9753886e1e0 139 case AFS_16G:
rattokiller 0:a9753886e1e0 140 aRes = 16.0/32768.0;
rattokiller 0:a9753886e1e0 141 break;
rattokiller 0:a9753886e1e0 142 }
rattokiller 0:a9753886e1e0 143 }
rattokiller 0:a9753886e1e0 144
rattokiller 0:a9753886e1e0 145
rattokiller 0:a9753886e1e0 146 void readAccelData(int16_t * destination)
rattokiller 0:a9753886e1e0 147 {
rattokiller 0:a9753886e1e0 148 uint8_t rawData[6]; // x/y/z accel register data stored here
rattokiller 0:a9753886e1e0 149 readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
rattokiller 0:a9753886e1e0 150 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
rattokiller 0:a9753886e1e0 151 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
rattokiller 0:a9753886e1e0 152 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
rattokiller 0:a9753886e1e0 153 }
rattokiller 0:a9753886e1e0 154
rattokiller 0:a9753886e1e0 155 void readGyroData(int16_t * destination)
rattokiller 0:a9753886e1e0 156 {
rattokiller 0:a9753886e1e0 157 uint8_t rawData[6]; // x/y/z gyro register data stored here
rattokiller 0:a9753886e1e0 158 readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
rattokiller 0:a9753886e1e0 159 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
rattokiller 0:a9753886e1e0 160 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
rattokiller 0:a9753886e1e0 161 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
rattokiller 0:a9753886e1e0 162 }
rattokiller 0:a9753886e1e0 163
rattokiller 0:a9753886e1e0 164 int16_t readTempData()
rattokiller 0:a9753886e1e0 165 {
rattokiller 0:a9753886e1e0 166 uint8_t rawData[2]; // x/y/z gyro register data stored here
rattokiller 0:a9753886e1e0 167 readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
rattokiller 0:a9753886e1e0 168 return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
rattokiller 0:a9753886e1e0 169 }
rattokiller 0:a9753886e1e0 170
rattokiller 0:a9753886e1e0 171
rattokiller 0:a9753886e1e0 172
rattokiller 0:a9753886e1e0 173 // Configure the motion detection control for low power accelerometer mode
rattokiller 0:a9753886e1e0 174 void LowPowerAccelOnly()
rattokiller 0:a9753886e1e0 175 {
rattokiller 0:a9753886e1e0 176
rattokiller 0:a9753886e1e0 177 // The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly
rattokiller 0:a9753886e1e0 178 // Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration
rattokiller 0:a9753886e1e0 179 // above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a
rattokiller 0:a9753886e1e0 180 // threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out
rattokiller 0:a9753886e1e0 181 // consideration for these threshold evaluations; otherwise, the flags would be set all the time!
rattokiller 0:a9753886e1e0 182
rattokiller 0:a9753886e1e0 183 uint8_t c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
rattokiller 0:a9753886e1e0 184 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6]
rattokiller 0:a9753886e1e0 185 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running
rattokiller 0:a9753886e1e0 186
rattokiller 0:a9753886e1e0 187 c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
rattokiller 0:a9753886e1e0 188 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5]
rattokiller 0:a9753886e1e0 189 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running
rattokiller 0:a9753886e1e0 190
rattokiller 0:a9753886e1e0 191 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
rattokiller 0:a9753886e1e0 192 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
rattokiller 0:a9753886e1e0 193 // Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold
rattokiller 0:a9753886e1e0 194 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x00); // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter
rattokiller 0:a9753886e1e0 195
rattokiller 0:a9753886e1e0 196 c = readByte(MPU6050_ADDRESS, CONFIG);
rattokiller 0:a9753886e1e0 197 writeByte(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0]
rattokiller 0:a9753886e1e0 198 writeByte(MPU6050_ADDRESS, CONFIG, c | 0x00); // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate
rattokiller 0:a9753886e1e0 199
rattokiller 0:a9753886e1e0 200 c = readByte(MPU6050_ADDRESS, INT_ENABLE);
rattokiller 0:a9753886e1e0 201 writeByte(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF); // Clear all interrupts
rattokiller 0:a9753886e1e0 202 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x40); // Enable motion threshold (bits 5) interrupt only
rattokiller 0:a9753886e1e0 203
rattokiller 0:a9753886e1e0 204 // Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold
rattokiller 0:a9753886e1e0 205 // for at least the counter duration
rattokiller 0:a9753886e1e0 206 writeByte(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg
rattokiller 0:a9753886e1e0 207 writeByte(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1 ms; LSB is 1 ms @ 1 kHz rate
rattokiller 0:a9753886e1e0 208
rattokiller 0:a9753886e1e0 209 wait(0.1); // Add delay for accumulation of samples
rattokiller 0:a9753886e1e0 210
rattokiller 0:a9753886e1e0 211 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
rattokiller 0:a9753886e1e0 212 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
rattokiller 0:a9753886e1e0 213 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x07); // Set ACCEL_HPF to 7; hold the initial accleration value as a referance
rattokiller 0:a9753886e1e0 214
rattokiller 0:a9753886e1e0 215 c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
rattokiller 0:a9753886e1e0 216 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7]
rattokiller 0:a9753886e1e0 217 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2])
rattokiller 0:a9753886e1e0 218
rattokiller 0:a9753886e1e0 219 c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
rattokiller 0:a9753886e1e0 220 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5
rattokiller 0:a9753886e1e0 221 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts
rattokiller 0:a9753886e1e0 222
rattokiller 0:a9753886e1e0 223 }
rattokiller 0:a9753886e1e0 224
rattokiller 0:a9753886e1e0 225
rattokiller 0:a9753886e1e0 226 void resetMPU6050() {
rattokiller 0:a9753886e1e0 227 // reset device
rattokiller 0:a9753886e1e0 228 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
rattokiller 0:a9753886e1e0 229 wait(0.1);
rattokiller 0:a9753886e1e0 230 }
rattokiller 0:a9753886e1e0 231
rattokiller 0:a9753886e1e0 232
rattokiller 0:a9753886e1e0 233 void initMPU6050()
rattokiller 0:a9753886e1e0 234 {
rattokiller 0:a9753886e1e0 235 // Initialize MPU6050 device
rattokiller 0:a9753886e1e0 236 // wake up device
rattokiller 0:a9753886e1e0 237 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
rattokiller 0:a9753886e1e0 238 wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
rattokiller 0:a9753886e1e0 239
rattokiller 0:a9753886e1e0 240 // get stable time source
rattokiller 0:a9753886e1e0 241 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
rattokiller 0:a9753886e1e0 242
rattokiller 0:a9753886e1e0 243 // Configure Gyro and Accelerometer
rattokiller 0:a9753886e1e0 244 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
rattokiller 0:a9753886e1e0 245 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
rattokiller 0:a9753886e1e0 246 // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
rattokiller 0:a9753886e1e0 247 writeByte(MPU6050_ADDRESS, CONFIG, 0x03);
rattokiller 0:a9753886e1e0 248
rattokiller 0:a9753886e1e0 249 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
rattokiller 0:a9753886e1e0 250 writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
rattokiller 0:a9753886e1e0 251
rattokiller 0:a9753886e1e0 252 // Set gyroscope full scale range
rattokiller 0:a9753886e1e0 253 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
rattokiller 0:a9753886e1e0 254 uint8_t c = readByte(MPU6050_ADDRESS, GYRO_CONFIG);
rattokiller 0:a9753886e1e0 255 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
rattokiller 0:a9753886e1e0 256 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
rattokiller 0:a9753886e1e0 257 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 0); // Set full scale range for the gyro
rattokiller 0:a9753886e1e0 258
rattokiller 0:a9753886e1e0 259 // Set accelerometer configuration
rattokiller 0:a9753886e1e0 260 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
rattokiller 0:a9753886e1e0 261 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
rattokiller 0:a9753886e1e0 262 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
rattokiller 0:a9753886e1e0 263 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 0); // Set full scale range for the accelerometer
rattokiller 0:a9753886e1e0 264
rattokiller 0:a9753886e1e0 265 // Configure Interrupts and Bypass Enable
rattokiller 0:a9753886e1e0 266 // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
rattokiller 0:a9753886e1e0 267 // can join the I2C bus and all can be controlled by the Arduino as master
rattokiller 0:a9753886e1e0 268 writeByte(MPU6050_ADDRESS, INT_PIN_CFG, 0x22);
rattokiller 0:a9753886e1e0 269 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
rattokiller 0:a9753886e1e0 270 }
rattokiller 0:a9753886e1e0 271
rattokiller 0:a9753886e1e0 272 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
rattokiller 0:a9753886e1e0 273 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
rattokiller 0:a9753886e1e0 274 void calibrateMPU6050(float * dest1, float * dest2)
rattokiller 0:a9753886e1e0 275 {
rattokiller 0:a9753886e1e0 276 uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
rattokiller 0:a9753886e1e0 277 uint16_t ii, packet_count, fifo_count;
rattokiller 0:a9753886e1e0 278 int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
rattokiller 0:a9753886e1e0 279
rattokiller 0:a9753886e1e0 280 // reset device, reset all registers, clear gyro and accelerometer bias registers
rattokiller 0:a9753886e1e0 281 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
rattokiller 0:a9753886e1e0 282 wait_ms(100);
rattokiller 0:a9753886e1e0 283
rattokiller 0:a9753886e1e0 284 // get stable time source
rattokiller 0:a9753886e1e0 285 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
rattokiller 0:a9753886e1e0 286 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);
rattokiller 0:a9753886e1e0 287 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00);
rattokiller 0:a9753886e1e0 288 wait_ms(200);
rattokiller 0:a9753886e1e0 289
rattokiller 0:a9753886e1e0 290 // Configure device for bias calculation
rattokiller 0:a9753886e1e0 291 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
rattokiller 0:a9753886e1e0 292 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
rattokiller 0:a9753886e1e0 293 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
rattokiller 0:a9753886e1e0 294 writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
rattokiller 0:a9753886e1e0 295 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
rattokiller 0:a9753886e1e0 296 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
rattokiller 0:a9753886e1e0 297 wait_ms(20);
rattokiller 0:a9753886e1e0 298
rattokiller 0:a9753886e1e0 299 // Configure MPU6050 gyro and accelerometer for bias calculation
rattokiller 0:a9753886e1e0 300 writeByte(MPU6050_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
rattokiller 0:a9753886e1e0 301 writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
rattokiller 0:a9753886e1e0 302 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
rattokiller 0:a9753886e1e0 303 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
rattokiller 0:a9753886e1e0 304
rattokiller 0:a9753886e1e0 305 uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
rattokiller 0:a9753886e1e0 306 uint16_t accelsensitivity = 16384; // = 16384 LSB/g
rattokiller 0:a9753886e1e0 307
rattokiller 0:a9753886e1e0 308 // Configure FIFO to capture accelerometer and gyro data for bias calculation
rattokiller 0:a9753886e1e0 309 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
rattokiller 0:a9753886e1e0 310 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 1024 bytes in MPU-6050)
rattokiller 0:a9753886e1e0 311 wait_us(78250); // accumulate 80 samples in 80 milliseconds = 960 bytes
rattokiller 0:a9753886e1e0 312
rattokiller 0:a9753886e1e0 313 // At end of sample accumulation, turn off FIFO sensor read
rattokiller 0:a9753886e1e0 314 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
rattokiller 0:a9753886e1e0 315 readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
rattokiller 0:a9753886e1e0 316 fifo_count = ((uint16_t)data[0] << 8) | data[1];
rattokiller 0:a9753886e1e0 317 packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
rattokiller 0:a9753886e1e0 318 // pc.printf("packet = %d", packet_count);
rattokiller 0:a9753886e1e0 319
rattokiller 0:a9753886e1e0 320 for (ii = 0; ii < packet_count; ii++) {
rattokiller 0:a9753886e1e0 321 int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
rattokiller 0:a9753886e1e0 322 readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
rattokiller 0:a9753886e1e0 323 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
rattokiller 0:a9753886e1e0 324 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
rattokiller 0:a9753886e1e0 325 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
rattokiller 0:a9753886e1e0 326 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
rattokiller 0:a9753886e1e0 327 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
rattokiller 0:a9753886e1e0 328 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
rattokiller 0:a9753886e1e0 329
rattokiller 0:a9753886e1e0 330 accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
rattokiller 0:a9753886e1e0 331 accel_bias[1] += (int32_t) accel_temp[1];
rattokiller 0:a9753886e1e0 332 accel_bias[2] += (int32_t) accel_temp[2];
rattokiller 0:a9753886e1e0 333 gyro_bias[0] += (int32_t) gyro_temp[0];
rattokiller 0:a9753886e1e0 334 gyro_bias[1] += (int32_t) gyro_temp[1];
rattokiller 0:a9753886e1e0 335 gyro_bias[2] += (int32_t) gyro_temp[2];
rattokiller 0:a9753886e1e0 336
rattokiller 0:a9753886e1e0 337 }
rattokiller 0:a9753886e1e0 338
rattokiller 0:a9753886e1e0 339 pc.printf("packet = %d, filo = %d", packet_count,fifo_count);
rattokiller 0:a9753886e1e0 340 accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
rattokiller 0:a9753886e1e0 341 accel_bias[1] /= (int32_t) packet_count;
rattokiller 0:a9753886e1e0 342 accel_bias[2] /= (int32_t) packet_count;
rattokiller 0:a9753886e1e0 343 gyro_bias[0] /= (int32_t) packet_count;
rattokiller 0:a9753886e1e0 344 gyro_bias[1] /= (int32_t) packet_count;
rattokiller 0:a9753886e1e0 345 gyro_bias[2] /= (int32_t) packet_count;
rattokiller 0:a9753886e1e0 346
rattokiller 0:a9753886e1e0 347 if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
rattokiller 0:a9753886e1e0 348 else {accel_bias[2] += (int32_t) accelsensitivity;}
rattokiller 0:a9753886e1e0 349
rattokiller 0:a9753886e1e0 350 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
rattokiller 0:a9753886e1e0 351 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
rattokiller 0:a9753886e1e0 352 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
rattokiller 0:a9753886e1e0 353 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
rattokiller 0:a9753886e1e0 354 data[3] = (-gyro_bias[1]/4) & 0xFF;
rattokiller 0:a9753886e1e0 355 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
rattokiller 0:a9753886e1e0 356 data[5] = (-gyro_bias[2]/4) & 0xFF;
rattokiller 0:a9753886e1e0 357
rattokiller 0:a9753886e1e0 358 // Push gyro biases to hardware registers
rattokiller 0:a9753886e1e0 359 writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]);
rattokiller 0:a9753886e1e0 360 writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]);
rattokiller 0:a9753886e1e0 361 writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]);
rattokiller 0:a9753886e1e0 362 writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]);
rattokiller 0:a9753886e1e0 363 writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]);
rattokiller 0:a9753886e1e0 364 writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]);
rattokiller 0:a9753886e1e0 365
rattokiller 0:a9753886e1e0 366 dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
rattokiller 0:a9753886e1e0 367 dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
rattokiller 0:a9753886e1e0 368 dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
rattokiller 0:a9753886e1e0 369
rattokiller 0:a9753886e1e0 370 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
rattokiller 0:a9753886e1e0 371 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
rattokiller 0:a9753886e1e0 372 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
rattokiller 0:a9753886e1e0 373 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
rattokiller 0:a9753886e1e0 374 // the accelerometer biases calculated above must be divided by 8.
rattokiller 0:a9753886e1e0 375
rattokiller 0:a9753886e1e0 376 int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
rattokiller 0:a9753886e1e0 377 readBytes(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
rattokiller 0:a9753886e1e0 378 accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
rattokiller 0:a9753886e1e0 379 readBytes(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]);
rattokiller 0:a9753886e1e0 380 accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
rattokiller 0:a9753886e1e0 381 readBytes(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
rattokiller 0:a9753886e1e0 382 accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
rattokiller 0:a9753886e1e0 383
rattokiller 0:a9753886e1e0 384 uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
rattokiller 0:a9753886e1e0 385 uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
rattokiller 0:a9753886e1e0 386
rattokiller 0:a9753886e1e0 387 for(ii = 0; ii < 3; ii++) {
rattokiller 0:a9753886e1e0 388 if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
rattokiller 0:a9753886e1e0 389 }
rattokiller 0:a9753886e1e0 390
rattokiller 0:a9753886e1e0 391 // Construct total accelerometer bias, including calculated average accelerometer bias from above
rattokiller 0:a9753886e1e0 392 accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
rattokiller 0:a9753886e1e0 393 accel_bias_reg[1] -= (accel_bias[1]/8);
rattokiller 0:a9753886e1e0 394 accel_bias_reg[2] -= (accel_bias[2]/8);
rattokiller 0:a9753886e1e0 395
rattokiller 0:a9753886e1e0 396 data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
rattokiller 0:a9753886e1e0 397 data[1] = (accel_bias_reg[0]) & 0xFF;
rattokiller 0:a9753886e1e0 398 data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
rattokiller 0:a9753886e1e0 399 data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
rattokiller 0:a9753886e1e0 400 data[3] = (accel_bias_reg[1]) & 0xFF;
rattokiller 0:a9753886e1e0 401 data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
rattokiller 0:a9753886e1e0 402 data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
rattokiller 0:a9753886e1e0 403 data[5] = (accel_bias_reg[2]) & 0xFF;
rattokiller 0:a9753886e1e0 404 data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
rattokiller 0:a9753886e1e0 405
rattokiller 0:a9753886e1e0 406 // Push accelerometer biases to hardware registers
rattokiller 0:a9753886e1e0 407 // writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]);
rattokiller 0:a9753886e1e0 408 // writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]);
rattokiller 0:a9753886e1e0 409 // writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]);
rattokiller 0:a9753886e1e0 410 // writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]);
rattokiller 0:a9753886e1e0 411 // writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]);
rattokiller 0:a9753886e1e0 412 // writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]);
rattokiller 0:a9753886e1e0 413
rattokiller 0:a9753886e1e0 414 // Output scaled accelerometer biases for manual subtraction in the main program
rattokiller 0:a9753886e1e0 415 dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
rattokiller 0:a9753886e1e0 416 dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
rattokiller 0:a9753886e1e0 417 dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
rattokiller 0:a9753886e1e0 418 printf("set acc : x= %f\t,y= %f\tz= %f\r\n;",accelBias[0],accelBias[1],accelBias[2]);
rattokiller 0:a9753886e1e0 419
rattokiller 0:a9753886e1e0 420 }
rattokiller 0:a9753886e1e0 421
rattokiller 0:a9753886e1e0 422
rattokiller 0:a9753886e1e0 423 // Accelerometer and gyroscope self test; check calibration wrt factory settings
rattokiller 0:a9753886e1e0 424 void MPU6050SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
rattokiller 0:a9753886e1e0 425 {
rattokiller 0:a9753886e1e0 426 uint8_t rawData[4] = {0, 0, 0, 0};
rattokiller 0:a9753886e1e0 427 uint8_t selfTest[6];
rattokiller 0:a9753886e1e0 428 float factoryTrim[6];
rattokiller 0:a9753886e1e0 429
rattokiller 0:a9753886e1e0 430 // Configure the accelerometer for self-test
rattokiller 0:a9753886e1e0 431 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g
rattokiller 0:a9753886e1e0 432 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
rattokiller 0:a9753886e1e0 433 wait(0.25); // Delay a while to let the device execute the self-test
rattokiller 0:a9753886e1e0 434 rawData[0] = readByte(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results
rattokiller 0:a9753886e1e0 435 rawData[1] = readByte(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results
rattokiller 0:a9753886e1e0 436 rawData[2] = readByte(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results
rattokiller 0:a9753886e1e0 437 rawData[3] = readByte(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results
rattokiller 0:a9753886e1e0 438 // Extract the acceleration test results first
rattokiller 0:a9753886e1e0 439 selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer
rattokiller 0:a9753886e1e0 440 selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer
rattokiller 0:a9753886e1e0 441 selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer
rattokiller 0:a9753886e1e0 442 // Extract the gyration test results first
rattokiller 0:a9753886e1e0 443 selfTest[3] = rawData[0] & 0x1F ; // XG_TEST result is a five-bit unsigned integer
rattokiller 0:a9753886e1e0 444 selfTest[4] = rawData[1] & 0x1F ; // YG_TEST result is a five-bit unsigned integer
rattokiller 0:a9753886e1e0 445 selfTest[5] = rawData[2] & 0x1F ; // ZG_TEST result is a five-bit unsigned integer
rattokiller 0:a9753886e1e0 446 // Process results to allow final comparison with factory set values
rattokiller 0:a9753886e1e0 447 factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation
rattokiller 0:a9753886e1e0 448 factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation
rattokiller 0:a9753886e1e0 449 factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation
rattokiller 0:a9753886e1e0 450 factoryTrim[3] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) )); // FT[Xg] factory trim calculation
rattokiller 0:a9753886e1e0 451 factoryTrim[4] = (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) )); // FT[Yg] factory trim calculation
rattokiller 0:a9753886e1e0 452 factoryTrim[5] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) )); // FT[Zg] factory trim calculation
rattokiller 0:a9753886e1e0 453
rattokiller 0:a9753886e1e0 454 // Output self-test results and factory trim calculation if desired
rattokiller 0:a9753886e1e0 455 // Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]);
rattokiller 0:a9753886e1e0 456 // Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]);
rattokiller 0:a9753886e1e0 457 // Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]);
rattokiller 0:a9753886e1e0 458 // Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]);
rattokiller 0:a9753886e1e0 459
rattokiller 0:a9753886e1e0 460 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
rattokiller 0:a9753886e1e0 461 // To get to percent, must multiply by 100 and subtract result from 100
rattokiller 0:a9753886e1e0 462 for (int i = 0; i < 6; i++) {
rattokiller 0:a9753886e1e0 463 destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences
rattokiller 0:a9753886e1e0 464 }
rattokiller 0:a9753886e1e0 465
rattokiller 0:a9753886e1e0 466 }
rattokiller 0:a9753886e1e0 467
rattokiller 0:a9753886e1e0 468
rattokiller 0:a9753886e1e0 469 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
rattokiller 0:a9753886e1e0 470 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
rattokiller 0:a9753886e1e0 471 // which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative
rattokiller 0:a9753886e1e0 472 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
rattokiller 0:a9753886e1e0 473 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
rattokiller 0:a9753886e1e0 474 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
rattokiller 0:a9753886e1e0 475 void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz)
rattokiller 0:a9753886e1e0 476 {
rattokiller 0:a9753886e1e0 477 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
rattokiller 0:a9753886e1e0 478 float norm; // vector norm
rattokiller 0:a9753886e1e0 479 float f1, f2, f3; // objective funcyion elements
rattokiller 0:a9753886e1e0 480 float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements
rattokiller 0:a9753886e1e0 481 float qDot1, qDot2, qDot3, qDot4;
rattokiller 0:a9753886e1e0 482 float hatDot1, hatDot2, hatDot3, hatDot4;
rattokiller 0:a9753886e1e0 483 float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz; // gyro bias error
rattokiller 0:a9753886e1e0 484
rattokiller 0:a9753886e1e0 485 // Auxiliary variables to avoid repeated arithmetic
rattokiller 0:a9753886e1e0 486 float _halfq1 = 0.5f * q1;
rattokiller 0:a9753886e1e0 487 float _halfq2 = 0.5f * q2;
rattokiller 0:a9753886e1e0 488 float _halfq3 = 0.5f * q3;
rattokiller 0:a9753886e1e0 489 float _halfq4 = 0.5f * q4;
rattokiller 0:a9753886e1e0 490 float _2q1 = 2.0f * q1;
rattokiller 0:a9753886e1e0 491 float _2q2 = 2.0f * q2;
rattokiller 0:a9753886e1e0 492 float _2q3 = 2.0f * q3;
rattokiller 0:a9753886e1e0 493 float _2q4 = 2.0f * q4;
rattokiller 0:a9753886e1e0 494 // float _2q1q3 = 2.0f * q1 * q3;
rattokiller 0:a9753886e1e0 495 // float _2q3q4 = 2.0f * q3 * q4;
rattokiller 0:a9753886e1e0 496
rattokiller 0:a9753886e1e0 497 // Normalise accelerometer measurement
rattokiller 0:a9753886e1e0 498 norm = sqrt(ax * ax + ay * ay + az * az);
rattokiller 0:a9753886e1e0 499 if (norm == 0.0f) return; // handle NaN
rattokiller 0:a9753886e1e0 500 norm = 1.0f/norm;
rattokiller 0:a9753886e1e0 501 ax *= norm;
rattokiller 0:a9753886e1e0 502 ay *= norm;
rattokiller 0:a9753886e1e0 503 az *= norm;
rattokiller 0:a9753886e1e0 504
rattokiller 0:a9753886e1e0 505 // Compute the objective function and Jacobian
rattokiller 0:a9753886e1e0 506 f1 = _2q2 * q4 - _2q1 * q3 - ax;
rattokiller 0:a9753886e1e0 507 f2 = _2q1 * q2 + _2q3 * q4 - ay;
rattokiller 0:a9753886e1e0 508 f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az;
rattokiller 0:a9753886e1e0 509 J_11or24 = _2q3;
rattokiller 0:a9753886e1e0 510 J_12or23 = _2q4;
rattokiller 0:a9753886e1e0 511 J_13or22 = _2q1;
rattokiller 0:a9753886e1e0 512 J_14or21 = _2q2;
rattokiller 0:a9753886e1e0 513 J_32 = 2.0f * J_14or21;
rattokiller 0:a9753886e1e0 514 J_33 = 2.0f * J_11or24;
rattokiller 0:a9753886e1e0 515
rattokiller 0:a9753886e1e0 516 // Compute the gradient (matrix multiplication)
rattokiller 0:a9753886e1e0 517 hatDot1 = J_14or21 * f2 - J_11or24 * f1;
rattokiller 0:a9753886e1e0 518 hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3;
rattokiller 0:a9753886e1e0 519 hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1;
rattokiller 0:a9753886e1e0 520 hatDot4 = J_14or21 * f1 + J_11or24 * f2;
rattokiller 0:a9753886e1e0 521
rattokiller 0:a9753886e1e0 522 // Normalize the gradient
rattokiller 0:a9753886e1e0 523 norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4);
rattokiller 0:a9753886e1e0 524 hatDot1 /= norm;
rattokiller 0:a9753886e1e0 525 hatDot2 /= norm;
rattokiller 0:a9753886e1e0 526 hatDot3 /= norm;
rattokiller 0:a9753886e1e0 527 hatDot4 /= norm;
rattokiller 0:a9753886e1e0 528
rattokiller 0:a9753886e1e0 529 // Compute estimated gyroscope biases
rattokiller 0:a9753886e1e0 530 gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3;
rattokiller 0:a9753886e1e0 531 gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2;
rattokiller 0:a9753886e1e0 532 gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1;
rattokiller 0:a9753886e1e0 533
rattokiller 0:a9753886e1e0 534 // Compute and remove gyroscope biases
rattokiller 0:a9753886e1e0 535 gbiasx += gerrx * deltat * zeta;
rattokiller 0:a9753886e1e0 536 gbiasy += gerry * deltat * zeta;
rattokiller 0:a9753886e1e0 537 gbiasz += gerrz * deltat * zeta;
rattokiller 0:a9753886e1e0 538 // gx -= gbiasx;
rattokiller 0:a9753886e1e0 539 // gy -= gbiasy;
rattokiller 0:a9753886e1e0 540 // gz -= gbiasz;
rattokiller 0:a9753886e1e0 541
rattokiller 0:a9753886e1e0 542 // Compute the quaternion derivative
rattokiller 0:a9753886e1e0 543 qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz;
rattokiller 0:a9753886e1e0 544 qDot2 = _halfq1 * gx + _halfq3 * gz - _halfq4 * gy;
rattokiller 0:a9753886e1e0 545 qDot3 = _halfq1 * gy - _halfq2 * gz + _halfq4 * gx;
rattokiller 0:a9753886e1e0 546 qDot4 = _halfq1 * gz + _halfq2 * gy - _halfq3 * gx;
rattokiller 0:a9753886e1e0 547
rattokiller 0:a9753886e1e0 548 // Compute then integrate estimated quaternion derivative
rattokiller 0:a9753886e1e0 549 q1 += (qDot1 -(beta * hatDot1)) * deltat;
rattokiller 0:a9753886e1e0 550 q2 += (qDot2 -(beta * hatDot2)) * deltat;
rattokiller 0:a9753886e1e0 551 q3 += (qDot3 -(beta * hatDot3)) * deltat;
rattokiller 0:a9753886e1e0 552 q4 += (qDot4 -(beta * hatDot4)) * deltat;
rattokiller 0:a9753886e1e0 553
rattokiller 0:a9753886e1e0 554 // Normalize the quaternion
rattokiller 0:a9753886e1e0 555 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
rattokiller 0:a9753886e1e0 556 norm = 1.0f/norm;
rattokiller 0:a9753886e1e0 557 q[0] = q1 * norm;
rattokiller 0:a9753886e1e0 558 q[1] = q2 * norm;
rattokiller 0:a9753886e1e0 559 q[2] = q3 * norm;
rattokiller 0:a9753886e1e0 560 q[3] = q4 * norm;
rattokiller 0:a9753886e1e0 561
rattokiller 0:a9753886e1e0 562 }
rattokiller 0:a9753886e1e0 563
rattokiller 0:a9753886e1e0 564 void calibrate_manual_MPU6050(float * dest1, float * dest2){
rattokiller 0:a9753886e1e0 565 //giroscopio
rattokiller 0:a9753886e1e0 566 dest1[0] = 0;//(float) gyro_bias[0]/(float) gyrosensitivity;
rattokiller 0:a9753886e1e0 567 dest1[1] =0;// ((float) gyro_bias[1]/(float) gyrosensitivity;
rattokiller 0:a9753886e1e0 568 dest1[2] = 0;//(float) gyro_bias[2]/(float) gyrosensitivity;
rattokiller 0:a9753886e1e0 569
rattokiller 0:a9753886e1e0 570 //acceletomtro
rattokiller 0:a9753886e1e0 571 dest2[0] = 0;//(float)accel_bias[0]/(float)accelsensitivity;
rattokiller 0:a9753886e1e0 572 dest2[1] = 0;//float)accel_bias[1]/(float)accelsensitivity;
rattokiller 0:a9753886e1e0 573 dest2[2] = 0;//(float)accel_bias[2]/(float)accelsensitivity;
rattokiller 0:a9753886e1e0 574
rattokiller 0:a9753886e1e0 575
rattokiller 0:a9753886e1e0 576 }
rattokiller 0:a9753886e1e0 577
rattokiller 0:a9753886e1e0 578
rattokiller 0:a9753886e1e0 579 };
rattokiller 0:a9753886e1e0 580 #endif