Workshop 2
Dependencies: PM2_Libary
Diff: main.cpp
- Revision:
- 24:86f1a63e35a0
- Parent:
- 23:26b3a25fc637
- Child:
- 25:ea1d6e27c895
--- a/main.cpp Mon Mar 14 08:31:15 2022 +0000 +++ b/main.cpp Mon Mar 14 15:26:35 2022 +0100 @@ -1,192 +1,191 @@ #include "mbed.h" #include "PM2_Libary.h" -InterruptIn user_button(PC_13); -DigitalOut led(LED1); - +// logical variable main task +bool do_execute_main_task = false; // this variable will be toggled via the user button (blue button) to or not to execute the main task -bool do_execute_main = false; -Timer user_button_timer, loop_timer; -int loop_period_ms = 50; - +// user button on nucleo board +Timer user_button_timer; // create Timer object which we use to check if user button was pressed for a certain time (robust against signal bouncing) +InterruptIn user_button(PC_13); // create InterruptIn interface object to evaluate user button falling and rising edge (no blocking code in ISR) +void user_button_pressed_fcn(); // custom functions which gets executed when user button gets pressed and released, definition below +void user_button_released_fcn(); -/* declaration of custom button functions */ -void button_fall(); -void button_rise(); +// while loop gets executed every main_task_period_ms milliseconds +int main_task_period_ms = 50; // define main task period time in ms e.g. 50 ms -> main task runns 20 times per second +Timer main_task_timer; // create Timer object which we use to run the main task every main task period time in ms +// led on nucleo board +DigitalOut user_led(LED1); // create DigitalOut object to command user led -// SHARP GP2Y0A21Y IR Sensor -/* create analog input object */ -AnalogIn analog_in(PC_2); -float dist_ir_sensor = 0.0f; +// additional Led +DigitalOut extra_led(PB_9); // create DigitalOut object to command extra led (do add an aditional resistor, e.g. 220...500 Ohm) +// mechanical button +DigitalIn mechanical_button(PC_5); // create DigitalIn object to evaluate extra mechanical button, you need to specify the mode for proper usage, see below + +// Sharp GP2Y0A41SK0F, 4-40 cm IR Sensor +float ir_distance_mV = 0.0f; // define variable to store measurement +AnalogIn ir_analog_in(PC_2); // create AnalogIn object to read in infrared distance sensor, 0...3.3V are mapped to 0...1 -// 78:1 Metal Gearmotor 20Dx43L mm 12V CB -/* create enable dc motor digital out object */ -DigitalOut enable_motors(PB_15); +// 78:1, 100:1, ... Metal Gearmotor 20Dx44L mm 12V CB +DigitalOut enable_motors(PB_15); // create DigitalOut object to enable dc motors -/* create pwm objects */ -FastPWM pwm_M1(PB_13); -FastPWM pwm_M2(PA_9); -FastPWM pwm_M3(PA_10); -float pwm_period_s = 0.00005f; +float pwm_period_s = 0.00005f; // define pwm period time in seconds and create FastPWM objects to command dc motors +FastPWM pwm_M1(PB_13); // motor M1 is used open loop +FastPWM pwm_M2(PA_9); // motor M2 is speed controlled +FastPWM pwm_M3(PA_10); // motor M3 is position controlled (angle controlled) -/* create encoder read objects */ -EncoderCounter encoder_M1(PA_6, PC_7); +EncoderCounter encoder_M1(PA_6, PC_7); // create encoder read objects EncoderCounter encoder_M2(PB_6, PB_7); EncoderCounter encoder_M3(PA_0, PA_1); -/* create speed and position controller objects, default parametrization is for 78.125:1 gear */ -float max_voltage = 12.0f; // adjust this to 6.0f if only one batterypack is used -float counts_per_turn = 20.0f * 78.125f; // counts/turn * gearratio -float kn = 180.0f / 12.0f; // motor constant (RPM/V) +// create SpeedController and PositionController controller objects, default parametrization is for 78.125:1 gear box +float max_voltage = 12.0f; // define maximum voltage of battery packs, adjust this to 6.0f V if you only use one batterypack +float counts_per_turn = 20.0f * 78.125f; // define counts per turn at gearbox end: counts/turn * gearratio +float kn = 180.0f / 12.0f; // define motor constant in rpm per V +// float k_gear = 25.0f / 78.125f; // define additional ratio in case you are using a dc motor with a different gear box, e.g. 25:1 +// float kp = 0.1f; // define custom kp, this is the default speed controller gain for gear box 78.125:1 -float k_gear = 25.0f / 78.125f; // in case you are using a dc motor with a different gear box -float kp = 0.1f; // this is the default speed controller gain for gear box 78.125:1 - -SpeedController speedController_M2(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2); // default 78.125:1 gear with default contoller parameters +SpeedController speedController_M2(counts_per_turn, kn, max_voltage, pwm_M2, encoder_M2); // default 78.125:1 gear box with default contoller parameters // SpeedController speedController_M2(counts_per_turn * k_gear, kn / k_gear, max_voltage, pwm_M2, encoder_M2); // parameters adjusted to 25:1 gear +float max_speed_rps = 0.5f; // define maximum speed that the position controller is changig the speed, has to be smaller or equal to kn * max_voltage PositionController positionController_M3(counts_per_turn, kn, max_voltage, pwm_M3, encoder_M3); // default 78.125:1 gear with default contoller parameters // PositionController positionController_M3(counts_per_turn * k_gear, kn / k_gear, kp * k_gear, max_voltage, pwm_M3, encoder_M3); // parameters adjusted to 25:1 gear, we need a different speed controller gain here -float max_speed_rps = 0.5f; // has to be smaller or equal to kn * max_voltage - // Futaba Servo S3001 20mm 3kg Analog -/* create servo objects */ -Servo servo_S1(PB_2); +Servo servo_S1(PB_2); // create servo objects Servo servo_S2(PC_8); -int servo_position_S1_mus = 0; -int servo_position_S2_mus = 0; -int servo_period_mus = 20000; -int servo_counter = 0; -int loops_per_second = static_cast<int>(ceilf(1.0f/(0.001f*(float)loop_period_ms))); +int servo_pos_S1_mus = 0; // servo S1 position, the desired position gets commanded as a time +int servo_pos_S2_mus = 0; // servo S2 position +int servo_period_mus = 20000; // define servo period time in mus +int servo_counter = 0; // define servo counter, this is an additional variable to make the servos move +int loops_per_second = static_cast<int>(ceilf(1.0f/(0.001f*(float)main_task_period_ms))); // define loops per second // Groove Ultrasonic Ranger V2.0 -// https://ch.rs-online.com/web/p/entwicklungstools-sensorik/1743238/?cm_mmc=CH-PLA-DS3A-_-google-_-CSS_CH_DE_Raspberry_Pi_%26_Arduino_und_Entwicklungstools_Whoop-_-(CH:Whoop!)+Entwicklungstools+Sensorik-_-1743238&matchtype=&pla-306637898829&gclid=Cj0KCQjwpdqDBhCSARIsAEUJ0hOLQOOaw_2-Ob03u4YGwXthQPeSyjaazFqNuMkTIT8Ie18B1pD7P9AaAn18EALw_wcB&gclsrc=aw.ds -/* create range finder object (ultra sonic distance sensor) */ -// RangeFinder range_finder(PB_12, 5782.0f, 0.02f, 17500); // 1/loop_period_ms = 20 Hz parametrization -RangeFinder range_finder(PB_12, 5782.0f, 0.02f, 7000); // 1/loop_period_ms = 50 Hz parametrization -float dist_us_sensor = 0.0f; +float us_distance_cm = 0.0f; // define variable to store measurement +RangeFinder us_range_finder(PB_12, 5782.0f, 0.02f, 17500); +// RangeFinder us_range_finder(PB_12, 5782.0f, 0.02f, 7000); // create range finder object (ultra sonic distance sensor), 1/main_task_period_ms = 20 Hz parametrization - -// LSM9DS1 IMU -// create imu comunication objects, carefull: not all PES boards have an imu (chip shortage) -// LSM9DS1 imu(PC_9, PA_8); // if you want to be able to use the imu you need to #include "LSM9DS1_i2c.h" +// LSM9DS1 IMU, carefull: not all PES boards have an imu (chip shortage) +// LSM9DS1 imu(PC_9, PA_8); // create LSM9DS1 comunication object, if you want to be able to use the imu you need to #include "LSM9DS1_i2c.h" int main() { - /* attach button fall and rise functions */ - user_button.fall(&button_fall); - user_button.rise(&button_rise); + // attach button fall and rise functions to user button object + user_button.fall(&user_button_pressed_fcn); + user_button.rise(&user_button_released_fcn); - /* start loop_timer */ - loop_timer.start(); + // start timers + user_button_timer.start(); + main_task_timer.start(); - /* enable hardwaredriver dc motors: 0 -> disabled, 1 -> enabled */ + // set pullup mode: add resistor between pin and 3.3 V, so that there is a defined potential + mechanical_button.mode(PullUp); + + // enable hardwaredriver dc motors: 0 -> disabled, 1 -> enabled enable_motors = 1; - /* initialize pwm for motor M1*/ - pwm_M1.period(pwm_period_s); - /* set pwm output zero at the beginning, range: 0...1 -> u_min...u_max , 0.5 -> 0 V */ + // motor M1 is used open-loop, we need to initialize the pwm and set pwm output to zero at the beginning, range: 0...1 -> u_min...u_max: 0.5 -> 0 V + pwm_M1.period(pwm_period_s); pwm_M1.write(0.5); - /* enable servos, you can also disable them */ - servo_S1.Enable(servo_position_S1_mus, servo_period_mus); - servo_S2.Enable(servo_position_S2_mus, servo_period_mus); + // enable servos, you can also disable them at any point in your program if you don't want your servos to become warm + servo_S1.Enable(servo_pos_S1_mus, servo_period_mus); + servo_S2.Enable(servo_pos_S2_mus, servo_period_mus); - while (true) { - - loop_timer.reset(); + while (true) { // this loop will run forever - if (do_execute_main) { + main_task_timer.reset(); - /* read analog input */ - dist_ir_sensor = analog_in.read() * 3.3f; + if (do_execute_main_task) { - /* write output voltage to motor M1 */ - pwm_M1.write(0.75); + // read analog input + ir_distance_mV = 1.0e3f * ir_analog_in.read() * 3.3f; - /* set a desired speed for speed controlled dc motors M2 */ - speedController_M2.setDesiredSpeedRPS(0.5f); - - /* set a desired rotation for position controlled dc motors M3 */ - positionController_M3.setDesiredRotation(1.5f, max_speed_rps); - + // command dc motors if mechanical button is pressed + if (mechanical_button) { + pwm_M1.write(0.75); // write output voltage to motor M1 + speedController_M2.setDesiredSpeedRPS(0.5f); // set a desired speed for speed controlled dc motors M2 + positionController_M3.setDesiredRotation(1.5f, max_speed_rps); // set a desired rotation for position controlled dc motors M3 + } else { + pwm_M1.write(0.5); + speedController_M2.setDesiredSpeedRPS(0.0f); + positionController_M3.setDesiredRotation(0.0f, max_speed_rps); + } - /* command servo position via output time, this needs to be calibrated */ - servo_S1.SetPosition(servo_position_S1_mus); - servo_S2.SetPosition(servo_position_S2_mus); - if (servo_position_S1_mus <= servo_period_mus & servo_counter%loops_per_second == 0 & servo_counter != 0) { - servo_position_S1_mus += 100; + // command servo position, this needs to be calibrated + servo_S1.SetPosition(servo_pos_S1_mus); + servo_S2.SetPosition(servo_pos_S2_mus); + if (servo_pos_S1_mus <= servo_period_mus & servo_counter%loops_per_second == 0 & servo_counter != 0) { + servo_pos_S1_mus += 100; } - if (servo_position_S2_mus <= servo_period_mus & servo_counter%loops_per_second == 0 & servo_counter != 0) { - servo_position_S2_mus += 100; + if (servo_pos_S2_mus <= servo_period_mus & servo_counter%loops_per_second == 0 & servo_counter != 0) { + servo_pos_S2_mus += 100; } servo_counter++; - /* read ultra sonic distance sensor */ - dist_us_sensor = range_finder.read_cm(); + // read ultra sonic distance sensor + us_distance_cm = us_range_finder.read_cm(); - /* visual feedback that the main task is executed */ - led = !led; + // visual feedback that the main task is executed + extra_led = 1; } else { - dist_ir_sensor = 0.0f; + ir_distance_mV = 0.0f; pwm_M1.write(0.5); speedController_M2.setDesiredSpeedRPS(0.0f); positionController_M3.setDesiredRotation(0.0f, max_speed_rps); - servo_position_S1_mus = 0; - servo_position_S2_mus = 0; - servo_S1.SetPosition(servo_position_S1_mus); - servo_S2.SetPosition(servo_position_S2_mus); + servo_pos_S1_mus = 0; + servo_pos_S2_mus = 0; + servo_S1.SetPosition(servo_pos_S1_mus); + servo_S2.SetPosition(servo_pos_S2_mus); - dist_us_sensor = 0.0f; + us_distance_cm = 0.0f; - led = 0; + extra_led = 0; } - /* do only output via serial what's really necessary (this makes your code slow)*/ - printf("%3.3f, %3d, %3.3f, %3.3f, %3d, %3d, %3.3f;\r\n", - dist_ir_sensor * 1e3, + user_led = !user_led; + + // do only output via serial what's really necessary (this makes your code slow) + printf("IR sensor (mV): %3.3f, Encoder M1: %3d, Speed M2 (rps) %3.3f, Position M3 (rot): %3.3f, Servo S1 position (ms): %3d, Servo S2 position (ms): %3d, US sensor (cm): %3.3f\r\n", + ir_distance_mV, encoder_M1.read(), speedController_M2.getSpeedRPS(), positionController_M3.getRotation(), - servo_position_S1_mus, - servo_position_S2_mus, - dist_us_sensor); + servo_pos_S1_mus, + servo_pos_S2_mus, + us_distance_cm); - /* read out the imu, the actual frames of the sensor reading needs to be figured out */ - /* - imu.updateGyro(); - imu.updateAcc(); - imu.updateMag(); - printf("%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f\r\n", imu.readGyroX(), imu.readGyroY(), imu.readGyroZ(), - imu.readAccX(), imu.readAccY(), imu.readAccZ(), imu.readMagX(), imu.readMagY(), imu.readMagZ()); - */ + // read out the imu, the actual frames of the sensor reading needs to be figured out + // imu.updateGyro(); + // imu.updateAcc(); + // imu.updateMag(); + // printf("%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f\r\n", imu.readGyroX(), imu.readGyroY(), imu.readGyroZ(), + // imu.readAccX(), imu.readAccY(), imu.readAccZ(), imu.readMagX(), imu.readMagY(), imu.readMagZ()); - /* ------------- stop hacking ----------------------------------------*/ - - int loop_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(loop_timer.elapsed_time()).count(); - thread_sleep_for(loop_period_ms - loop_time_ms); + // read timer and make the main thread sleep for the remaining time span (non blocking) + int main_task_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(main_task_timer.elapsed_time()).count(); + thread_sleep_for(main_task_period_ms - main_task_elapsed_time_ms); } } -void button_fall() -{ +void user_button_pressed_fcn() +{ user_button_timer.reset(); - user_button_timer.start(); } -void button_rise() +void user_button_released_fcn() { - int user_button_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count(); + // read timer and toggle do_execute_main_task if the button was pressed longer than the below specified time + int user_button_elapsed_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(user_button_timer.elapsed_time()).count(); user_button_timer.stop(); - if (user_button_time_ms > 200) { - do_execute_main = !do_execute_main; + if (user_button_elapsed_time_ms > 200) { + do_execute_main_task = !do_execute_main_task; } } \ No newline at end of file