New Self Balancing Code
Dependencies: mbed BMI160 max32630fthr_pitch USBDevice Math
main.cpp
- Committer:
- CharlesMaxim
- Date:
- 2018-12-21
- Revision:
- 7:2c48702d99e3
- Parent:
- 5:f6727800e43f
File content as of revision 7:2c48702d99e3:
/**********************************************************************
* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
**********************************************************************/
#include "mbed.h"
#include "bmi160.h"
//#include "max32630hsp.h"
#include "max32630fthr.h"
#include "USBSerial.h"
#include "stdlib.h"
#include "math.h"
//MAX32630HSP icarus(MAX32630HSP::VIO_3V3);
MAX32630FTHR pegasus(MAX32630FTHR::VIO_3V3);
Serial daplink(P2_1, P2_0);
DigitalOut rLED(P2_4, LED_ON);
DigitalOut gLED(P2_5, LED_ON);
DigitalOut bLED(P2_6, LED_ON);
PwmOut PWM(P3_5);
DigitalOut Dir(P3_4);
USBSerial pc(USBTX,USBRX);
I2C i2cBus(I2C2_SDA, I2C2_SCL);
BMI160_I2C imu(i2cBus, BMI160_I2C::I2C_ADRS_SDO_LO);
void dumpImuRegisters(BMI160 &imu);
void printRegister(BMI160 &imu, BMI160::Registers reg);
void printBlock(BMI160 &imu, BMI160::Registers startReg, BMI160::Registers stopReg);
void writeReg(BMI160 &imu, BMI160::Registers reg, uint8_t data);
//float compFilter(float K, float pitch, float gyroX, float accY, float accZ,float DT);
float compFilter(float K, float pitch, float gyroX, float accY, float accZ,float DT)
{
return ((K * (pitch + (gyroX * DT))) + ((1.0F - K) * ((180.0F / 3.1459F) * atan(accY/accZ))));
}
int main()
{
i2cBus.frequency(400000);
writeReg(imu, BMI160::GYR_RANGE, BMI160::DPS_500);
writeReg(imu, BMI160::GYR_CONF, BMI160::GYRO_ODR_13);
writeReg(imu, BMI160::FOC_CONF, BMI160::FOC_VALUE );
wait(0.5);
writeReg(imu, BMI160::OFFSET_6, BMI160::FOC_ENABLE_GYR_ACC);
gLED = 1;
bLED = 0;
wait(1);
writeReg(imu, BMI160::CMD, BMI160::FOC_START);
wait(1);
gLED = 0;
bLED = 0;
pc.printf("\033[H"); //home
pc.printf("\033[0J"); //erase from cursor to end of screen
uint32_t failures = 0;
if(imu.setSensorPowerMode(BMI160::GYRO, BMI160::NORMAL) != BMI160::RTN_NO_ERROR)
{
pc.printf("Failed to set gyroscope power mode\r\n");
failures++;
}
wait_ms(100);
if(imu.setSensorPowerMode(BMI160::ACC, BMI160::NORMAL) != BMI160::RTN_NO_ERROR)
{
pc.printf("Failed to set accelerometer power mode\r\n");
failures++;
}
wait_ms(100);
BMI160::AccConfig accConfig;
//example of using getSensorConfig
if(imu.getSensorConfig(accConfig) == BMI160::RTN_NO_ERROR)
{
pc.printf("ACC Range = %d\r\n", accConfig.range);
pc.printf("ACC UnderSampling = %d\r\n", accConfig.us);
pc.printf("ACC BandWidthParam = %d\r\n", accConfig.bwp);
pc.printf("ACC OutputDataRate = %d\r\n\r\n", accConfig.odr);
}
else
{
pc.printf("Failed to get accelerometer configuration\r\n");
failures++;
}
//example of setting user defined configuration
accConfig.range = BMI160::SENS_2G; //rage is 2g
accConfig.us = BMI160::ACC_US_OFF; //undersampling is off
accConfig.bwp = BMI160::ACC_BWP_0; //average 4 cycles
accConfig.odr = BMI160::ACC_ODR_9; //output data rate
if(imu.setSensorConfig(accConfig) == BMI160::RTN_NO_ERROR)
{
pc.printf("ACC Range = %d\r\n", accConfig.range);
pc.printf("ACC UnderSampling = %d\r\n", accConfig.us);
pc.printf("ACC BandWidthParam = %d\r\n", accConfig.bwp);
pc.printf("ACC OutputDataRate = %d\r\n\r\n", accConfig.odr);
}
else
{
pc.printf("Failed to set accelerometer configuration\r\n");
failures++;
}
BMI160::GyroConfig gyroConfig;
if(imu.getSensorConfig(gyroConfig) == BMI160::RTN_NO_ERROR)
{
pc.printf("GYRO Range = %d\r\n", gyroConfig.range);
pc.printf("GYRO BandWidthParam = %d\r\n", gyroConfig.bwp);
pc.printf("GYRO OutputDataRate = %d\r\n\r\n", gyroConfig.odr);
}
else
{
pc.printf("Failed to get gyroscope configuration\r\n");
failures++;
}
wait(1.0);
pc.printf("\033[H"); //home
pc.printf("\033[0J"); //erase from cursor to end of screen
if(failures == 0)
{
float imuTemperature;
float dutyCycle;
double xDeviation, yDeviation, zDeviation;
double prevGyroX, prevGyroY, prevGyroZ;
double currentGyroX, currentGyroY, currentGyroZ;
double diffGyroX, diffGyroY, diffGyroZ;
double xDisplacement, yDisplacement, zDisplacement;
double currentAccX, currentAccY, currentAccZ;
double prevAccX, prevAccY, prevAccZ;
double diffAccX, diffAccY, diffAccZ;
double xVelocity, yVelocity, zVelocity;
double timeDiff, time_1, time_2;
bool timeFlag = false;
BMI160::SensorData accData;
BMI160::SensorData gyroData;
BMI160::SensorTime sensorTime;
//PwmPin = 1;
float apitch = 0;
float k = 0.6;
time_1 = sensorTime.seconds;
while(1)
{
imu.getGyroAccXYZandSensorTime(accData, gyroData, sensorTime, accConfig.range, gyroConfig.range);
imu.getTemperature(&imuTemperature);
time_2 = sensorTime.seconds;
apitch = compFilter(k, apitch, gyroData.xAxis.scaled, accData.yAxis.scaled, accData.zAxis.scaled, time_2 - time_1);
pc.printf("Drift: %s%4.3f\r\n", "\033[K", apitch);
//dutyCycle = (apitch * (0.2 / 10)) + 0.8;
// dutyCycle = fabsf(dutyCycle);
// pc.printf("PWM: %s%4.3f\r\n", "\033[K", dutyCycle);
time_1 = time_2;
/*
if(dutyCycle < 0 ){
dutyCycle = 0 - dutyCycle;
}
*/
if(apitch <= 0){
PWM = 0.5;
Dir = 1;
}
if(apitch > 0){
PWM = 0.5;
Dir = 0;
}
//printRegister(imu, BMI160::GYR_CONF);
}
}
}
/*
if(timeFlag == true){
currentGyroX = gyroData.xAxis.scaled;
currentAccX = accData.xAxis.scaled;
diffGyroX = abs(currentGyroX - prevGyroX);
diffAccX = abs(currentAccX - prevAccX);
time_2 = sensorTime.seconds;
timeDiff = time_2 - time_1;
if (diffGyroX > 2){
xDeviation = xDeviation + (gyroData.xAxis.scaled * (timeDiff));
}
if (diffAccX > 0.009){
xDisplacement = (xVelocity * timeDiff) + (0.5 * accData.xAxis.scaled * timeDiff * timeDiff);
xVelocity = xVelocity + (accData.xAxis.scaled * timeDiff);
}
// pc.printf("%s%4.3f\r\n", "\033[K", xDeviation);
//control motor for proportional linearity
if(xDeviation < 0.0)
{
M_1 = 0;
M_2 = 1;
daplink.printf("Forward: %s%4.3f\r\n", "\033[K", xDeviation);
}
else{
M_1 = 1;
M_2 = 0;
daplink.printf("Backward: %s%4.3f\r\n", "\033[K", xDeviation);
}
//------------------------
//pc.printf("Velocity: %s%4.3f\r\n", "\033[K", prevAccX);
// pc.printf("Interval: %s%4.3f\r\n", "\033[K", timeDiff);
//pc.printf("%s%4.3f\r\n\r\n", "\033[K", xDisplacement);
prevGyroX = currentGyroX;
prevAccX = currentAccX;
time_1 = time_2;
}
else{
time_1 = sensorTime.seconds;
timeFlag = true;
}
gLED = !gLED;
wait_ms(1);
}
}
else
{
while(1)
{
rLED = !rLED;
wait(0.6);
}
}
*/
//*****************************************************************************
void dumpImuRegisters(BMI160 &imu)
{
printRegister(imu, BMI160::CHIP_ID);
printBlock(imu, BMI160::ERR_REG,BMI160::FIFO_DATA);
printBlock(imu, BMI160::ACC_CONF, BMI160::FIFO_CONFIG_1);
printBlock(imu, BMI160::MAG_IF_0, BMI160::SELF_TEST);
printBlock(imu, BMI160::NV_CONF, BMI160::STEP_CONF_1);
printRegister(imu, BMI160::CMD);
pc.printf("\r\n");
}
//*****************************************************************************
void printRegister(BMI160 &imu, BMI160::Registers reg)
{
uint8_t data;
if(imu.readRegister(reg, &data) == BMI160::RTN_NO_ERROR)
{
pc.printf("IMU Register 0x%02x = 0x%02x\r\n", reg, data);
daplink.printf("IMU Register 0x%02x = 0x%02x\r\n", reg, data);
}
else
{
pc.printf("Failed to read register\r\n");
}
}
//*****************************************************************************
void writeReg(BMI160 &imu, BMI160::Registers reg, uint8_t data)
{
imu.writeRegister(reg, data);
}
//*****************************************************************************
void printBlock(BMI160 &imu, BMI160::Registers startReg, BMI160::Registers stopReg)
{
uint8_t numBytes = ((stopReg - startReg) + 1);
uint8_t buff[32];
uint8_t offset = static_cast<uint8_t>(startReg);
if(imu.readBlock(startReg, stopReg, buff) == BMI160::RTN_NO_ERROR)
{
for(uint8_t idx = offset; idx < (numBytes + offset); idx++)
{
pc.printf("IMU Register 0x%02x = 0x%02x\r\n", idx, buff[idx - offset]);
}
}
else
{
pc.printf("Failed to read block\r\n");
}
}
/* An example for configuring FOC for accel and gyro data */