BMI160 Initial
Dependents: MAX32630HSP3_IMU_HelloWorld MAX32630HSP3_IMU_HelloWorld MAX32630HSP3_Pitch_Charles Maxim_Squeeks
bmi160.cpp
- Committer:
- Emre.Eken
- Date:
- 2018-05-04
- Revision:
- 19:8e66f58bef44
- Parent:
- 16:12782f5d4aa4
File content as of revision 19:8e66f58bef44:
/**********************************************************************
* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
**********************************************************************/
#include "bmi160.h"
const struct BMI160::AccConfig BMI160::DEFAULT_ACC_CONFIG = {SENS_2G,
ACC_US_OFF,
ACC_BWP_2,
ACC_ODR_8};
const struct BMI160::GyroConfig BMI160::DEFAULT_GYRO_CONFIG = {DPS_2000,
GYRO_BWP_2,
GYRO_ODR_8};
///Period of internal counter
static const float SENSOR_TIME_LSB = 39e-6;
static const float SENS_2G_LSB_PER_G = 16384.0F;
static const float SENS_4G_LSB_PER_G = 8192.0F;
static const float SENS_8G_LSB_PER_G = 4096.0F;
static const float SENS_16G_LSB_PER_G = 2048.0F;
static const float SENS_2000_DPS_LSB_PER_DPS = 16.4F;
static const float SENS_1000_DPS_LSB_PER_DPS = 32.8F;
static const float SENS_500_DPS_LSB_PER_DPS = 65.6F;
static const float SENS_250_DPS_LSB_PER_DPS = 131.2F;
static const float SENS_125_DPS_LSB_PER_DPS = 262.4F;
//*****************************************************************************
int32_t BMI160::setSensorPowerMode(Sensors sensor, PowerModes pwrMode)
{
int32_t rtnVal = -1;
switch(sensor)
{
case MAG:
rtnVal = writeRegister(CMD, (MAG_SET_PMU_MODE | pwrMode));
break;
case GYRO:
rtnVal = writeRegister(CMD, (GYR_SET_PMU_MODE | pwrMode));
break;
case ACC:
rtnVal = writeRegister(CMD, (ACC_SET_PMU_MODE | pwrMode));
break;
default:
rtnVal = -1;
break;
}
return rtnVal;
}
//*****************************************************************************
int32_t BMI160::setSensorConfig(const AccConfig &config)
{
uint8_t data[2];
data[0] = ((config.us << ACC_US_POS) | (config.bwp << ACC_BWP_POS) |
(config.odr << ACC_ODR_POS));
data[1] = config.range;
return writeBlock(ACC_CONF, ACC_RANGE, data);
}
//*****************************************************************************
int32_t BMI160::setSensorConfig(const GyroConfig &config)
{
uint8_t data[2];
data[0] = ((config.bwp << GYRO_BWP_POS) | (config.odr << GYRO_ODR_POS));
data[1] = config.range;
return writeBlock(GYR_CONF, GYR_RANGE, data);
}
//*****************************************************************************
int32_t BMI160::getSensorConfig(AccConfig &config)
{
uint8_t data[2];
int32_t rtnVal = readBlock(ACC_CONF, ACC_RANGE, data);
if(rtnVal == RTN_NO_ERROR)
{
config.range = static_cast<BMI160::AccRange>(
(data[1] & ACC_RANGE_MASK));
config.us = static_cast<BMI160::AccUnderSampling>(
((data[0] & ACC_US_MASK) >> ACC_US_POS));
config.bwp = static_cast<BMI160::AccBandWidthParam>(
((data[0] & ACC_BWP_MASK) >> ACC_BWP_POS));
config.odr = static_cast<BMI160::AccOutputDataRate>(
((data[0] & ACC_ODR_MASK) >> ACC_ODR_POS));
}
return rtnVal;
}
//*****************************************************************************
int32_t BMI160::getSensorConfig(GyroConfig &config)
{
uint8_t data[2];
int32_t rtnVal = readBlock(GYR_CONF, GYR_RANGE, data);
if(rtnVal == RTN_NO_ERROR)
{
config.range = static_cast<BMI160::GyroRange>(
(data[1] & GYRO_RANGE_MASK));
config.bwp = static_cast<BMI160::GyroBandWidthParam>(
((data[0] & GYRO_BWP_MASK) >> GYRO_BWP_POS));
config.odr = static_cast<BMI160::GyroOutputDataRate>(
((data[0] & GYRO_ODR_MASK) >> GYRO_ODR_POS));
}
return rtnVal;
}
//*****************************************************************************
int32_t BMI160::getSensorAxis(SensorAxis axis, AxisData &data, AccRange range)
{
uint8_t localData[2];
int32_t rtnVal;
switch(axis)
{
case X_AXIS:
rtnVal = readBlock(DATA_14, DATA_15, localData);
break;
case Y_AXIS:
rtnVal = readBlock(DATA_16, DATA_17, localData);
break;
case Z_AXIS:
rtnVal = readBlock(DATA_18, DATA_19, localData);
break;
default:
rtnVal = -1;
break;
}
if(rtnVal == RTN_NO_ERROR)
{
data.raw = ((localData[1] << 8) | localData[0]);
switch(range)
{
case SENS_2G:
data.scaled = (data.raw/SENS_2G_LSB_PER_G);
break;
case SENS_4G:
data.scaled = (data.raw/SENS_4G_LSB_PER_G);
break;
case SENS_8G:
data.scaled = (data.raw/SENS_8G_LSB_PER_G);
break;
case SENS_16G:
data.scaled = (data.raw/SENS_16G_LSB_PER_G);
break;
}
}
return rtnVal;
}
//*****************************************************************************
int32_t BMI160::getSensorAxis(SensorAxis axis, AxisData &data, GyroRange range)
{
uint8_t localData[2];
int32_t rtnVal;
switch(axis)
{
case X_AXIS:
rtnVal = readBlock(DATA_8, DATA_9, localData);
break;
case Y_AXIS:
rtnVal = readBlock(DATA_10, DATA_11, localData);
break;
case Z_AXIS:
rtnVal = readBlock(DATA_12, DATA_13, localData);
break;
default:
rtnVal = -1;
break;
}
if(rtnVal == RTN_NO_ERROR)
{
data.raw = ((localData[1] << 8) | localData[0]);
switch(range)
{
case DPS_2000:
data.scaled = (data.raw/SENS_2000_DPS_LSB_PER_DPS);
break;
case DPS_1000:
data.scaled = (data.raw/SENS_1000_DPS_LSB_PER_DPS);
break;
case DPS_500:
data.scaled = (data.raw/SENS_500_DPS_LSB_PER_DPS);
break;
case DPS_250:
data.scaled = (data.raw/SENS_250_DPS_LSB_PER_DPS);
break;
case DPS_125:
data.scaled = (data.raw/SENS_125_DPS_LSB_PER_DPS);
break;
}
}
return rtnVal;
}
//*****************************************************************************
int32_t BMI160::getSensorXYZ(SensorData &data, AccRange range)
{
uint8_t localData[6];
int32_t rtnVal = readBlock(DATA_14, DATA_19, localData);
if(rtnVal == RTN_NO_ERROR)
{
data.xAxis.raw = ((localData[1] << 8) | localData[0]);
data.yAxis.raw = ((localData[3] << 8) | localData[2]);
data.zAxis.raw = ((localData[5] << 8) | localData[4]);
switch(range)
{
case SENS_2G:
data.xAxis.scaled = (data.xAxis.raw/SENS_2G_LSB_PER_G);
data.yAxis.scaled = (data.yAxis.raw/SENS_2G_LSB_PER_G);
data.zAxis.scaled = (data.zAxis.raw/SENS_2G_LSB_PER_G);
break;
case SENS_4G:
data.xAxis.scaled = (data.xAxis.raw/SENS_4G_LSB_PER_G);
data.yAxis.scaled = (data.yAxis.raw/SENS_4G_LSB_PER_G);
data.zAxis.scaled = (data.zAxis.raw/SENS_4G_LSB_PER_G);
break;
case SENS_8G:
data.xAxis.scaled = (data.xAxis.raw/SENS_8G_LSB_PER_G);
data.yAxis.scaled = (data.yAxis.raw/SENS_8G_LSB_PER_G);
data.zAxis.scaled = (data.zAxis.raw/SENS_8G_LSB_PER_G);
break;
case SENS_16G:
data.xAxis.scaled = (data.xAxis.raw/SENS_16G_LSB_PER_G);
data.yAxis.scaled = (data.yAxis.raw/SENS_16G_LSB_PER_G);
data.zAxis.scaled = (data.zAxis.raw/SENS_16G_LSB_PER_G);
break;
}
}
return rtnVal;
}
//*****************************************************************************
int32_t BMI160::getSensorXYZ(SensorData &data, GyroRange range)
{
uint8_t localData[6];
int32_t rtnVal = readBlock(DATA_8, DATA_13, localData);
if(rtnVal == RTN_NO_ERROR)
{
data.xAxis.raw = ((localData[1] << 8) | localData[0]);
data.yAxis.raw = ((localData[3] << 8) | localData[2]);
data.zAxis.raw = ((localData[5] << 8) | localData[4]);
switch(range)
{
case DPS_2000:
data.xAxis.scaled = (data.xAxis.raw/SENS_2000_DPS_LSB_PER_DPS);
data.yAxis.scaled = (data.yAxis.raw/SENS_2000_DPS_LSB_PER_DPS);
data.zAxis.scaled = (data.zAxis.raw/SENS_2000_DPS_LSB_PER_DPS);
break;
case DPS_1000:
data.xAxis.scaled = (data.xAxis.raw/SENS_1000_DPS_LSB_PER_DPS);
data.yAxis.scaled = (data.yAxis.raw/SENS_1000_DPS_LSB_PER_DPS);
data.zAxis.scaled = (data.zAxis.raw/SENS_1000_DPS_LSB_PER_DPS);
break;
case DPS_500:
data.xAxis.scaled = (data.xAxis.raw/SENS_500_DPS_LSB_PER_DPS);
data.yAxis.scaled = (data.yAxis.raw/SENS_500_DPS_LSB_PER_DPS);
data.zAxis.scaled = (data.zAxis.raw/SENS_500_DPS_LSB_PER_DPS);
break;
case DPS_250:
data.xAxis.scaled = (data.xAxis.raw/SENS_250_DPS_LSB_PER_DPS);
data.yAxis.scaled = (data.yAxis.raw/SENS_250_DPS_LSB_PER_DPS);
data.zAxis.scaled = (data.zAxis.raw/SENS_250_DPS_LSB_PER_DPS);
break;
case DPS_125:
data.xAxis.scaled = (data.xAxis.raw/SENS_125_DPS_LSB_PER_DPS);
data.yAxis.scaled = (data.yAxis.raw/SENS_125_DPS_LSB_PER_DPS);
data.zAxis.scaled = (data.zAxis.raw/SENS_125_DPS_LSB_PER_DPS);
break;
}
}
return rtnVal;
}
//*****************************************************************************
int32_t BMI160::getSensorXYZandSensorTime(SensorData &data,
SensorTime &sensorTime,
AccRange range)
{
uint8_t localData[9];
int32_t rtnVal = readBlock(DATA_14, SENSORTIME_2, localData);
if(rtnVal == RTN_NO_ERROR)
{
data.xAxis.raw = ((localData[1] << 8) | localData[0]);
data.yAxis.raw = ((localData[3] << 8) | localData[2]);
data.zAxis.raw = ((localData[5] << 8) | localData[4]);
switch(range)
{
case SENS_2G:
data.xAxis.scaled = (data.xAxis.raw/SENS_2G_LSB_PER_G);
data.yAxis.scaled = (data.yAxis.raw/SENS_2G_LSB_PER_G);
data.zAxis.scaled = (data.zAxis.raw/SENS_2G_LSB_PER_G);
break;
case SENS_4G:
data.xAxis.scaled = (data.xAxis.raw/SENS_4G_LSB_PER_G);
data.yAxis.scaled = (data.yAxis.raw/SENS_4G_LSB_PER_G);
data.zAxis.scaled = (data.zAxis.raw/SENS_4G_LSB_PER_G);
break;
case SENS_8G:
data.xAxis.scaled = (data.xAxis.raw/SENS_8G_LSB_PER_G);
data.yAxis.scaled = (data.yAxis.raw/SENS_8G_LSB_PER_G);
data.zAxis.scaled = (data.zAxis.raw/SENS_8G_LSB_PER_G);
break;
case SENS_16G:
data.xAxis.scaled = (data.xAxis.raw/SENS_16G_LSB_PER_G);
data.yAxis.scaled = (data.yAxis.raw/SENS_16G_LSB_PER_G);
data.zAxis.scaled = (data.zAxis.raw/SENS_16G_LSB_PER_G);
break;
}
sensorTime.raw = ((localData[8] << 16) | (localData[7] << 8) |
localData[6]);
sensorTime.seconds = (sensorTime.raw * SENSOR_TIME_LSB);
}
return rtnVal;
}
//*****************************************************************************
int32_t BMI160::getSensorXYZandSensorTime(SensorData &data,
SensorTime &sensorTime,
GyroRange range)
{
uint8_t localData[16];
int32_t rtnVal = readBlock(DATA_8, SENSORTIME_2, localData);
if(rtnVal == RTN_NO_ERROR)
{
data.xAxis.raw = ((localData[1] << 8) | localData[0]);
data.yAxis.raw = ((localData[3] << 8) | localData[2]);
data.zAxis.raw = ((localData[5] << 8) | localData[4]);
switch(range)
{
case DPS_2000:
data.xAxis.scaled = (data.xAxis.raw/SENS_2000_DPS_LSB_PER_DPS);
data.yAxis.scaled = (data.yAxis.raw/SENS_2000_DPS_LSB_PER_DPS);
data.zAxis.scaled = (data.zAxis.raw/SENS_2000_DPS_LSB_PER_DPS);
break;
case DPS_1000:
data.xAxis.scaled = (data.xAxis.raw/SENS_1000_DPS_LSB_PER_DPS);
data.yAxis.scaled = (data.yAxis.raw/SENS_1000_DPS_LSB_PER_DPS);
data.zAxis.scaled = (data.zAxis.raw/SENS_1000_DPS_LSB_PER_DPS);
break;
case DPS_500:
data.xAxis.scaled = (data.xAxis.raw/SENS_500_DPS_LSB_PER_DPS);
data.yAxis.scaled = (data.yAxis.raw/SENS_500_DPS_LSB_PER_DPS);
data.zAxis.scaled = (data.zAxis.raw/SENS_500_DPS_LSB_PER_DPS);
break;
case DPS_250:
data.xAxis.scaled = (data.xAxis.raw/SENS_250_DPS_LSB_PER_DPS);
data.yAxis.scaled = (data.yAxis.raw/SENS_250_DPS_LSB_PER_DPS);
data.zAxis.scaled = (data.zAxis.raw/SENS_250_DPS_LSB_PER_DPS);
break;
case DPS_125:
data.xAxis.scaled = (data.xAxis.raw/SENS_125_DPS_LSB_PER_DPS);
data.yAxis.scaled = (data.yAxis.raw/SENS_125_DPS_LSB_PER_DPS);
data.zAxis.scaled = (data.zAxis.raw/SENS_125_DPS_LSB_PER_DPS);
break;
}
sensorTime.raw = ((localData[14] << 16) | (localData[13] << 8) |
localData[12]);
sensorTime.seconds = (sensorTime.raw * SENSOR_TIME_LSB);
}
return rtnVal;
}
//*****************************************************************************
int32_t BMI160::getGyroAccXYZandSensorTime(SensorData &accData,
SensorData &gyroData,
SensorTime &sensorTime,
AccRange accRange,
GyroRange gyroRange)
{
uint8_t localData[16];
int32_t rtnVal = readBlock(DATA_8, SENSORTIME_2, localData);
if(rtnVal == RTN_NO_ERROR)
{
gyroData.xAxis.raw = ((localData[1] << 8) | localData[0]);
gyroData.yAxis.raw = ((localData[3] << 8) | localData[2]);
gyroData.zAxis.raw = ((localData[5] << 8) | localData[4]);
accData.xAxis.raw = ((localData[7] << 8) | localData[6]);
accData.yAxis.raw = ((localData[9] << 8) | localData[8]);
accData.zAxis.raw = ((localData[11] << 8) | localData[10]);
switch(gyroRange)
{
case DPS_2000:
gyroData.xAxis.scaled = (gyroData.xAxis.raw/SENS_2000_DPS_LSB_PER_DPS);
gyroData.yAxis.scaled = (gyroData.yAxis.raw/SENS_2000_DPS_LSB_PER_DPS);
gyroData.zAxis.scaled = (gyroData.zAxis.raw/SENS_2000_DPS_LSB_PER_DPS);
break;
case DPS_1000:
gyroData.xAxis.scaled = (gyroData.xAxis.raw/SENS_1000_DPS_LSB_PER_DPS);
gyroData.yAxis.scaled = (gyroData.yAxis.raw/SENS_1000_DPS_LSB_PER_DPS);
gyroData.zAxis.scaled = (gyroData.zAxis.raw/SENS_1000_DPS_LSB_PER_DPS);
break;
case DPS_500:
gyroData.xAxis.scaled = (gyroData.xAxis.raw/SENS_500_DPS_LSB_PER_DPS);
gyroData.yAxis.scaled = (gyroData.yAxis.raw/SENS_500_DPS_LSB_PER_DPS);
gyroData.zAxis.scaled = (gyroData.zAxis.raw/SENS_500_DPS_LSB_PER_DPS);
break;
case DPS_250:
gyroData.xAxis.scaled = (gyroData.xAxis.raw/SENS_250_DPS_LSB_PER_DPS);
gyroData.yAxis.scaled = (gyroData.yAxis.raw/SENS_250_DPS_LSB_PER_DPS);
gyroData.zAxis.scaled = (gyroData.zAxis.raw/SENS_250_DPS_LSB_PER_DPS);
break;
case DPS_125:
gyroData.xAxis.scaled = (gyroData.xAxis.raw/SENS_125_DPS_LSB_PER_DPS);
gyroData.yAxis.scaled = (gyroData.yAxis.raw/SENS_125_DPS_LSB_PER_DPS);
gyroData.zAxis.scaled = (gyroData.zAxis.raw/SENS_125_DPS_LSB_PER_DPS);
break;
}
switch(accRange)
{
case SENS_2G:
accData.xAxis.scaled = (accData.xAxis.raw/SENS_2G_LSB_PER_G);
accData.yAxis.scaled = (accData.yAxis.raw/SENS_2G_LSB_PER_G);
accData.zAxis.scaled = (accData.zAxis.raw/SENS_2G_LSB_PER_G);
break;
case SENS_4G:
accData.xAxis.scaled = (accData.xAxis.raw/SENS_4G_LSB_PER_G);
accData.yAxis.scaled = (accData.yAxis.raw/SENS_4G_LSB_PER_G);
accData.zAxis.scaled = (accData.zAxis.raw/SENS_4G_LSB_PER_G);
break;
case SENS_8G:
accData.xAxis.scaled = (accData.xAxis.raw/SENS_8G_LSB_PER_G);
accData.yAxis.scaled = (accData.yAxis.raw/SENS_8G_LSB_PER_G);
accData.zAxis.scaled = (accData.zAxis.raw/SENS_8G_LSB_PER_G);
break;
case SENS_16G:
accData.xAxis.scaled = (accData.xAxis.raw/SENS_16G_LSB_PER_G);
accData.yAxis.scaled = (accData.yAxis.raw/SENS_16G_LSB_PER_G);
accData.zAxis.scaled = (accData.zAxis.raw/SENS_16G_LSB_PER_G);
break;
}
sensorTime.raw = ((localData[14] << 16) | (localData[13] << 8) |
localData[12]);
sensorTime.seconds = (sensorTime.raw * SENSOR_TIME_LSB);
}
return rtnVal;
}
//*****************************************************************************
int32_t BMI160::getSensorTime(SensorTime &sensorTime)
{
uint8_t localData[3];
int32_t rtnVal = readBlock(SENSORTIME_0, SENSORTIME_2, localData);
if(rtnVal == RTN_NO_ERROR)
{
sensorTime.raw = ((localData[2] << 16) | (localData[1] << 8) |
localData[0]);
sensorTime.seconds = (sensorTime.raw * SENSOR_TIME_LSB);
}
return rtnVal;
}
//*****************************************************************************
int32_t BMI160::getTemperature(float *temp)
{
uint8_t data[2];
uint16_t rawTemp;
int32_t rtnVal = readBlock(TEMPERATURE_0, TEMPERATURE_1, data);
if(rtnVal == RTN_NO_ERROR)
{
rawTemp = ((data[1] << 8) | data[0]);
if(rawTemp & 0x8000)
{
*temp = (23.0F - ((0x10000 - rawTemp)/512.0F));
}
else
{
*temp = ((rawTemp/512.0F) + 23.0F);
}
}
return rtnVal;
}