Pelion Device Management example over 15.4 Thread for Thunderboard Sense 2 board

Dependencies:   ICM20648 BMP280 Si1133 Si7210 AMS_CCS811_gas_sensor SI7021

DEPRECATED

This example application is not maintained and not recommended. It uses an old version of Mbed OS, Pelion DM, and Arm toolchain. It doesn't work with Mbed Studio.

Please use: https://os.mbed.com/teams/mbed-os-examples/code/mbed-os-example-pelion/

This example is known to work great on the following platforms:

Follow the Quick-Start instructions: https://cloud.mbed.com/quick-start

Thunderboard Sense 2

Example functionality

This example showcases the following device functionality:

  • Read onboard sensors, and report them as Pelion LWM2M resources:
    • Barometric Pressure and Temperature (BMP280)
    • Relative Humidity and Temperature (Si7021)
    • Air quality - CO2 and tVOC (CCS811)
    • Light intensity and UV level (Si1133)
    • Hall effect and Temperature (Si7210)
    • Accelerometer and Gyroscope (ICM20648)
  • It also exposes the RGB LEDs for triggering flashes in a specific color
  • On user button click, increment Pelion LWM2M button resource.

/media/uploads/screamer/pelion_st_humidity_reading.png?v=2

15.4 Thread setup

This example program requires that a Thread Border Router is available. A Border Router is a network gateway between a wireless 6LoWPAN mesh network and a backhaul network. It controls and relays traffic between the two networks. In a typical setup, a 6LoWPAN border router is connected to another router in the backhaul network (over Ethernet or a serial line) which in turn forwards traffic to/from the internet or a private company LAN, for instance.

https://raw.githubusercontent.com/ARMmbed/nanostack-border-router/f8bf21aac12c9926afba252187e2adf2525bf1eb/images/br_role.png

Instructions how to set up a Thread Border Router

Use this example with Mbed CLI

1. Import the application into your desktop:

mbed import https://os.mbed.com/teams/SiliconLabs/code/pelion-example-tbsense2

cd pelion-example-tbsense2

2. Install the CLOUD_SDK_API_KEY

mbed config -G CLOUD_SDK_API_KEY <PELION_DM_API_KEY>

For instructions on how to generate your API key, please see the documentation.

3. Initialize firmware credentials (done once per repository). You can use the following command:

mbed dm init -d "<your company name in Pelion DM>" --model-name "<product model identifier>" -q --force

If above command do not work for your Mbed CLI, please consider upgrading Mbed CLI to version 1.8.x or above.

4. Compile and program:

mbed compile -t <toolchain> -m TB_SENSE_2

(supported toolchains : GCC_ARM / ARM / IAR)

5. You can connect on a virtual terminal/COM port to the platform using:

mbed sterm -b 115200

This should give you an output similar to:

[BOOT] Mbed Bootloader
[BOOT] ARM: 00000000000000000000
[BOOT] OEM: 00000000000000000000
[BOOT] Layout: 0 90AC
[BOOT] Active firmware integrity check:
[BOOT] SHA256: 615A11A7F03B1F048573E2CB51D8C9A5DD4E6F17A7F8E79C4B64E3241FF78974
[BOOT] Version: 1553594998
[BOOT] Slot 0 is empty
[BOOT] Active firmware up-to-date
[BOOT] Application's start address: 0x10400
[BOOT] Application's jump address: 0x10FBD
[BOOT] Application's stack address: 0x20040000
[BOOT] Forwarding to application...


Starting Simple Pelion Device Management Client example
You can hold the user button during boot to format the storage and change the device identity.
Connecting to the network using 802.15.4...
Connected to the network successfully. IP address: 2001:****:****:****:****:****:****:73bc
Initializing Pelion Device Management Client...
Si7021 Electronic Serial Number:                0         15b5ffff, firmware rev 20
Registered to Pelion Device Management. Endpoint Name: 0169b91a********************01a0
                                                                 
BMP280 temp:     32.750 C,   pressure: 1030.750 [mbar]            
Si7021 temp:     27.529 C,   humidity:   24.842 %                 
Si7210 temp:     34.484 C,   field:      -0.076 [mT]              
Si1133 light:  1258.574 lux, UV level:    0.031                       
CCS811 CO2:           0 ppm, VoC:             0 ppb                   
ICM20648 acc:    -0.093 x,  -0.057 y,     0.969 z [mg]            
ICM20648 gyro:   -1.503 x,   0.122 y,    -0.771 z [mdps]          
    

main.cpp

Committer:
screamer
Date:
2019-03-26
Revision:
2:8d3f3f35f089
Parent:
1:cf0bd0446785
Child:
3:6647d74cf212

File content as of revision 2:8d3f3f35f089:

// Includes and declarations for Pelion DM Client to work
#include "simple-mbed-cloud-client.h"
#include "BlockDevice.h"
#include "LittleFileSystem.h"
#include "NetworkInterface.h"
#include "mbed_trace.h"
#include "Nanostack.h"
#include "ns_file_system.h"

// Thunderboard Sense 2 connects over 802.15.4 by default. Since the mesh stack is a bit iffy.
// We'll register a 'network down' handler to act as a kind of watchdog for the Pelion DM Client.
NetworkInterface *net = NetworkInterface::get_default_instance();

// Thunderboard Sense 2 has a 1M external flash, which is being shared between upgrade storage and LittleFS.
// LittleFS is instantiated at the start of storage, until the start address for upgrade storage.
// Currently, this split is at 256/768 for FS/upgrade.
BlockDevice* bd = BlockDevice::get_default_instance();
SlicingBlockDevice sd(bd, 0, MBED_CONF_UPDATE_CLIENT_STORAGE_ADDRESS);
LittleFileSystem fs("fs", &sd);

// An event queue is a very useful structure to debounce information between contexts (e.g. ISR and normal threads)
// This is great because things such as network operations are illegal in ISR, so updating a resource in a button's fall() function is not allowed.
EventQueue eventQueue;

InterruptIn button(BTN0);

//------------------------------------------------------------------------------
// Includes and declarations for our sensor array
#include "BMP280.h"
#include "Si1133.h"
#include "SI7021.h"
#include "Si7210.h"
#include "AMS_CCS811.h"
#include "ICM20648.h"

// Define measurement intervals in seconds
#define SENSORS_POLL_INTERVAL 1.0
#define SEND_ALL_SENSORS

/* Turn on power supply to ENV sensor suite */
DigitalOut env_en(PF9, 1);
/* Turn on power to CCS811 sensor */
DigitalOut ccs_en(PF14, 1);
/* Turn on power to hall effect sensor */
DigitalOut hall_en(PB10, 1);
/* Turn on power to IMU */
DigitalOut imu_en(PF8, 1);

I2C env_i2c(PC4, PC5);
BMP280 sens_press_temp(env_i2c);
Si1133 sens_light(PC4, PC5);
SI7021 sens_hum_temp(PC4, PC5, SI7021::SI7021_ADDRESS, 400000);
I2C hall_i2c(PB8, PB9);
silabs::Si7210 sens_hall(&hall_i2c);
InterruptIn ccs_int(PF13);
I2C ccs_i2c(PB6, PB7);
AMS_CCS811 sens_aqs(&ccs_i2c, PF15);
ICM20648 sens_imu(PC0, PC1, PC2, PC3, PF12);

// Declaring pointers for access to Pelion Client resources outside of main()
MbedCloudClientResource *res_button;
MbedCloudClientResource *res_led;

#ifdef SEND_ALL_SENSORS
MbedCloudClientResource *res_light;
MbedCloudClientResource *res_pressure;
MbedCloudClientResource *res_temperature1;
MbedCloudClientResource *res_humidity;
MbedCloudClientResource *res_temperature2;
MbedCloudClientResource *res_co2;
MbedCloudClientResource *res_tvoc;
MbedCloudClientResource *res_field;
MbedCloudClientResource *res_temperature3;
MbedCloudClientResource *res_accelerometer_x;
MbedCloudClientResource *res_accelerometer_y;
MbedCloudClientResource *res_accelerometer_z;
MbedCloudClientResource *res_gyroscope_x;
MbedCloudClientResource *res_gyroscope_y;
MbedCloudClientResource *res_gyroscope_z;
MbedCloudClientResource *res_temperature4;
#endif /* SEND_ALL_SENSORS */

// When the device is registered, this variable will be used to access various useful information, like device ID etc.
static const ConnectorClientEndpointInfo* endpointInfo;


void blink_callback(MbedCloudClientResource *resource, const uint8_t *buffer, uint16_t size) {
    static int num_count = 0;
    static int event = 0;

    static DigitalOut led_ch_red(PD11, 1);
    static DigitalOut led_ch_green(PD12, 1);
    static DigitalOut led_ch_blue(PD13, 1);

    static DigitalOut led_com_0(PI0, 0);
    static DigitalOut led_com_1(PI1, 0);
    static DigitalOut led_com_2(PI2, 0);
    static DigitalOut led_com_3(PI3, 0);

    static DigitalOut led_rgb_en(PJ14, 0);

    if (buffer != NULL) {
        printf("POST received. POST data: %s\n", buffer);

        if (event > 0) {
            printf("Not blinking since previous blink still in progress\n");
            return;
        }
        num_count = 0;
        for (size_t i = 0, num_arg = 0; i < 20 || buffer[i] == 0; i++) {
            if (buffer[i] == ':') {
                num_arg++;
                continue;
            }

            if (buffer[i] >= '0' && buffer[i] <= '9') {
                switch (num_arg) {
                    case 0:
                        if (buffer[i] == '1') {
                            led_ch_red = 1;
                        } else {
                            led_ch_red = 0;
                        }
                        break;
                    case 1:
                        if (buffer[i] == '1') {
                            led_ch_green = 1;
                        } else {
                            led_ch_green = 0;
                        }
                        break;
                    case 2:
                        if (buffer[i] == '1') {
                            led_ch_blue = 1;
                        } else {
                            led_ch_blue = 0;
                        }
                        break;
                    case 3:
                        num_count = ((buffer[i] - 0x30) * 2) - 1;
                        printf("blinking %d\n", num_count);
                        break;
                    default:
                        break;
                }
            } else {
                //garbage...
                continue;
            }
            if (num_count > 0) {
                break;
            }
        }

        if (num_count > 0) {
            led_rgb_en = 1;
            led_com_0 = 1;
            led_com_1 = 1;
            event = eventQueue.call_in(1000, blink_callback, resource, (const uint8_t *)NULL, 0);
            if (event == 0) {
                led_rgb_en = 0;
                num_count = 0;
            }
        }
    } else {
        num_count--;
        led_com_0 = (num_count & 1);
        led_com_1 = (num_count & 1);

        if (num_count == 0) {
            led_rgb_en = 0;
            event = 0;
        } else {
            event = eventQueue.call_in(1000, blink_callback, resource, (const uint8_t *)NULL, 0);
            if (event == 0) {
                led_rgb_en = 0;
                num_count = 0;
            }
        }
    }
}

/**
 * Button function triggered by the physical button press.
 */
void button_press() {
    int v = res_button->get_value_int() + 1;
    res_button->set_value(v);
    printf("*** Button clicked %d times                                 \n", v);
}

/**
 * Notification callback handler
 * @param resource The resource that triggered the callback
 * @param status The delivery status of the notification
 */
void button_callback(MbedCloudClientResource *resource, const NoticationDeliveryStatus status) {
    printf("*** Button notification, status %s (%d)                     \n", MbedCloudClientResource::delivery_status_to_string(status), status);
}

/**
 * Registration callback handler
 * @param endpoint Information about the registered endpoint such as the name (so you can find it back in portal)
 */
void registered(const ConnectorClientEndpointInfo *endpoint) {
    printf("Registered to Pelion Device Management. Endpoint Name: %s\n", endpoint->internal_endpoint_name.c_str());
    endpointInfo = endpoint;
}

/**
 * Initialize sensors
 */
void sensors_init() {
    sens_press_temp.initialize();

    if (!sens_light.open()) {
        printf("ERROR: Failed to initialize sensor Si1133\n");
    }

    SI7021::SI7021_status_t result = sens_hum_temp.SI7021_SoftReset();
    if (result == SI7021::SI7021_SUCCESS) {
        wait_ms(15);
        SI7021::SI7021_vector_data_t result_data;
        result = sens_hum_temp.SI7021_Conf(SI7021::SI7021_RESOLUTION_RH_11_TEMP_11, SI7021::SI7021_HTRE_DISABLED);
        result = sens_hum_temp.SI7021_GetElectronicSerialNumber(&result_data);
        result = sens_hum_temp.SI7021_GetFirmwareRevision(&result_data);
        printf("Si7021 Electronic Serial Number: %16x %16x, firmware rev %02x\n",
            result_data.ElectronicSerialNumber_MSB,
            result_data.ElectronicSerialNumber_LSB,
            result_data.FirmwareRevision);
    }

    if (!sens_aqs.init()) {
        printf("ERROR: Failed to initialize sensor CCS811\n");
    } else {
        if (!sens_aqs.mode(AMS_CCS811::SIXTY_SECOND)) {
            printf("ERROR: Failed to set mode for sensor CCS811\n");
        }
//        sens_aqs.enable_interupt(true);
    }

    if (!sens_imu.open()) {
        printf("ERROR: Failed to initialize sensor ICM20648\n");
    }
}

/**
 * Update sensors and report their values.
 * This function is called periodically.
 */
void sensors_update() {
    SI7021::SI7021_status_t rht_reading, humidity_reading, temp2_reading;
    SI7021::SI7021_vector_data_t humidity_data, temp2_data;

    // BMP280 pressure and temperature (2)
    float pressure_value = sens_press_temp.getPressure(), temp1_value = sens_press_temp.getPressure();

    // Si7021 humidity and temperature (1)
    rht_reading = sens_hum_temp.SI7021_TriggerHumidity(SI7021::SI7021_NO_HOLD_MASTER_MODE);
    if (rht_reading == SI7021::SI7021_SUCCESS) {
        wait_ms(30);
        humidity_reading = sens_hum_temp.SI7021_ReadHumidity(&humidity_data);
        temp2_reading = sens_hum_temp.SI7021_ReadTemperatureFromRH(&temp2_data);
        sens_aqs.env_data(humidity_data.RelativeHumidity, temp2_data.Temperature);
    }

    // Si1133 light and UV index
    float light_value, uv_index_value;
    bool light_reading = sens_light.get_light_and_uv(&light_value, &uv_index_value);

    // CCS811 air quality CO2 and TVoC
    sens_aqs.has_new_data();
    int co2_value = sens_aqs.co2_read();
    int tvoc_value = sens_aqs.tvoc_read();

    // Si7210 field and temperature (3)
    sens_hall.measureOnce();
    float field_value = sens_hall.getFieldStrength() / 1000, temp3_value = sens_hall.getTemperature() / 1000;

    float acc_x, acc_y, acc_z, gyr_x, gyr_y, gyr_z, temp4_value;
    sens_imu.get_accelerometer(&acc_x, &acc_y, &acc_z);
    sens_imu.get_gyroscope(&gyr_x, &gyr_y, &gyr_z);
    sens_imu.get_temperature(&temp4_value);

    printf("                                                                 \n");
    printf("BMP280 temp:   %7.2f C,   pressure: %7.2f mbar       \n", temp1_value, pressure_value);
    printf("Si7021 temp:   %7.2f C,   humidity: %7.2f %%         \n", temp2_data.Temperature, humidity_data.RelativeHumidity);
    printf("Si7210 temp:   %7.2f C,   field: %7.2f mT            \n", temp3_value, field_value);
    printf("Si1133 light:  %7.2f lux, UV level: %7.2f            \n", light_value, uv_index_value);
    printf("CCS811 CO2:    %7d ppm, VoC:     %7d ppb         \n", co2_value, tvoc_value);
    printf("ICM20648 acc:  %7.2f x, %7.2f y, %7.2f z [mg]           \n", acc_x, acc_y, acc_z);
    printf("ICM20648 gyro: %7.2f x, %7.2f y, %7.2f z [mdps]         \n", gyr_x, gyr_y, gyr_z);

    printf("\r\033[8A");

    if (endpointInfo) {
#ifdef SEND_ALL_SENSORS
        res_pressure->set_value(pressure_value);
        res_temperature1->set_value(temp1_value);

        if (humidity_reading == SI7021::SI7021_SUCCESS) {
            res_humidity->set_value(humidity_data.RelativeHumidity);
        }
        if (temp2_reading == SI7021::SI7021_SUCCESS) {
            res_temperature2->set_value(temp2_data.Temperature);
        }

        res_field->set_value(field_value);
        res_temperature3->set_value(temp3_value);

        if (light_reading) {
            res_light->set_value(light_value);
        }

        res_co2->set_value(co2_value);
        res_tvoc->set_value(tvoc_value);

        res_accelerometer_x->set_value(acc_x);
        res_accelerometer_y->set_value(acc_y);
        res_accelerometer_z->set_value(acc_z);
        res_gyroscope_x->set_value(gyr_x);
        res_gyroscope_y->set_value(gyr_y);
        res_gyroscope_z->set_value(gyr_z);

        res_temperature4->set_value(temp4_value);
#endif /* SEND_ALL_SENSORS */
    }
}

int main() {
    printf("\nStarting Simple Pelion Device Management Client example\n");

    int storage_status = fs.mount(&sd);
    if (storage_status != 0) {
        printf("Storage mounting failed.\n");
    }

#if USE_BUTTON == 1
    // If the User button is pressed ons start, then format storage.
    bool btn_pressed = (button.read() == MBED_CONF_APP_BUTTON_PRESSED_STATE);
    if (btn_pressed) {
        printf("User button is pushed on start...\n");
    }
#else
    bool btn_pressed = FALSE;
#endif /* USE_BUTTON */

    if (storage_status || btn_pressed) {
        printf("Formatting the storage...\n");
        int storage_status = StorageHelper::format(&fs, &sd);
        if (storage_status != 0) {
            printf("ERROR: Failed to reformat the storage (%d).\n", storage_status);
        }
    } else {
        printf("You can hold the user button during boot to format the storage and change the device identity.\n");
    }

    Nanostack::get_instance(); // ensure Nanostack is initialised
    ns_file_system_set_root_path("/fs/");

    // Connect to the internet (DHCP is expected to be on)
    printf("Connecting to the network using 802.15.4...\n");

    nsapi_error_t net_status = -1;
    for (int tries = 0; tries < 3; tries++) {
        net_status = net->connect();
        if (net_status == NSAPI_ERROR_OK) {
            break;
        } else {
            printf("Unable to connect to network. Retrying...\n");
        }
    }

    if (net_status != NSAPI_ERROR_OK) {
        printf("ERROR: Connecting to the network failed (%d)!\n", net_status);
        return -1;
    }

    printf("Connected to the network successfully. IP address: %s\n", net->get_ip_address());

    printf("Initializing Pelion Device Management Client...\n");

    /* Initialize Simple Pelion DM Client */
    SimpleMbedCloudClient client(net, &sd, &fs);
    int client_status = client.init();
    if (client_status != 0) {
        printf("ERROR: Pelion Client initialization failed (%d)\n", client_status);
        return -1;
    }

    /* Create resources */
    res_led = client.create_resource("3201/0/5853", "LED blinking (R:G:B:count)");
    res_led->observable(false);
    res_led->set_value("0:0:0:0");
    res_led->attach_post_callback(blink_callback);
    res_led->methods(M2MMethod::POST);

    res_button = client.create_resource("3200/0/5501", "Button Click Count");
    res_button->set_value(0);
    res_button->methods(M2MMethod::GET);
    res_button->observable(true);
    res_button->attach_notification_callback(button_callback);

#ifdef SEND_ALL_SENSORS
    res_light = client.create_resource("3301/0/5853", "LightIntensity (LUX)");
    res_light->set_value(0);
    res_light->observable(true);
    res_light->methods(M2MMethod::GET);

    // Sensor BMP280
    res_pressure = client.create_resource("3323/0/5853", "Barometric pressure (hPa)");
    res_pressure->set_value(0);
    res_pressure->observable(true);
    res_pressure->methods(M2MMethod::GET);

    res_temperature1 = client.create_resource("3303/0/5853", "Temperature BMP280 (C)");
    res_temperature1->set_value(0);
    res_temperature1->observable(true);
    res_temperature1->methods(M2MMethod::GET);
    res_temperature2->methods(M2MMethod::GET);

    // Sensor Si7021
    res_humidity = client.create_resource("3304/0/5853", "Humidity (%)");
    res_humidity->set_value(0);
    res_humidity->observable(true);
    res_humidity->methods(M2MMethod::GET);

    res_temperature2 = client.create_resource("3303/1/5853", "Temperature Si7021 (C)");
    res_temperature2->set_value(0);
    res_temperature2->observable(true);

    // Sensor Si7210
    res_field = client.create_resource("3304/0/5853", "Magnetic Field (mT)");
    res_field->set_value(0);
    res_field->observable(true);
    res_field->methods(M2MMethod::GET);

    res_temperature3 = client.create_resource("3303/2/5853", "Temperature Si7210 (C)");
    res_temperature3->set_value(0);
    res_temperature3->observable(true);
    res_temperature3->methods(M2MMethod::GET);

    // Sensor CCS811
    res_co2 = client.create_resource("33255/0/5853", "CO2 (ppm)");
    res_co2->set_value(0);
    res_co2->observable(true);
    res_co2->methods(M2MMethod::GET);

    res_tvoc = client.create_resource("33256/0/5853", "VOC (ppm)");
    res_tvoc->set_value(0);
    res_tvoc->observable(true);
    res_tvoc->methods(M2MMethod::GET);

    // Sensor ICM20648
    res_accelerometer_x = client.create_resource("3313/0/5702", "Accelerometer X");
    res_accelerometer_x->set_value(0);
    res_accelerometer_x->methods(M2MMethod::GET);
    res_accelerometer_x->observable(true);

    res_accelerometer_y = client.create_resource("3313/0/5703", "Accelerometer Y");
    res_accelerometer_y->set_value(0);
    res_accelerometer_y->methods(M2MMethod::GET);
    res_accelerometer_y->observable(true);

    res_accelerometer_z = client.create_resource("3313/0/5704", "Accelerometer Z");
    res_accelerometer_z->set_value(0);
    res_accelerometer_z->methods(M2MMethod::GET);
    res_accelerometer_z->observable(true);

    res_gyroscope_x = client.create_resource("3334/0/5702", "Gyroscope X");
    res_gyroscope_x->set_value(0);
    res_gyroscope_x->methods(M2MMethod::GET);
    res_gyroscope_x->observable(true);

    res_gyroscope_y = client.create_resource("3334/0/5703", "Gyroscope Y");
    res_gyroscope_y->set_value(0);
    res_gyroscope_y->methods(M2MMethod::GET);
    res_gyroscope_y->observable(true);

    res_gyroscope_z = client.create_resource("3334/0/5704", "Gyroscope Z");
    res_gyroscope_z->set_value(0);
    res_gyroscope_z->methods(M2MMethod::GET);
    res_gyroscope_z->observable(true);

    res_temperature4 = client.create_resource("3303/3/5853", "Temperature ICM20648 (C)");
    res_temperature4->set_value(0);
    res_temperature4->observable(true);
    res_temperature4->methods(M2MMethod::GET);
#endif /* SEND_ALL_SENSORS */

    sensors_init();

    // Callback that fires when registering is complete
    client.on_registered(&registered);

    /* Register the device */
    client.register_and_connect();

    button.fall(eventQueue.event(&button_press));

    // The timer fires on an interrupt context, but debounces it to the eventqueue, so it's safe to do network operations
    Ticker timer;
    timer.attach(eventQueue.event(&sensors_update), SENSORS_POLL_INTERVAL);

    eventQueue.dispatch_forever();
}