Fork of Semtech LoRaWAN stack
Fork of LoRaWAN-lib by
LoRaMac.cpp
- Committer:
- mluis
- Date:
- 2015-11-23
- Revision:
- 1:91e4e6c60d1e
- Parent:
- 0:91d1a7783bb9
- Child:
- 2:14a5d6ad92d5
File content as of revision 1:91e4e6c60d1e:
/*
/ _____) _ | |
( (____ _____ ____ _| |_ _____ ____| |__
\____ \| ___ | (_ _) ___ |/ ___) _ \
_____) ) ____| | | || |_| ____( (___| | | |
(______/|_____)_|_|_| \__)_____)\____)_| |_|
(C)2013 Semtech
Description: LoRa MAC layer implementation
License: Revised BSD License, see LICENSE.TXT file include in the project
Maintainer: Miguel Luis and Gregory Cristian
*/
#include "board.h"
#include "LoRaMacCrypto.h"
#include "LoRaMac.h"
/*!
* Maximum PHY layer payload size
*/
#define LORAMAC_PHY_MAXPAYLOAD 255
/*!
* Maximum MAC commands buffer size
*/
#define LORA_MAC_COMMAND_MAX_LENGTH 15
/*!
* Device IEEE EUI
*/
static uint8_t *LoRaMacDevEui;
/*!
* Application IEEE EUI
*/
static uint8_t *LoRaMacAppEui;
/*!
* AES encryption/decryption cipher application key
*/
static uint8_t *LoRaMacAppKey;
/*!
* AES encryption/decryption cipher network session key
*/
static uint8_t LoRaMacNwkSKey[] =
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
/*!
* AES encryption/decryption cipher application session key
*/
static uint8_t LoRaMacAppSKey[] =
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
/*!
* Device nonce is a random value extracted by issuing a sequence of RSSI
* measurements
*/
static uint16_t LoRaMacDevNonce;
/*!
* Network ID ( 3 bytes )
*/
static uint32_t LoRaMacNetID;
/*!
* Mote Address
*/
static uint32_t LoRaMacDevAddr;
/*!
* Mutlicast channels linked list
*/
static MulticastParams_t *MulticastChannels = NULL;
/*!
* Actual device class
*/
static DeviceClass_t LoRaMacDeviceClass;
/*!
* Indicates if the node is connected to a private or public network
*/
static bool PublicNetwork;
/*!
* Indicates if the node supports repeaters
*/
static bool RepeaterSupport;
/*!
* Buffer containing the data to be sent or received.
*/
static uint8_t LoRaMacBuffer[LORAMAC_PHY_MAXPAYLOAD];
/*!
* Length of packet in LoRaMacBuffer
*/
static uint16_t LoRaMacBufferPktLen = 0;
/*!
* Buffer containing the upper layer data.
*/
static uint8_t LoRaMacPayload[LORAMAC_PHY_MAXPAYLOAD];
static uint8_t LoRaMacRxPayload[LORAMAC_PHY_MAXPAYLOAD];
/*!
* LoRaMAC frame counter. Each time a packet is sent the counter is incremented.
* Only the 16 LSB bits are sent
*/
static uint32_t UpLinkCounter = 1;
/*!
* LoRaMAC frame counter. Each time a packet is received the counter is incremented.
* Only the 16 LSB bits are received
*/
static uint32_t DownLinkCounter = 0;
/*!
* IsPacketCounterFixed enables the MIC field tests by fixing the
* UpLinkCounter value
*/
static bool IsUpLinkCounterFixed = false;
/*!
* Used for test purposes. Disables the opening of the reception windows.
*/
static bool IsRxWindowsEnabled = true;
/*!
* Indicates if the MAC layer has already joined a network.
*/
static bool IsLoRaMacNetworkJoined = false;
/*!
* LoRaMac ADR control status
*/
static bool AdrCtrlOn = false;
/*!
* Counts the number of missed ADR acknowledgements
*/
static uint32_t AdrAckCounter = 0;
/*!
* If the node has sent a FRAME_TYPE_DATA_CONFIRMED_UP this variable indicates
* if the nodes needs to manage the server acknowledgement.
*/
static bool NodeAckRequested = false;
/*!
* If the server has sent a FRAME_TYPE_DATA_CONFIRMED_DOWN this variable indicates
* if the ACK bit must be set for the next transmission
*/
static bool SrvAckRequested = false;
/*!
* Indicates if the MAC layer wants to send MAC commands
*/
static bool MacCommandsInNextTx = false;
/*!
* Contains the current MacCommandsBuffer index
*/
static uint8_t MacCommandsBufferIndex = 0;
/*!
* Buffer containing the MAC layer commands
*/
static uint8_t MacCommandsBuffer[LORA_MAC_COMMAND_MAX_LENGTH];
#if defined( USE_BAND_433 )
/*!
* Data rates table definition
*/
const uint8_t Datarates[] = { 12, 11, 10, 9, 8, 7, 7, 50 };
/*!
* Maximum payload with respect to the datarate index. Cannot operate with repeater.
*/
const uint8_t MaxPayloadOfDatarate[] = { 59, 59, 59, 123, 250, 250, 250, 250 };
/*!
* Maximum payload with respect to the datarate index. Can operate with repeater.
*/
const uint8_t MaxPayloadOfDatarateRepeater[] = { 59, 59, 59, 123, 230, 230, 230, 230 };
/*!
* Tx output powers table definition
*/
const int8_t TxPowers[] = { 20, 14, 11, 8, 5, 2 };
/*!
* LoRaMac bands
*/
static Band_t Bands[LORA_MAX_NB_BANDS] =
{
BAND0,
};
/*!
* LoRaMAC channels
*/
static ChannelParams_t Channels[LORA_MAX_NB_CHANNELS] =
{
LC1,
LC2,
LC3,
};
#elif defined( USE_BAND_780 )
/*!
* Data rates table definition
*/
const uint8_t Datarates[] = { 12, 11, 10, 9, 8, 7, 7, 50 };
/*!
* Maximum payload with respect to the datarate index. Cannot operate with repeater.
*/
const uint8_t MaxPayloadOfDatarate[] = { 59, 59, 59, 123, 250, 250, 250, 250 };
/*!
* Maximum payload with respect to the datarate index. Can operate with repeater.
*/
const uint8_t MaxPayloadOfDatarateRepeater[] = { 59, 59, 59, 123, 230, 230, 230, 230 };
/*!
* Tx output powers table definition
*/
const int8_t TxPowers[] = { 20, 14, 11, 8, 5, 2 };
/*!
* LoRaMac bands
*/
static Band_t Bands[LORA_MAX_NB_BANDS] =
{
BAND0,
};
/*!
* LoRaMAC channels
*/
static ChannelParams_t Channels[LORA_MAX_NB_CHANNELS] =
{
LC1,
LC2,
LC3,
};
#elif defined( USE_BAND_868 )
/*!
* Data rates table definition
*/
const uint8_t Datarates[] = { 12, 11, 10, 9, 8, 7, 7, 50 };
/*!
* Maximum payload with respect to the datarate index. Cannot operate with repeater.
*/
const uint8_t MaxPayloadOfDatarate[] = { 51, 51, 51, 115, 242, 242, 242, 242 };
/*!
* Maximum payload with respect to the datarate index. Can operate with repeater.
*/
const uint8_t MaxPayloadOfDatarateRepeater[] = { 51, 51, 51, 115, 222, 222, 222, 222 };
/*!
* Tx output powers table definition
*/
const int8_t TxPowers[] = { 20, 14, 11, 8, 5, 2 };
/*!
* LoRaMac bands
*/
static Band_t Bands[LORA_MAX_NB_BANDS] =
{
BAND0,
BAND1,
BAND2,
BAND3,
BAND4,
};
/*!
* LoRaMAC channels
*/
static ChannelParams_t Channels[LORA_MAX_NB_CHANNELS] =
{
LC1,
LC2,
LC3,
LC4,
LC5,
LC6,
LC7,
LC8,
LC9,
};
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
/*!
* Data rates table definition
*/
const uint8_t Datarates[] = { 10, 9, 8, 7, 8, 0, 0, 0, 12, 11, 10, 9, 8, 7, 0, 0 };
/*!
* Up/Down link data rates offset definition
*/
const int8_t datarateOffsets[16][4] =
{
{ DR_10, DR_9 , DR_8 , DR_8 }, // DR_0
{ DR_11, DR_10, DR_9 , DR_8 }, // DR_1
{ DR_12, DR_11, DR_10, DR_9 }, // DR_2
{ DR_13, DR_12, DR_11, DR_10 }, // DR_3
{ DR_13, DR_13, DR_12, DR_11 }, // DR_4
{ 0xFF , 0xFF , 0xFF , 0xFF },
{ 0xFF , 0xFF , 0xFF , 0xFF },
{ 0xFF , 0xFF , 0xFF , 0xFF },
{ DR_8 , DR_8 , DR_8 , DR_8 },
{ DR_9 , DR_8 , DR_8 , DR_8 },
{ DR_10, DR_9 , DR_8 , DR_8 },
{ DR_11, DR_10, DR_9 , DR_8 },
{ DR_12, DR_11, DR_10, DR_9 },
{ DR_13, DR_12, DR_11, DR_10 },
{ 0xFF , 0xFF , 0xFF , 0xFF },
{ 0xFF , 0xFF , 0xFF , 0xFF },
};
/*!
* Maximum payload with respect to the datarate index. Cannot operate with repeater.
*/
const uint8_t MaxPayloadOfDatarate[] = { 11, 53, 129, 242, 242, 0, 0, 0, 53, 129, 242, 242, 242, 242, 0, 0 };
/*!
* Maximum payload with respect to the datarate index. Can operate with repeater.
*/
const uint8_t MaxPayloadOfDatarateRepeater[] = { 11, 53, 129, 242, 242, 0, 0, 0, 33, 103, 222, 222, 222, 222, 0, 0 };
/*!
* Tx output powers table definition
*/
const int8_t TxPowers[] = { 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10 };
/*!
* LoRaMac bands
*/
static Band_t Bands[LORA_MAX_NB_BANDS] =
{
BAND0,
};
/*!
* LoRaMAC channels
*/
static ChannelParams_t Channels[LORA_MAX_NB_CHANNELS];
#else
#error "Please define a frequency band in the compiler options."
#endif
/*!
* LoRaMAC 2nd reception window settings
*/
static Rx2ChannelParams_t Rx2Channel = RX_WND_2_CHANNEL;
/*!
* Datarate offset between uplink and downlink on first window
*/
static uint8_t Rx1DrOffset = 0;
/*!
* Mask indicating which channels are enabled
*/
static uint16_t ChannelsMask[6];
/*!
* Channels Tx output power
*/
static int8_t ChannelsTxPower = LORAMAC_DEFAULT_TX_POWER;
/*!
* Channels datarate
*/
static int8_t ChannelsDatarate = LORAMAC_DEFAULT_DATARATE;
/*!
* Channels default datarate
*/
static int8_t ChannelsDefaultDatarate = LORAMAC_DEFAULT_DATARATE;
/*!
* Number of uplink messages repetitions [1:15] (unconfirmed messages only)
*/
static uint8_t ChannelsNbRep = 1;
/*!
* Uplink messages repetitions counter
*/
static uint8_t ChannelsNbRepCounter = 0;
/*!
* Maximum duty cycle
* \remark Possibility to shutdown the device.
*/
static uint8_t MaxDCycle = 0;
/*!
* Agregated duty cycle management
*/
static uint16_t AggregatedDCycle;
static TimerTime_t AggregatedLastTxDoneTime;
static TimerTime_t AggregatedTimeOff;
/*!
* Enables/Disables duty cycle management (Test only)
*/
static bool DutyCycleOn;
/*!
* Current channel index
*/
static uint8_t Channel;
/*!
* LoRaMac internal states
*/
enum LoRaMacState_e
{
MAC_IDLE = 0x00000000,
MAC_TX_RUNNING = 0x00000001,
MAC_RX = 0x00000002,
MAC_ACK_REQ = 0x00000004,
MAC_ACK_RETRY = 0x00000008,
MAC_CHANNEL_CHECK = 0x00000010,
};
/*!
* LoRaMac internal state
*/
uint32_t LoRaMacState = MAC_IDLE;
/*!
* LoRaMac timer used to check the LoRaMacState (runs every second)
*/
static TimerEvent_t MacStateCheckTimer;
/*!
* LoRaMac upper layer event functions
*/
static LoRaMacCallbacks_t *LoRaMacCallbacks;
/*!
* LoRaMac notification event flags
*/
LoRaMacEventFlags_t LoRaMacEventFlags;
/*!
* LoRaMac notification event info
*/
LoRaMacEventInfo_t LoRaMacEventInfo;
/*!
* LoRaMac channel check timer
*/
static TimerEvent_t ChannelCheckTimer;
/*!
* LoRaMac duty cycle delayed Tx timer
*/
static TimerEvent_t TxDelayedTimer;
/*!
* LoRaMac reception windows timers
*/
static TimerEvent_t RxWindowTimer1;
static TimerEvent_t RxWindowTimer2;
/*!
* LoRaMac reception windows delay from end of Tx
*/
static uint32_t ReceiveDelay1;
static uint32_t ReceiveDelay2;
static uint32_t JoinAcceptDelay1;
static uint32_t JoinAcceptDelay2;
/*!
* LoRaMac reception windows delay
* \remark normal frame: RxWindowXDelay = ReceiveDelayX - RADIO_WAKEUP_TIME
* join frame : RxWindowXDelay = JoinAcceptDelayX - RADIO_WAKEUP_TIME
*/
static uint32_t RxWindow1Delay;
static uint32_t RxWindow2Delay;
/*!
* LoRaMac maximum time a reception window stays open
*/
static uint32_t MaxRxWindow;
/*!
* Acknowledge timeout timer. Used for packet retransmissions.
*/
static TimerEvent_t AckTimeoutTimer;
/*!
* Number of trials to get a frame acknowledged
*/
static uint8_t AckTimeoutRetries = 1;
/*!
* Number of trials to get a frame acknowledged
*/
static uint8_t AckTimeoutRetriesCounter = 1;
/*!
* Indicates if the AckTimeout timer has expired or not
*/
static bool AckTimeoutRetry = false;
/*!
* Last transmission time on air
*/
TimerTime_t TxTimeOnAir = 0;
/*!
* Function to be executed on Radio Tx Done event
*/
static void OnRadioTxDone( void );
/*!
* Function to be executed on Radio Rx Done event
*/
static void OnRadioRxDone( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr );
/*!
* Function executed on Radio Tx Timeout event
*/
static void OnRadioTxTimeout( void );
/*!
* Function executed on Radio Rx error event
*/
static void OnRadioRxError( void );
/*!
* Function executed on Radio Rx Timeout event
*/
static void OnRadioRxTimeout( void );
/*!
* Function executed on Resend Frame timer event.
*/
static void OnMacStateCheckTimerEvent( void );
/*!
* Function executed on duty cycle delayed Tx timer event
*/
static void OnTxDelayedTimerEvent( void );
/*!
* Function executed on channel check timer event
*/
static void OnChannelCheckTimerEvent( void );
/*!
* Function executed on first Rx window timer event
*/
static void OnRxWindow1TimerEvent( void );
/*!
* Function executed on second Rx window timer event
*/
static void OnRxWindow2TimerEvent( void );
/*!
* Function executed on AckTimeout timer event
*/
static void OnAckTimeoutTimerEvent( void );
/*!
* Radio events function pointer
*/
static RadioEvents_t RadioEvents;
/*!
* \brief Validates if the payload fits into the frame, taking the datarate
* into account.
*
* \details Refer to chapter 4.3.2 of the LoRaWAN specification, v1.0
*
* \param lenN Length of the application payload. The length depends on the
* datarate and is region specific
*
* \param datarate Current datarate
*
* \retval [false: payload does not fit into the frame, true: payload fits into
* the frame]
*/
static bool ValidatePayloadLength( uint8_t lenN, int8_t datarate );
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
/*!
* \brief Counts the number of enabled 125 kHz channels in the channel mask.
* This function can only be applied to US915 band.
*
* \param channelsMask Pointer to the first element of the channel mask
*
* \retval Number of enabled channels in the channel mask
*/
static uint8_t CountNbEnabled125kHzChannels( uint16_t *channelsMask );
#endif
/*!
* \brief Limits the Tx power according to the number of enabled channels
*
* \retval Returns the maximum valid tx power
*/
static int8_t LimitTxPower( int8_t txPower );
/*!
* Searches and set the next random available channel
*
* \retval status Function status [0: OK, 1: Unable to find a free channel]
*/
static uint8_t LoRaMacSetNextChannel( void )
{
uint8_t i = 0;
uint8_t j = 0;
uint8_t k = 0;
uint8_t nbEnabledChannels = 0;
uint8_t enabledChannels[LORA_MAX_NB_CHANNELS];
TimerTime_t curTime = TimerGetCurrentTime( );
memset1( enabledChannels, 0, LORA_MAX_NB_CHANNELS );
// Update Aggregated duty cycle
if( AggregatedTimeOff < ( curTime - AggregatedLastTxDoneTime ) )
{
AggregatedTimeOff = 0;
}
// Update bands Time OFF
TimerTime_t minTime = ( TimerTime_t )( -1 );
for( i = 0; i < LORA_MAX_NB_BANDS; i++ )
{
if( DutyCycleOn == true )
{
if( Bands[i].TimeOff < ( curTime - Bands[i].LastTxDoneTime ) )
{
Bands[i].TimeOff = 0;
}
if( Bands[i].TimeOff != 0 )
{
minTime = MIN( Bands[i].TimeOff, minTime );
}
}
else
{
minTime = 0;
Bands[i].TimeOff = 0;
}
}
// Search how many channels are enabled
for( i = 0, k = 0; i < LORA_MAX_NB_CHANNELS; i += 16, k++ )
{
for( j = 0; j < 16; j++ )
{
if( ( ChannelsMask[k] & ( 1 << j ) ) != 0 )
{
if( Channels[i + j].Frequency == 0 )
{ // Check if the channel is enabled
continue;
}
if( ( ( Channels[i + j].DrRange.Fields.Min <= ChannelsDatarate ) &&
( ChannelsDatarate <= Channels[i + j].DrRange.Fields.Max ) ) == false )
{ // Check if the current channel selection supports the given datarate
continue;
}
if( Bands[Channels[i + j].Band].TimeOff > 0 )
{ // Check if the band is available for transmission
continue;
}
if( AggregatedTimeOff > 0 )
{ // Check if there is time available for transmission
continue;
}
enabledChannels[nbEnabledChannels++] = i + j;
}
}
}
if( nbEnabledChannels > 0 )
{
Channel = enabledChannels[randr( 0, nbEnabledChannels - 1 )];
LoRaMacState &= ~MAC_CHANNEL_CHECK;
TimerStop( &ChannelCheckTimer );
return 0;
}
// No free channel found.
// Check again
if( ( LoRaMacState & MAC_CHANNEL_CHECK ) == 0 )
{
TimerSetValue( &ChannelCheckTimer, minTime );
TimerStart( &ChannelCheckTimer );
LoRaMacState |= MAC_CHANNEL_CHECK;
}
return 1;
}
/*
* TODO: Add documentation
*/
void OnChannelCheckTimerEvent( void )
{
TimerStop( &ChannelCheckTimer );
LoRaMacState &= ~MAC_CHANNEL_CHECK;
if( LoRaMacSetNextChannel( ) == 0 )
{
if( ( LoRaMacState & MAC_TX_RUNNING ) == MAC_TX_RUNNING )
{
LoRaMacSendFrameOnChannel( Channels[Channel] );
}
}
}
/*!
* Adds a new MAC command to be sent.
*
* \Remark MAC layer internal function
*
* \param [in] cmd MAC command to be added
* [MOTE_MAC_LINK_CHECK_REQ,
* MOTE_MAC_LINK_ADR_ANS,
* MOTE_MAC_DUTY_CYCLE_ANS,
* MOTE_MAC_RX2_PARAM_SET_ANS,
* MOTE_MAC_DEV_STATUS_ANS
* MOTE_MAC_NEW_CHANNEL_ANS]
* \param [in] p1 1st parameter ( optional depends on the command )
* \param [in] p2 2nd parameter ( optional depends on the command )
*
* \retval status Function status [0: OK, 1: Unknown command, 2: Busy]
*/
static uint8_t AddMacCommand( uint8_t cmd, uint8_t p1, uint8_t p2 )
{
uint8_t status = 2; // Busy
switch( cmd )
{
case MOTE_MAC_LINK_CHECK_REQ:
if( MacCommandsBufferIndex < LORA_MAC_COMMAND_MAX_LENGTH )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// No payload for this command
status = 0; // OK
}
break;
case MOTE_MAC_LINK_ADR_ANS:
if( MacCommandsBufferIndex < ( LORA_MAC_COMMAND_MAX_LENGTH - 1 ) )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// Margin
MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
status = 0; // OK
}
break;
case MOTE_MAC_DUTY_CYCLE_ANS:
if( MacCommandsBufferIndex < LORA_MAC_COMMAND_MAX_LENGTH )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// No payload for this answer
status = 0; // OK
}
break;
case MOTE_MAC_RX_PARAM_SETUP_ANS:
if( MacCommandsBufferIndex < ( LORA_MAC_COMMAND_MAX_LENGTH - 1 ) )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// Status: Datarate ACK, Channel ACK
MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
status = 0; // OK
}
break;
case MOTE_MAC_DEV_STATUS_ANS:
if( MacCommandsBufferIndex < ( LORA_MAC_COMMAND_MAX_LENGTH - 2 ) )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// 1st byte Battery
// 2nd byte Margin
MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
MacCommandsBuffer[MacCommandsBufferIndex++] = p2;
status = 0; // OK
}
break;
case MOTE_MAC_NEW_CHANNEL_ANS:
if( MacCommandsBufferIndex < ( LORA_MAC_COMMAND_MAX_LENGTH - 1 ) )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// Status: Datarate range OK, Channel frequency OK
MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
status = 0; // OK
}
break;
case MOTE_MAC_RX_TIMING_SETUP_ANS:
if( MacCommandsBufferIndex < LORA_MAC_COMMAND_MAX_LENGTH )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// No payload for this answer
status = 0; // OK
}
break;
default:
return 1; // Unknown command
}
if( status == 0 )
{
MacCommandsInNextTx = true;
}
return status;
}
// TODO: Add Documentation
static void LoRaMacNotify( LoRaMacEventFlags_t *flags, LoRaMacEventInfo_t *info )
{
if( ( LoRaMacCallbacks != NULL ) && ( LoRaMacCallbacks->MacEvent != NULL ) )
{
LoRaMacCallbacks->MacEvent( flags, info );
}
flags->Value = 0;
}
void LoRaMacInit( LoRaMacCallbacks_t *callbacks )
{
LoRaMacCallbacks = callbacks;
LoRaMacEventFlags.Value = 0;
LoRaMacEventInfo.TxAckReceived = false;
LoRaMacEventInfo.TxNbRetries = 0;
LoRaMacEventInfo.TxDatarate = 7;
LoRaMacEventInfo.RxPort = 1;
LoRaMacEventInfo.RxBuffer = NULL;
LoRaMacEventInfo.RxBufferSize = 0;
LoRaMacEventInfo.RxRssi = 0;
LoRaMacEventInfo.RxSnr = 0;
LoRaMacEventInfo.Energy = 0;
LoRaMacEventInfo.DemodMargin = 0;
LoRaMacEventInfo.NbGateways = 0;
LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_OK;
LoRaMacDeviceClass = CLASS_A;
UpLinkCounter = 1;
DownLinkCounter = 0;
IsLoRaMacNetworkJoined = false;
LoRaMacState = MAC_IDLE;
#if defined( USE_BAND_433 )
ChannelsMask[0] = LC( 1 ) + LC( 2 ) + LC( 3 );
#elif defined( USE_BAND_780 )
ChannelsMask[0] = LC( 1 ) + LC( 2 ) + LC( 3 );
#elif defined( USE_BAND_868 )
ChannelsMask[0] = LC( 1 ) + LC( 2 ) + LC( 3 );
#elif defined( USE_BAND_915 )
ChannelsMask[0] = 0xFFFF;
ChannelsMask[1] = 0xFFFF;
ChannelsMask[2] = 0xFFFF;
ChannelsMask[3] = 0xFFFF;
ChannelsMask[4] = 0x00FF;
ChannelsMask[5] = 0x0000;
#elif defined( USE_BAND_915_HYBRID )
ChannelsMask[0] = 0x00FF;
ChannelsMask[1] = 0x0000;
ChannelsMask[2] = 0x0000;
ChannelsMask[3] = 0x0000;
ChannelsMask[4] = 0x0001;
ChannelsMask[5] = 0x0000;
#else
#error "Please define a frequency band in the compiler options."
#endif
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
// 125 kHz channels
for( uint8_t i = 0; i < LORA_MAX_NB_CHANNELS - 8; i++ )
{
Channels[i].Frequency = 902.3e6 + i * 200e3;
Channels[i].DrRange.Value = ( DR_3 << 4 ) | DR_0;
Channels[i].Band = 0;
}
// 500 kHz channels
for( uint8_t i = LORA_MAX_NB_CHANNELS - 8; i < LORA_MAX_NB_CHANNELS; i++ )
{
Channels[i].Frequency = 903.0e6 + ( i - ( LORA_MAX_NB_CHANNELS - 8 ) ) * 1.6e6;
Channels[i].DrRange.Value = ( DR_4 << 4 ) | DR_4;
Channels[i].Band = 0;
}
#endif
ChannelsTxPower = LORAMAC_DEFAULT_TX_POWER;
ChannelsDefaultDatarate = ChannelsDatarate = LORAMAC_DEFAULT_DATARATE;
ChannelsNbRep = 1;
ChannelsNbRepCounter = 0;
MaxDCycle = 0;
AggregatedDCycle = 1;
AggregatedLastTxDoneTime = 0;
AggregatedTimeOff = 0;
#if defined( USE_BAND_433 )
DutyCycleOn = false;
#elif defined( USE_BAND_780 )
DutyCycleOn = false;
#elif defined( USE_BAND_868 )
DutyCycleOn = true;
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
DutyCycleOn = false;
#else
#error "Please define a frequency band in the compiler options."
#endif
MaxRxWindow = MAX_RX_WINDOW;
ReceiveDelay1 = RECEIVE_DELAY1;
ReceiveDelay2 = RECEIVE_DELAY2;
JoinAcceptDelay1 = JOIN_ACCEPT_DELAY1;
JoinAcceptDelay2 = JOIN_ACCEPT_DELAY2;
TimerInit( &MacStateCheckTimer, OnMacStateCheckTimerEvent );
TimerSetValue( &MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT );
TimerInit( &ChannelCheckTimer, OnChannelCheckTimerEvent );
TimerInit( &TxDelayedTimer, OnTxDelayedTimerEvent );
TimerInit( &RxWindowTimer1, OnRxWindow1TimerEvent );
TimerInit( &RxWindowTimer2, OnRxWindow2TimerEvent );
TimerInit( &AckTimeoutTimer, OnAckTimeoutTimerEvent );
// Initialize Radio driver
RadioEvents.TxDone = OnRadioTxDone;
RadioEvents.RxDone = OnRadioRxDone;
RadioEvents.RxError = OnRadioRxError;
RadioEvents.TxTimeout = OnRadioTxTimeout;
RadioEvents.RxTimeout = OnRadioRxTimeout;
Radio.Init( &RadioEvents );
// Random seed initialization
srand1( Radio.Random( ) );
// Initialize channel index.
Channel = LORA_MAX_NB_CHANNELS;
PublicNetwork = true;
LoRaMacSetPublicNetwork( PublicNetwork );
Radio.Sleep( );
}
void LoRaMacSetAdrOn( bool enable )
{
AdrCtrlOn = enable;
}
void LoRaMacInitNwkIds( uint32_t netID, uint32_t devAddr, uint8_t *nwkSKey, uint8_t *appSKey )
{
LoRaMacNetID = netID;
LoRaMacDevAddr = devAddr;
LoRaMacMemCpy( nwkSKey, LoRaMacNwkSKey, 16 );
LoRaMacMemCpy( appSKey, LoRaMacAppSKey, 16 );
IsLoRaMacNetworkJoined = true;
}
void LoRaMacMulticastChannelAdd( MulticastParams_t *channelParam )
{
// Reset downlink counter
channelParam->DownLinkCounter = 0;
if( MulticastChannels == NULL )
{
MulticastChannels = channelParam;
}
else
{
MulticastParams_t *cur = MulticastChannels;
while( cur->Next != NULL )
{
cur = cur->Next;
}
cur->Next = channelParam;
}
}
void LoRaMacMulticastChannelRemove( MulticastParams_t *channelParam )
{
MulticastParams_t *cur = NULL;
// Remove the front element
if( MulticastChannels == channelParam )
{
if( MulticastChannels != NULL )
{
cur = MulticastChannels;
MulticastChannels = MulticastChannels->Next;
cur->Next = NULL;
// Last node in the list
if( cur == MulticastChannels )
{
MulticastChannels = NULL;
}
}
return;
}
// Remove last element
if( channelParam->Next == NULL )
{
if( MulticastChannels != NULL )
{
cur = MulticastChannels;
MulticastParams_t *last = NULL;
while( cur->Next != NULL )
{
last = cur;
cur = cur->Next;
}
if( last != NULL )
{
last->Next = NULL;
}
// Last node in the list
if( cur == last )
{
MulticastChannels = NULL;
}
}
return;
}
// Remove a middle element
cur = MulticastChannels;
while( cur != NULL )
{
if( cur->Next == channelParam )
{
break;
}
cur = cur->Next;
}
if( cur != NULL )
{
MulticastParams_t *tmp = cur ->Next;
cur->Next = tmp->Next;
tmp->Next = NULL;
}
}
uint8_t LoRaMacJoinReq( uint8_t *devEui, uint8_t *appEui, uint8_t *appKey )
{
LoRaMacHeader_t macHdr;
LoRaMacDevEui = devEui;
LoRaMacAppEui = appEui;
LoRaMacAppKey = appKey;
macHdr.Value = 0;
macHdr.Bits.MType = FRAME_TYPE_JOIN_REQ;
IsLoRaMacNetworkJoined = false;
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
static uint8_t drSwitch = 0;
if( ( ++drSwitch & 0x01 ) == 0x01 )
{
ChannelsDatarate = DR_0;
}
else
{
ChannelsDatarate = DR_4;
}
#endif
return LoRaMacSend( &macHdr, NULL, 0, NULL, 0 );
}
uint8_t LoRaMacLinkCheckReq( void )
{
return AddMacCommand( MOTE_MAC_LINK_CHECK_REQ, 0, 0 );
}
uint8_t LoRaMacSendFrame( uint8_t fPort, void *fBuffer, uint16_t fBufferSize )
{
LoRaMacHeader_t macHdr;
macHdr.Value = 0;
macHdr.Bits.MType = FRAME_TYPE_DATA_UNCONFIRMED_UP;
return LoRaMacSend( &macHdr, NULL, fPort, fBuffer, fBufferSize );
}
uint8_t LoRaMacSendConfirmedFrame( uint8_t fPort, void *fBuffer, uint16_t fBufferSize, uint8_t retries )
{
LoRaMacHeader_t macHdr;
if( AdrCtrlOn == false )
{
ChannelsDatarate = ChannelsDefaultDatarate;
}
AckTimeoutRetries = retries;
AckTimeoutRetriesCounter = 1;
macHdr.Value = 0;
macHdr.Bits.MType = FRAME_TYPE_DATA_CONFIRMED_UP;
return LoRaMacSend( &macHdr, NULL, fPort, fBuffer, fBufferSize );
}
uint8_t LoRaMacSend( LoRaMacHeader_t *macHdr, uint8_t *fOpts, uint8_t fPort, void *fBuffer, uint16_t fBufferSize )
{
LoRaMacFrameCtrl_t fCtrl;
fCtrl.Value = 0;
fCtrl.Bits.FOptsLen = 0;
fCtrl.Bits.FPending = 0;
fCtrl.Bits.Ack = false;
fCtrl.Bits.AdrAckReq = false;
fCtrl.Bits.Adr = AdrCtrlOn;
if( LoRaMacSetNextChannel( ) == 0 )
{
return LoRaMacSendOnChannel( Channels[Channel], macHdr, &fCtrl, fOpts, fPort, fBuffer, fBufferSize );
}
return 5;
}
uint8_t LoRaMacPrepareFrame( ChannelParams_t channel, LoRaMacHeader_t *macHdr, LoRaMacFrameCtrl_t *fCtrl, uint8_t *fOpts, uint8_t fPort, void *fBuffer, uint16_t fBufferSize )
{
uint16_t i;
uint8_t pktHeaderLen = 0;
uint32_t mic = 0;
LoRaMacBufferPktLen = 0;
NodeAckRequested = false;
if( fBuffer == NULL )
{
fBufferSize = 0;
}
else
{
if( ValidatePayloadLength( fBufferSize, ChannelsDatarate ) == false )
{
return 3;
}
}
LoRaMacBuffer[pktHeaderLen++] = macHdr->Value;
switch( macHdr->Bits.MType )
{
case FRAME_TYPE_JOIN_REQ:
RxWindow1Delay = JoinAcceptDelay1 - RADIO_WAKEUP_TIME;
RxWindow2Delay = JoinAcceptDelay2 - RADIO_WAKEUP_TIME;
LoRaMacBufferPktLen = pktHeaderLen;
LoRaMacMemCpy( LoRaMacAppEui, LoRaMacBuffer + LoRaMacBufferPktLen, 8 );
LoRaMacBufferPktLen += 8;
LoRaMacMemCpy( LoRaMacDevEui, LoRaMacBuffer + LoRaMacBufferPktLen, 8 );
LoRaMacBufferPktLen += 8;
LoRaMacDevNonce = Radio.Random( );
LoRaMacBuffer[LoRaMacBufferPktLen++] = LoRaMacDevNonce & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( LoRaMacDevNonce >> 8 ) & 0xFF;
LoRaMacJoinComputeMic( LoRaMacBuffer, LoRaMacBufferPktLen & 0xFF, LoRaMacAppKey, &mic );
LoRaMacBuffer[LoRaMacBufferPktLen++] = mic & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 8 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 16 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 24 ) & 0xFF;
break;
case FRAME_TYPE_DATA_CONFIRMED_UP:
NodeAckRequested = true;
//Intentional falltrough
case FRAME_TYPE_DATA_UNCONFIRMED_UP:
if( IsLoRaMacNetworkJoined == false )
{
return 2; // No network has been joined yet
}
RxWindow1Delay = ReceiveDelay1 - RADIO_WAKEUP_TIME;
RxWindow2Delay = ReceiveDelay2 - RADIO_WAKEUP_TIME;
if( fOpts == NULL )
{
fCtrl->Bits.FOptsLen = 0;
}
if( SrvAckRequested == true )
{
SrvAckRequested = false;
fCtrl->Bits.Ack = 1;
}
if( fCtrl->Bits.Adr == true )
{
if( ChannelsDatarate == LORAMAC_MIN_DATARATE )
{
AdrAckCounter = 0;
fCtrl->Bits.AdrAckReq = false;
}
else
{
if( AdrAckCounter > ADR_ACK_LIMIT )
{
fCtrl->Bits.AdrAckReq = true;
}
else
{
fCtrl->Bits.AdrAckReq = false;
}
if( AdrAckCounter > ( ADR_ACK_LIMIT + ADR_ACK_DELAY ) )
{
AdrAckCounter = 0;
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
if( ChannelsDatarate > LORAMAC_MIN_DATARATE )
{
ChannelsDatarate--;
}
else
{
// Re-enable default channels LC1, LC2, LC3
ChannelsMask[0] = ChannelsMask[0] | ( LC( 1 ) + LC( 2 ) + LC( 3 ) );
}
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
if( ( ChannelsDatarate > LORAMAC_MIN_DATARATE ) && ( ChannelsDatarate == DR_8 ) )
{
ChannelsDatarate = DR_4;
}
if( ChannelsDatarate > LORAMAC_MIN_DATARATE )
{
ChannelsDatarate--;
}
else
{
#if defined( USE_BAND_915 )
// Re-enable default channels
ChannelsMask[0] = 0xFFFF;
ChannelsMask[1] = 0xFFFF;
ChannelsMask[2] = 0xFFFF;
ChannelsMask[3] = 0xFFFF;
ChannelsMask[4] = 0x00FF;
ChannelsMask[5] = 0x0000;
#else // defined( USE_BAND_915_HYBRID )
// Re-enable default channels
ChannelsMask[0] = 0x00FF;
ChannelsMask[1] = 0x0000;
ChannelsMask[2] = 0x0000;
ChannelsMask[3] = 0x0000;
ChannelsMask[4] = 0x0001;
ChannelsMask[5] = 0x0000;
#endif
}
#else
#error "Please define a frequency band in the compiler options."
#endif
}
}
}
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 8 ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 16 ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 24 ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = fCtrl->Value;
LoRaMacBuffer[pktHeaderLen++] = UpLinkCounter & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( UpLinkCounter >> 8 ) & 0xFF;
if( fOpts != NULL )
{
for( i = 0; i < fCtrl->Bits.FOptsLen; i++ )
{
LoRaMacBuffer[pktHeaderLen++] = fOpts[i];
}
}
if( ( MacCommandsBufferIndex + fCtrl->Bits.FOptsLen ) <= 15 )
{
if( MacCommandsInNextTx == true )
{
fCtrl->Bits.FOptsLen += MacCommandsBufferIndex;
// Update FCtrl field with new value of OptionsLength
LoRaMacBuffer[0x05] = fCtrl->Value;
for( i = 0; i < MacCommandsBufferIndex; i++ )
{
LoRaMacBuffer[pktHeaderLen++] = MacCommandsBuffer[i];
}
}
}
MacCommandsInNextTx = false;
MacCommandsBufferIndex = 0;
if( ( pktHeaderLen + fBufferSize ) > LORAMAC_PHY_MAXPAYLOAD )
{
return 3;
}
if( fBuffer != NULL )
{
LoRaMacBuffer[pktHeaderLen++] = fPort;
if( fPort == 0 )
{
LoRaMacPayloadEncrypt( ( uint8_t* )fBuffer, fBufferSize, LoRaMacNwkSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, LoRaMacPayload );
}
else
{
LoRaMacPayloadEncrypt( ( uint8_t* )fBuffer, fBufferSize, LoRaMacAppSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, LoRaMacPayload );
}
LoRaMacMemCpy( LoRaMacPayload, LoRaMacBuffer + pktHeaderLen, fBufferSize );
}
LoRaMacBufferPktLen = pktHeaderLen + fBufferSize;
LoRaMacComputeMic( LoRaMacBuffer, LoRaMacBufferPktLen, LoRaMacNwkSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, &mic );
if( ( LoRaMacBufferPktLen + LORAMAC_MFR_LEN ) > LORAMAC_PHY_MAXPAYLOAD )
{
return 3;
}
LoRaMacBuffer[LoRaMacBufferPktLen + 0] = mic & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen + 1] = ( mic >> 8 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen + 2] = ( mic >> 16 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen + 3] = ( mic >> 24 ) & 0xFF;
LoRaMacBufferPktLen += LORAMAC_MFR_LEN;
break;
default:
return 4;
}
return 0;
}
uint8_t LoRaMacSendFrameOnChannel( ChannelParams_t channel )
{
LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
LoRaMacEventInfo.TxDatarate = ChannelsDatarate;
ChannelsTxPower = LimitTxPower( ChannelsTxPower );
Radio.SetChannel( channel.Frequency );
Radio.SetMaxPayloadLength( MODEM_LORA, LoRaMacBufferPktLen );
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
if( ChannelsDatarate == DR_7 )
{ // High Speed FSK channel
Radio.SetTxConfig( MODEM_FSK, TxPowers[ChannelsTxPower], 25e3, 0, Datarates[ChannelsDatarate] * 1e3, 0, 5, false, true, 0, 0, false, 3e6 );
TxTimeOnAir = Radio.TimeOnAir( MODEM_FSK, LoRaMacBufferPktLen );
}
else if( ChannelsDatarate == DR_6 )
{ // High speed LoRa channel
Radio.SetTxConfig( MODEM_LORA, TxPowers[ChannelsTxPower], 0, 1, Datarates[ChannelsDatarate], 1, 8, false, true, 0, 0, false, 3e6 );
TxTimeOnAir = Radio.TimeOnAir( MODEM_LORA, LoRaMacBufferPktLen );
}
else
{ // Normal LoRa channel
Radio.SetTxConfig( MODEM_LORA, TxPowers[ChannelsTxPower], 0, 0, Datarates[ChannelsDatarate], 1, 8, false, true, 0, 0, false, 3e6 );
TxTimeOnAir = Radio.TimeOnAir( MODEM_LORA, LoRaMacBufferPktLen );
}
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
if( ChannelsDatarate >= DR_4 )
{ // High speed LoRa channel BW500 kHz
Radio.SetTxConfig( MODEM_LORA, TxPowers[ChannelsTxPower], 0, 2, Datarates[ChannelsDatarate], 1, 8, false, true, 0, 0, false, 3e6 );
TxTimeOnAir = Radio.TimeOnAir( MODEM_LORA, LoRaMacBufferPktLen );
}
else
{ // Normal LoRa channel
Radio.SetTxConfig( MODEM_LORA, TxPowers[ChannelsTxPower], 0, 0, Datarates[ChannelsDatarate], 1, 8, false, true, 0, 0, false, 3e6 );
TxTimeOnAir = Radio.TimeOnAir( MODEM_LORA, LoRaMacBufferPktLen );
}
#else
#error "Please define a frequency band in the compiler options."
#endif
if( MaxDCycle == 255 )
{
return 6;
}
if( MaxDCycle == 0 )
{
AggregatedTimeOff = 0;
}
LoRaMacState |= MAC_TX_RUNNING;
// Starts the MAC layer status check timer
TimerStart( &MacStateCheckTimer );
if( MAX( Bands[channel.Band].TimeOff, AggregatedTimeOff ) > ( TimerGetCurrentTime( ) ) )
{
// Schedule transmission
TimerSetValue( &TxDelayedTimer, MAX( Bands[channel.Band].TimeOff, AggregatedTimeOff ) );
TimerStart( &TxDelayedTimer );
}
else
{
// Send now
Radio.Send( LoRaMacBuffer, LoRaMacBufferPktLen );
}
return 0;
}
void OnTxDelayedTimerEvent( void )
{
TimerStop( &TxDelayedTimer );
Radio.Send( LoRaMacBuffer, LoRaMacBufferPktLen );
}
uint8_t LoRaMacSendOnChannel( ChannelParams_t channel, LoRaMacHeader_t *macHdr, LoRaMacFrameCtrl_t *fCtrl, uint8_t *fOpts, uint8_t fPort, void *fBuffer, uint16_t fBufferSize )
{
uint8_t status = 0;
if( ( LoRaMacState & MAC_TX_RUNNING ) == MAC_TX_RUNNING )
{
return 1; // MAC is busy transmitting a previous frame
}
status = LoRaMacPrepareFrame( channel, macHdr, fCtrl, fOpts, fPort, fBuffer, fBufferSize );
if( status != 0 )
{
return status;
}
LoRaMacEventInfo.TxNbRetries = 0;
LoRaMacEventInfo.TxAckReceived = false;
return LoRaMacSendFrameOnChannel( channel );
}
static void LoRaMacProcessMacCommands( uint8_t *payload, uint8_t macIndex, uint8_t commandsSize )
{
while( macIndex < commandsSize )
{
// Decode Frame MAC commands
switch( payload[macIndex++] )
{
case SRV_MAC_LINK_CHECK_ANS:
LoRaMacEventFlags.Bits.LinkCheck = 1;
LoRaMacEventInfo.DemodMargin = payload[macIndex++];
LoRaMacEventInfo.NbGateways = payload[macIndex++];
break;
case SRV_MAC_LINK_ADR_REQ:
{
uint8_t status = 0x07;
uint16_t chMask;
int8_t txPower = 0;
int8_t datarate = 0;
uint8_t nbRep = 0;
uint8_t chMaskCntl = 0;
uint16_t channelsMask[6] = { 0, 0, 0, 0, 0, 0 };
// Initialize local copy of the channels mask array
for( uint8_t i = 0; i < 6; i++ )
{
channelsMask[i] = ChannelsMask[i];
}
datarate = payload[macIndex++];
txPower = datarate & 0x0F;
datarate = ( datarate >> 4 ) & 0x0F;
if( ( AdrCtrlOn == false ) &&
( ( ChannelsDatarate != datarate ) || ( ChannelsTxPower != txPower ) ) )
{ // ADR disabled don't handle ADR requests if server tries to change datarate or txpower
// Answer the server with fail status
// Power ACK = 0
// Data rate ACK = 0
// Channel mask = 0
AddMacCommand( MOTE_MAC_LINK_ADR_ANS, 0, 0 );
macIndex += 3; // Skip over the remaining bytes of the request
break;
}
chMask = ( uint16_t )payload[macIndex++];
chMask |= ( uint16_t )payload[macIndex++] << 8;
nbRep = payload[macIndex++];
chMaskCntl = ( nbRep >> 4 ) & 0x07;
nbRep &= 0x0F;
if( nbRep == 0 )
{
nbRep = 1;
}
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
if( ( chMaskCntl == 0 ) && ( chMask == 0 ) )
{
status &= 0xFE; // Channel mask KO
}
else if( ( chMaskCntl >= 1 ) && ( chMaskCntl <= 5 ) )
{
// RFU
status &= 0xFE; // Channel mask KO
}
else
{
for( uint8_t i = 0; i < LORA_MAX_NB_CHANNELS; i++ )
{
if( chMaskCntl == 6 )
{
if( Channels[i].Frequency != 0 )
{
chMask |= 1 << i;
}
}
else
{
if( ( ( chMask & ( 1 << i ) ) != 0 ) &&
( Channels[i].Frequency == 0 ) )
{// Trying to enable an undefined channel
status &= 0xFE; // Channel mask KO
}
}
}
channelsMask[0] = chMask;
}
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
if( chMaskCntl == 6 )
{
// Enable all 125 kHz channels
for( uint8_t i = 0, k = 0; i < LORA_MAX_NB_CHANNELS - 8; i += 16, k++ )
{
for( uint8_t j = 0; j < 16; j++ )
{
if( Channels[i + j].Frequency != 0 )
{
channelsMask[k] |= 1 << j;
}
}
}
}
else if( chMaskCntl == 7 )
{
// Disable all 125 kHz channels
channelsMask[0] = 0x0000;
channelsMask[1] = 0x0000;
channelsMask[2] = 0x0000;
channelsMask[3] = 0x0000;
}
else if( chMaskCntl == 5 )
{
// RFU
status &= 0xFE; // Channel mask KO
}
else
{
for( uint8_t i = 0; i < 16; i++ )
{
if( ( ( chMask & ( 1 << i ) ) != 0 ) &&
( Channels[chMaskCntl * 16 + i].Frequency == 0 ) )
{// Trying to enable an undefined channel
status &= 0xFE; // Channel mask KO
}
}
channelsMask[chMaskCntl] = chMask;
if( CountNbEnabled125kHzChannels( channelsMask ) < 6 )
{
status &= 0xFE; // Channel mask KO
}
}
#else
#error "Please define a frequency band in the compiler options."
#endif
if( ( ( datarate < LORAMAC_MIN_DATARATE ) ||
( datarate > LORAMAC_MAX_DATARATE ) ) == true )
{
status &= 0xFD; // Datarate KO
}
//
// Remark MaxTxPower = 0 and MinTxPower = 5
//
if( ( ( LORAMAC_MAX_TX_POWER <= txPower ) &&
( txPower <= LORAMAC_MIN_TX_POWER ) ) == false )
{
status &= 0xFB; // TxPower KO
}
if( ( status & 0x07 ) == 0x07 )
{
ChannelsDatarate = datarate;
ChannelsTxPower = txPower;
#if defined( USE_BAND_915_HYBRID )
ChannelsMask[0] = channelsMask[0] & 0x00FF;
ChannelsMask[1] = channelsMask[1] & 0x0000;
ChannelsMask[2] = channelsMask[2] & 0x0000;
ChannelsMask[3] = channelsMask[3] & 0x0000;
ChannelsMask[4] = channelsMask[4] & 0x0001;
ChannelsMask[5] = channelsMask[5] & 0x0000;
#else
ChannelsMask[0] = channelsMask[0];
ChannelsMask[1] = channelsMask[1];
ChannelsMask[2] = channelsMask[2];
ChannelsMask[3] = channelsMask[3];
ChannelsMask[4] = channelsMask[4];
ChannelsMask[5] = channelsMask[5];
#endif
ChannelsNbRep = nbRep;
}
AddMacCommand( MOTE_MAC_LINK_ADR_ANS, status, 0 );
}
break;
case SRV_MAC_DUTY_CYCLE_REQ:
MaxDCycle = payload[macIndex++];
AggregatedDCycle = 1 << MaxDCycle;
AddMacCommand( MOTE_MAC_DUTY_CYCLE_ANS, 0, 0 );
break;
case SRV_MAC_RX_PARAM_SETUP_REQ:
{
uint8_t status = 0x07;
int8_t datarate = 0;
int8_t drOffset = 0;
uint32_t freq = 0;
drOffset = ( payload[macIndex] >> 4 ) & 0x07;
datarate = payload[macIndex] & 0x0F;
macIndex++;
freq = ( uint32_t )payload[macIndex++];
freq |= ( uint32_t )payload[macIndex++] << 8;
freq |= ( uint32_t )payload[macIndex++] << 16;
freq *= 100;
if( Radio.CheckRfFrequency( freq ) == false )
{
status &= 0xFE; // Channel frequency KO
}
if( ( ( datarate < LORAMAC_MIN_DATARATE ) ||
( datarate > LORAMAC_MAX_DATARATE ) ) == true )
{
status &= 0xFD; // Datarate KO
}
if( ( ( drOffset < LORAMAC_MIN_RX1_DR_OFFSET ) ||
( drOffset > LORAMAC_MAX_RX1_DR_OFFSET ) ) == true )
{
status &= 0xFB; // Rx1DrOffset range KO
}
if( ( status & 0x07 ) == 0x07 )
{
Rx2Channel.Datarate = datarate;
Rx2Channel.Frequency = freq;
Rx1DrOffset = drOffset;
}
AddMacCommand( MOTE_MAC_RX_PARAM_SETUP_ANS, status, 0 );
}
break;
case SRV_MAC_DEV_STATUS_REQ:
{
uint8_t batteryLevel = BAT_LEVEL_NO_MEASURE;
if( ( LoRaMacCallbacks != NULL ) && ( LoRaMacCallbacks->GetBatteryLevel != NULL ) )
{
batteryLevel = LoRaMacCallbacks->GetBatteryLevel( );
}
AddMacCommand( MOTE_MAC_DEV_STATUS_ANS, batteryLevel, LoRaMacEventInfo.RxSnr );
}
break;
case SRV_MAC_NEW_CHANNEL_REQ:
{
uint8_t status = 0x03;
int8_t channelIndex = 0;
ChannelParams_t chParam;
channelIndex = payload[macIndex++];
chParam.Frequency = ( uint32_t )payload[macIndex++];
chParam.Frequency |= ( uint32_t )payload[macIndex++] << 8;
chParam.Frequency |= ( uint32_t )payload[macIndex++] << 16;
chParam.Frequency *= 100;
chParam.DrRange.Value = payload[macIndex++];
if( ( channelIndex < 3 ) || ( channelIndex > LORA_MAX_NB_CHANNELS ) )
{
status &= 0xFE; // Channel frequency KO
}
if( Radio.CheckRfFrequency( chParam.Frequency ) == false )
{
status &= 0xFE; // Channel frequency KO
}
if( ( chParam.DrRange.Fields.Min > chParam.DrRange.Fields.Max ) ||
( ( ( LORAMAC_MIN_DATARATE <= chParam.DrRange.Fields.Min ) &&
( chParam.DrRange.Fields.Min <= LORAMAC_MAX_DATARATE ) ) == false ) ||
( ( ( LORAMAC_MIN_DATARATE <= chParam.DrRange.Fields.Max ) &&
( chParam.DrRange.Fields.Max <= LORAMAC_MAX_DATARATE ) ) == false ) )
{
status &= 0xFD; // Datarate range KO
}
if( ( status & 0x03 ) == 0x03 )
{
LoRaMacSetChannel( channelIndex, chParam );
}
AddMacCommand( MOTE_MAC_NEW_CHANNEL_ANS, status, 0 );
}
break;
case SRV_MAC_RX_TIMING_SETUP_REQ:
{
uint8_t delay = payload[macIndex++] & 0x0F;
if( delay == 0 )
{
delay++;
}
ReceiveDelay1 = delay * 1e6;
ReceiveDelay2 = ReceiveDelay1 + 1e6;
AddMacCommand( MOTE_MAC_RX_TIMING_SETUP_ANS, 0, 0 );
}
break;
default:
// Unknown command. ABORT MAC commands processing
return;
}
}
}
/*!
* Function to be executed on Tx Done event
*/
static void OnRadioTxDone( void )
{
TimerTime_t curTime = TimerGetCurrentTime( );
if( LoRaMacDeviceClass != CLASS_C )
{
Radio.Sleep( );
}
else
{
OnRxWindow2TimerEvent( );
}
// Update Band Time OFF
Bands[Channels[Channel].Band].LastTxDoneTime = curTime;
if( DutyCycleOn == true )
{
Bands[Channels[Channel].Band].TimeOff = TxTimeOnAir * Bands[Channels[Channel].Band].DCycle - TxTimeOnAir;
}
else
{
Bands[Channels[Channel].Band].TimeOff = 0;
}
// Update Agregated Time OFF
AggregatedLastTxDoneTime = curTime;
AggregatedTimeOff = AggregatedTimeOff + ( TxTimeOnAir * AggregatedDCycle - TxTimeOnAir );
if( IsRxWindowsEnabled == true )
{
TimerSetValue( &RxWindowTimer1, RxWindow1Delay );
TimerStart( &RxWindowTimer1 );
if( LoRaMacDeviceClass != CLASS_C )
{
TimerSetValue( &RxWindowTimer2, RxWindow2Delay );
TimerStart( &RxWindowTimer2 );
}
if( ( LoRaMacDeviceClass == CLASS_C ) || ( NodeAckRequested == true ) )
{
TimerSetValue( &AckTimeoutTimer, RxWindow2Delay + ACK_TIMEOUT +
randr( -ACK_TIMEOUT_RND, ACK_TIMEOUT_RND ) );
TimerStart( &AckTimeoutTimer );
}
}
else
{
LoRaMacEventFlags.Bits.Tx = 1;
LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_OK;
}
if( NodeAckRequested == false )
{
LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_OK;
ChannelsNbRepCounter++;
}
}
/*!
* Function to be executed on Rx Done event
*/
static void OnRadioRxDone( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr )
{
LoRaMacHeader_t macHdr;
LoRaMacFrameCtrl_t fCtrl;
uint8_t pktHeaderLen = 0;
uint32_t address = 0;
uint8_t appPayloadStartIndex = 0;
uint8_t port = 0xFF;
uint8_t frameLen = 0;
uint32_t mic = 0;
uint32_t micRx = 0;
uint16_t sequenceCounter = 0;
uint16_t sequenceCounterPrev = 0;
uint16_t sequenceCounterDiff = 0;
uint32_t downLinkCounter = 0;
MulticastParams_t *curMulticastParams = NULL;
uint8_t *nwkSKey = LoRaMacNwkSKey;
uint8_t *appSKey = LoRaMacAppSKey;
bool isMicOk = false;
if( LoRaMacDeviceClass != CLASS_C )
{
Radio.Sleep( );
}
else
{
if( LoRaMacEventFlags.Bits.RxSlot == 0 )
{
OnRxWindow2TimerEvent( );
}
}
TimerStop( &RxWindowTimer2 );
macHdr.Value = payload[pktHeaderLen++];
switch( macHdr.Bits.MType )
{
case FRAME_TYPE_JOIN_ACCEPT:
if( IsLoRaMacNetworkJoined == true )
{
break;
}
LoRaMacJoinDecrypt( payload + 1, size - 1, LoRaMacAppKey, LoRaMacRxPayload + 1 );
LoRaMacRxPayload[0] = macHdr.Value;
LoRaMacJoinComputeMic( LoRaMacRxPayload, size - LORAMAC_MFR_LEN, LoRaMacAppKey, &mic );
micRx |= ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN];
micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 1] << 8 );
micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 2] << 16 );
micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 3] << 24 );
if( micRx == mic )
{
LoRaMacEventFlags.Bits.Rx = 1;
LoRaMacEventInfo.RxSnr = snr;
LoRaMacEventInfo.RxRssi = rssi;
LoRaMacJoinComputeSKeys( LoRaMacAppKey, LoRaMacRxPayload + 1, LoRaMacDevNonce, LoRaMacNwkSKey, LoRaMacAppSKey );
LoRaMacNetID = ( uint32_t )LoRaMacRxPayload[4];
LoRaMacNetID |= ( ( uint32_t )LoRaMacRxPayload[5] << 8 );
LoRaMacNetID |= ( ( uint32_t )LoRaMacRxPayload[6] << 16 );
LoRaMacDevAddr = ( uint32_t )LoRaMacRxPayload[7];
LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[8] << 8 );
LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[9] << 16 );
LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[10] << 24 );
// DLSettings
Rx1DrOffset = ( LoRaMacRxPayload[11] >> 4 ) & 0x07;
Rx2Channel.Datarate = LoRaMacRxPayload[11] & 0x0F;
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
/*
* WARNING: To be removed once Semtech server implementation
* is corrected.
*/
if( Rx2Channel.Datarate == DR_3 )
{
Rx2Channel.Datarate = DR_8;
}
#endif
// RxDelay
ReceiveDelay1 = ( LoRaMacRxPayload[12] & 0x0F );
if( ReceiveDelay1 == 0 )
{
ReceiveDelay1 = 1;
}
ReceiveDelay1 *= 1e6;
ReceiveDelay2 = ReceiveDelay1 + 1e6;
#if !( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
//CFList
if( ( size - 1 ) > 16 )
{
ChannelParams_t param;
param.DrRange.Value = ( DR_5 << 4 ) | DR_0;
for( uint8_t i = 3, j = 0; i < ( 5 + 3 ); i++, j += 3 )
{
param.Frequency = ( ( uint32_t )LoRaMacRxPayload[13 + j] | ( ( uint32_t )LoRaMacRxPayload[14 + j] << 8 ) | ( ( uint32_t )LoRaMacRxPayload[15 + j] << 16 ) ) * 100;
LoRaMacSetChannel( i, param );
}
}
#endif
LoRaMacEventFlags.Bits.JoinAccept = 1;
IsLoRaMacNetworkJoined = true;
ChannelsDatarate = ChannelsDefaultDatarate;
LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_OK;
}
else
{
LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_JOIN_FAIL;
}
break;
case FRAME_TYPE_DATA_CONFIRMED_DOWN:
case FRAME_TYPE_DATA_UNCONFIRMED_DOWN:
{
address = payload[pktHeaderLen++];
address |= ( (uint32_t)payload[pktHeaderLen++] << 8 );
address |= ( (uint32_t)payload[pktHeaderLen++] << 16 );
address |= ( (uint32_t)payload[pktHeaderLen++] << 24 );
if( address != LoRaMacDevAddr )
{
curMulticastParams = MulticastChannels;
while( curMulticastParams != NULL )
{
if( address == curMulticastParams->Address )
{
LoRaMacEventFlags.Bits.Multicast = 1;
nwkSKey = curMulticastParams->NwkSKey;
appSKey = curMulticastParams->AppSKey;
downLinkCounter = curMulticastParams->DownLinkCounter;
break;
}
curMulticastParams = curMulticastParams->Next;
}
if( LoRaMacEventFlags.Bits.Multicast == 0 )
{
// We are not the destination of this frame.
LoRaMacEventFlags.Bits.Tx = 1;
LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_ADDRESS_FAIL;
LoRaMacState &= ~MAC_TX_RUNNING;
return;
}
}
else
{
LoRaMacEventFlags.Bits.Multicast = 0;
nwkSKey = LoRaMacNwkSKey;
appSKey = LoRaMacAppSKey;
downLinkCounter = DownLinkCounter;
}
if( LoRaMacDeviceClass != CLASS_A )
{
LoRaMacState |= MAC_RX;
// Starts the MAC layer status check timer
TimerStart( &MacStateCheckTimer );
}
fCtrl.Value = payload[pktHeaderLen++];
sequenceCounter = ( uint16_t )payload[pktHeaderLen++];
sequenceCounter |= ( uint16_t )payload[pktHeaderLen++] << 8;
appPayloadStartIndex = 8 + fCtrl.Bits.FOptsLen;
micRx |= ( uint32_t )payload[size - LORAMAC_MFR_LEN];
micRx |= ( (uint32_t)payload[size - LORAMAC_MFR_LEN + 1] << 8 );
micRx |= ( (uint32_t)payload[size - LORAMAC_MFR_LEN + 2] << 16 );
micRx |= ( (uint32_t)payload[size - LORAMAC_MFR_LEN + 3] << 24 );
sequenceCounterPrev = ( uint16_t )downLinkCounter;
sequenceCounterDiff = ( sequenceCounter - sequenceCounterPrev );
if( sequenceCounterDiff < ( 1 << 15 ) )
{
downLinkCounter += sequenceCounterDiff;
LoRaMacComputeMic( payload, size - LORAMAC_MFR_LEN, nwkSKey, address, DOWN_LINK, downLinkCounter, &mic );
if( micRx == mic )
{
isMicOk = true;
}
}
else
{
// check for downlink counter roll-over
uint32_t downLinkCounterTmp = downLinkCounter + 0x10000 + ( int16_t )sequenceCounterDiff;
LoRaMacComputeMic( payload, size - LORAMAC_MFR_LEN, nwkSKey, address, DOWN_LINK, downLinkCounterTmp, &mic );
if( micRx == mic )
{
isMicOk = true;
downLinkCounter = downLinkCounterTmp;
}
}
if( isMicOk == true )
{
LoRaMacEventFlags.Bits.Rx = 1;
LoRaMacEventInfo.RxSnr = snr;
LoRaMacEventInfo.RxRssi = rssi;
LoRaMacEventInfo.RxBufferSize = 0;
AdrAckCounter = 0;
// Update 32 bits downlink counter
if( LoRaMacEventFlags.Bits.Multicast == 1 )
{
curMulticastParams->DownLinkCounter = downLinkCounter;
}
else
{
DownLinkCounter = downLinkCounter;
}
if( macHdr.Bits.MType == FRAME_TYPE_DATA_CONFIRMED_DOWN )
{
SrvAckRequested = true;
}
else
{
SrvAckRequested = false;
}
// Check if the frame is an acknowledgement
if( fCtrl.Bits.Ack == 1 )
{
LoRaMacEventInfo.TxAckReceived = true;
// Stop the AckTimeout timer as no more retransmissions
// are needed.
TimerStop( &AckTimeoutTimer );
}
else
{
LoRaMacEventInfo.TxAckReceived = false;
if( AckTimeoutRetriesCounter > AckTimeoutRetries )
{
// Stop the AckTimeout timer as no more retransmissions
// are needed.
TimerStop( &AckTimeoutTimer );
}
}
if( fCtrl.Bits.FOptsLen > 0 )
{
// Decode Options field MAC commands
LoRaMacProcessMacCommands( payload, 8, appPayloadStartIndex );
}
if( ( ( size - 4 ) - appPayloadStartIndex ) > 0 )
{
port = payload[appPayloadStartIndex++];
frameLen = ( size - 4 ) - appPayloadStartIndex;
if( port == 0 )
{
LoRaMacPayloadDecrypt( payload + appPayloadStartIndex,
frameLen,
nwkSKey,
address,
DOWN_LINK,
downLinkCounter,
LoRaMacRxPayload );
// Decode frame payload MAC commands
LoRaMacProcessMacCommands( LoRaMacRxPayload, 0, frameLen );
}
else
{
LoRaMacPayloadDecrypt( payload + appPayloadStartIndex,
frameLen,
appSKey,
address,
DOWN_LINK,
downLinkCounter,
LoRaMacRxPayload );
LoRaMacEventFlags.Bits.RxData = 1;
LoRaMacEventInfo.RxPort = port;
LoRaMacEventInfo.RxBuffer = LoRaMacRxPayload;
LoRaMacEventInfo.RxBufferSize = frameLen;
}
}
LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_OK;
}
else
{
LoRaMacEventInfo.TxAckReceived = false;
LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_MIC_FAIL;
LoRaMacState &= ~MAC_TX_RUNNING;
if( NodeAckRequested == true )
{
OnAckTimeoutTimerEvent( );
}
}
}
break;
case FRAME_TYPE_PROPRIETARY:
//Intentional falltrough
default:
LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
LoRaMacState &= ~MAC_TX_RUNNING;
break;
}
LoRaMacEventFlags.Bits.Tx = 1;
}
/*!
* Function executed on Radio Tx Timeout event
*/
static void OnRadioTxTimeout( void )
{
if( LoRaMacDeviceClass != CLASS_C )
{
Radio.Sleep( );
}
else
{
OnRxWindow2TimerEvent( );
}
LoRaMacEventFlags.Bits.Tx = 1;
LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT;
}
/*!
* Function executed on Radio Rx Timeout event
*/
static void OnRadioRxTimeout( void )
{
if( LoRaMacDeviceClass != CLASS_C )
{
Radio.Sleep( );
}
else
{
OnRxWindow2TimerEvent( );
}
if( LoRaMacEventFlags.Bits.RxSlot == 1 )
{
LoRaMacEventFlags.Bits.Tx = 1;
LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT;
}
}
/*!
* Function executed on Radio Rx Error event
*/
static void OnRadioRxError( void )
{
if( LoRaMacDeviceClass != CLASS_C )
{
Radio.Sleep( );
}
else
{
OnRxWindow2TimerEvent( );
}
if( LoRaMacEventFlags.Bits.RxSlot == 1 )
{
LoRaMacEventFlags.Bits.Tx = 1;
LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_RX2_ERROR;
}
}
/*!
* Initializes and opens the reception window
*
* \param [IN] freq window channel frequency
* \param [IN] datarate window channel datarate
* \param [IN] bandwidth window channel bandwidth
* \param [IN] timeout window channel timeout
*/
void LoRaMacRxWindowSetup( uint32_t freq, int8_t datarate, uint32_t bandwidth, uint16_t timeout, bool rxContinuous )
{
uint8_t downlinkDatarate = Datarates[datarate];
RadioModems_t modem;
if( Radio.GetStatus( ) == RF_IDLE )
{
Radio.SetChannel( freq );
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
if( datarate == DR_7 )
{
modem = MODEM_FSK;
Radio.SetRxConfig( MODEM_FSK, 50e3, downlinkDatarate * 1e3, 0, 83.333e3, 5, 0, false, 0, true, 0, 0, false, rxContinuous );
}
else
{
modem = MODEM_LORA;
Radio.SetRxConfig( MODEM_LORA, bandwidth, downlinkDatarate, 1, 0, 8, timeout, false, 0, false, 0, 0, true, rxContinuous );
}
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
modem = MODEM_LORA;
Radio.SetRxConfig( MODEM_LORA, bandwidth, downlinkDatarate, 1, 0, 8, timeout, false, 0, false, 0, 0, true, rxContinuous );
#endif
if( RepeaterSupport == true )
{
Radio.SetMaxPayloadLength( modem, MaxPayloadOfDatarateRepeater[datarate] );
}
else
{
Radio.SetMaxPayloadLength( modem, MaxPayloadOfDatarate[datarate] );
}
if( rxContinuous == false )
{
Radio.Rx( MaxRxWindow );
}
else
{
Radio.Rx( 0 ); // Continuous mode
}
}
}
/*!
* Function executed on first Rx window timer event
*/
static void OnRxWindow1TimerEvent( void )
{
uint16_t symbTimeout = 5; // DR_2, DR_1, DR_0
int8_t datarate = 0;
uint32_t bandwidth = 0; // LoRa 125 kHz
TimerStop( &RxWindowTimer1 );
LoRaMacEventFlags.Bits.RxSlot = 0;
if( LoRaMacDeviceClass == CLASS_C )
{
Radio.Standby( );
}
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
datarate = ChannelsDatarate - Rx1DrOffset;
if( datarate < 0 )
{
datarate = DR_0;
}
// For higher datarates, we increase the number of symbols generating a Rx Timeout
if( datarate >= DR_3 )
{ // DR_6, DR_5, DR_4, DR_3
symbTimeout = 8;
}
if( datarate == DR_6 )
{// LoRa 250 kHz
bandwidth = 1;
}
LoRaMacRxWindowSetup( Channels[Channel].Frequency, datarate, bandwidth, symbTimeout, false );
#elif ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
datarate = datarateOffsets[ChannelsDatarate][Rx1DrOffset];
if( datarate < 0 )
{
datarate = DR_0;
}
// For higher datarates, we increase the number of symbols generating a Rx Timeout
if( datarate > DR_0 )
{ // DR_1, DR_2, DR_3, DR_4, DR_8, DR_9, DR_10, DR_11, DR_12, DR_13
symbTimeout = 8;
}
if( datarate >= DR_4 )
{// LoRa 500 kHz
bandwidth = 2;
}
LoRaMacRxWindowSetup( 923.3e6 + ( Channel % 8 ) * 600e3, datarate, bandwidth, symbTimeout, false );
#else
#error "Please define a frequency band in the compiler options."
#endif
}
/*!
* Function executed on second Rx window timer event
*/
static void OnRxWindow2TimerEvent( void )
{
uint16_t symbTimeout = 5; // DR_2, DR_1, DR_0
uint32_t bandwidth = 0; // LoRa 125 kHz
TimerStop( &RxWindowTimer2 );
LoRaMacEventFlags.Bits.RxSlot = 1;
if( NodeAckRequested == true )
{
TimerSetValue( &AckTimeoutTimer, ACK_TIMEOUT + randr( -ACK_TIMEOUT_RND, ACK_TIMEOUT_RND ) );
TimerStart( &AckTimeoutTimer );
}
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
// For higher datarates, we increase the number of symbols generating a Rx Timeout
if( Rx2Channel.Datarate >= DR_3 )
{ // DR_6, DR_5, DR_4, DR_3
symbTimeout = 8;
}
if( Rx2Channel.Datarate == DR_6 )
{// LoRa 250 kHz
bandwidth = 1;
}
#elif ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
// For higher datarates, we increase the number of symbols generating a Rx Timeout
if( Rx2Channel.Datarate > DR_0 )
{ // DR_1, DR_2, DR_3, DR_4, DR_8, DR_9, DR_10, DR_11, DR_12, DR_13
symbTimeout = 8;
}
if( Rx2Channel.Datarate >= DR_4 )
{// LoRa 500 kHz
bandwidth = 2;
}
#else
#error "Please define a frequency band in the compiler options."
#endif
if( LoRaMacDeviceClass != CLASS_C )
{
LoRaMacRxWindowSetup( Rx2Channel.Frequency, Rx2Channel.Datarate, bandwidth, symbTimeout, false );
}
else
{
LoRaMacRxWindowSetup( Rx2Channel.Frequency, Rx2Channel.Datarate, bandwidth, symbTimeout, true );
}
}
/*!
* Function executed on MacStateCheck timer event
*/
static void OnMacStateCheckTimerEvent( void )
{
TimerStop( &MacStateCheckTimer );
if( LoRaMacEventFlags.Bits.Tx == 1 )
{
if( NodeAckRequested == false )
{
if( LoRaMacEventFlags.Bits.JoinAccept == true )
{
// Join messages aren't repeated automatically
ChannelsNbRepCounter = ChannelsNbRep;
UpLinkCounter = 0;
}
if( ChannelsNbRepCounter >= ChannelsNbRep )
{
ChannelsNbRepCounter = 0;
LoRaMacEventInfo.Status = LORAMAC_EVENT_INFO_STATUS_OK;
AdrAckCounter++;
if( IsUpLinkCounterFixed == false )
{
UpLinkCounter++;
}
LoRaMacState &= ~MAC_TX_RUNNING;
}
else
{
LoRaMacEventFlags.Bits.Tx = 0;
// Sends the same frame again
if( LoRaMacSetNextChannel( ) == 0 )
{
LoRaMacSendFrameOnChannel( Channels[Channel] );
}
}
}
if( LoRaMacEventFlags.Bits.Rx == 1 )
{
if( ( LoRaMacEventInfo.TxAckReceived == true ) || ( AckTimeoutRetriesCounter > AckTimeoutRetries ) )
{
AckTimeoutRetry = false;
if( IsUpLinkCounterFixed == false )
{
UpLinkCounter++;
}
LoRaMacEventInfo.TxNbRetries = AckTimeoutRetriesCounter;
LoRaMacState &= ~MAC_TX_RUNNING;
}
}
if( ( AckTimeoutRetry == true ) && ( ( LoRaMacState & MAC_CHANNEL_CHECK ) == 0 ) )
{
AckTimeoutRetry = false;
if( ( AckTimeoutRetriesCounter < AckTimeoutRetries ) && ( AckTimeoutRetriesCounter <= MAX_ACK_RETRIES ) )
{
AckTimeoutRetriesCounter++;
if( ( AckTimeoutRetriesCounter % 2 ) == 1 )
{
ChannelsDatarate = MAX( ChannelsDatarate - 1, LORAMAC_MIN_DATARATE );
}
LoRaMacEventFlags.Bits.Tx = 0;
// Sends the same frame again
if( LoRaMacSetNextChannel( ) == 0 )
{
LoRaMacSendFrameOnChannel( Channels[Channel] );
}
}
else
{
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
// Re-enable default channels LC1, LC2, LC3
ChannelsMask[0] = ChannelsMask[0] | ( LC( 1 ) + LC( 2 ) + LC( 3 ) );
#elif defined( USE_BAND_915 )
// Re-enable default channels
ChannelsMask[0] = 0xFFFF;
ChannelsMask[1] = 0xFFFF;
ChannelsMask[2] = 0xFFFF;
ChannelsMask[3] = 0xFFFF;
ChannelsMask[4] = 0x00FF;
ChannelsMask[5] = 0x0000;
#elif defined( USE_BAND_915_HYBRID )
// Re-enable default channels
ChannelsMask[0] = 0x00FF;
ChannelsMask[1] = 0x0000;
ChannelsMask[2] = 0x0000;
ChannelsMask[3] = 0x0000;
ChannelsMask[4] = 0x0001;
ChannelsMask[5] = 0x0000;
#else
#error "Please define a frequency band in the compiler options."
#endif
LoRaMacState &= ~MAC_TX_RUNNING;
LoRaMacEventInfo.TxAckReceived = false;
LoRaMacEventInfo.TxNbRetries = AckTimeoutRetriesCounter;
if( IsUpLinkCounterFixed == false )
{
UpLinkCounter++;
}
}
}
}
// Handle reception for Class B and Class C
if( ( LoRaMacState & MAC_RX ) == MAC_RX )
{
LoRaMacState &= ~MAC_RX;
}
if( LoRaMacState == MAC_IDLE )
{
LoRaMacNotify( &LoRaMacEventFlags, &LoRaMacEventInfo );
LoRaMacEventFlags.Bits.Tx = 0;
}
else
{
// Operation not finished restart timer
TimerStart( &MacStateCheckTimer );
}
}
static void OnAckTimeoutTimerEvent( void )
{
TimerStop( &AckTimeoutTimer );
AckTimeoutRetry = true;
LoRaMacState &= ~MAC_ACK_REQ;
}
/*!
* ============================================================================
* = LoRaMac utility functions =
* ============================================================================
*/
static bool ValidatePayloadLength( uint8_t lenN, int8_t datarate )
{
bool payloadSizeOk = false;
uint8_t maxN = 0;
// Get the maximum payload length
if( RepeaterSupport == true )
{
maxN = MaxPayloadOfDatarateRepeater[datarate];
}
else
{
maxN = MaxPayloadOfDatarate[datarate];
}
// Validation of the application payload size
if( lenN <= maxN )
{
payloadSizeOk = true;
}
return payloadSizeOk;
}
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
static uint8_t CountNbEnabled125kHzChannels( uint16_t *channelsMask )
{
uint8_t nb125kHzChannels = 0;
for( uint8_t i = 0, k = 0; i < LORA_MAX_NB_CHANNELS - 8; i += 16, k++ )
{
for( uint8_t j = 0; j < 16; j++ )
{// Verify if the channel is active
if( ( channelsMask[k] & ( 1 << j ) ) == ( 1 << j ) )
{
nb125kHzChannels++;
}
}
}
return nb125kHzChannels;
}
#endif
static int8_t LimitTxPower( int8_t txPower )
{
int8_t resultTxPower = txPower;
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
if( ( ChannelsDatarate == DR_4 ) ||
( ( ChannelsDatarate >= DR_8 ) && ( ChannelsDatarate <= DR_13 ) ) )
{// Limit tx power to max 26dBm
resultTxPower = MAX( txPower, TX_POWER_26_DBM );
}
else
{
if( CountNbEnabled125kHzChannels( ChannelsMask ) < 50 )
{// Limit tx power to max 21dBm
resultTxPower = MAX( txPower, TX_POWER_20_DBM );
}
}
#endif
return resultTxPower;
}
void LoRaMacChannelRemove( uint8_t id )
{
if( ( LoRaMacState & MAC_TX_RUNNING ) == MAC_TX_RUNNING )
{
return;
}
#if ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
if( id < 64 )
{
if( CountNbEnabled125kHzChannels( ChannelsMask ) <= 6 )
{
return;
}
}
#else
if( id < 3 )
{
return;
}
#endif
uint8_t index = 0;
index = id / 16;
if( ( index > 4 ) || ( id >= LORA_MAX_NB_CHANNELS ) )
{
return;
}
// Deactivate channel
ChannelsMask[index] &= ~( 1 << ( id % 16 ) );
return;
}
/*!
* ============================================================================
* = LoRaMac setup functions =
* ============================================================================
*/
void LoRaMacSetDeviceClass( DeviceClass_t deviceClass )
{
LoRaMacDeviceClass = deviceClass;
}
void LoRaMacSetPublicNetwork( bool enable )
{
PublicNetwork = enable;
Radio.SetModem( MODEM_LORA );
if( PublicNetwork == true )
{
// Change LoRa modem SyncWord
Radio.Write( REG_LR_SYNCWORD, LORA_MAC_PUBLIC_SYNCWORD );
}
else
{
// Change LoRa modem SyncWord
Radio.Write( REG_LR_SYNCWORD, LORA_MAC_PRIVATE_SYNCWORD );
}
}
void LoRaMacSetChannel( uint8_t id, ChannelParams_t params )
{
params.Band = 0;
Channels[id] = params;
// Activate the newly created channel
if( id < 16 )
{
ChannelsMask[0] |= 1 << id;
}
else if( id < 32 )
{
ChannelsMask[1] |= 1 << ( id - 16 );
}
else if( id < 48 )
{
ChannelsMask[2] |= 1 << ( id - 32 );
}
else if( id < 64 )
{
ChannelsMask[3] |= 1 << ( id - 48 );
}
else if( id < 72 )
{
ChannelsMask[4] |= 1 << ( id - 64 );
}
else
{
// Don't activate the channel
}
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 )
Channels[id].Band = 0; // 1% duty cycle on EU433 and CN780 bands
#elif defined( USE_BAND_868 )
if( ( Channels[id].Frequency >= 865000000 ) && ( Channels[id].Frequency <= 868000000 ) )
{
if( Channels[id].Band != BAND_G1_0 )
{
Channels[id].Band = BAND_G1_0;
}
}
else if( ( Channels[id].Frequency > 868000000 ) && ( Channels[id].Frequency <= 868600000 ) )
{
if( Channels[id].Band != BAND_G1_1 )
{
Channels[id].Band = BAND_G1_1;
}
}
else if( ( Channels[id].Frequency >= 868700000 ) && ( Channels[id].Frequency <= 869200000 ) )
{
if( Channels[id].Band != BAND_G1_2 )
{
Channels[id].Band = BAND_G1_2;
}
}
else if( ( Channels[id].Frequency >= 869400000 ) && ( Channels[id].Frequency <= 869650000 ) )
{
if( Channels[id].Band != BAND_G1_3 )
{
Channels[id].Band = BAND_G1_3;
}
}
else if( ( Channels[id].Frequency >= 869700000 ) && ( Channels[id].Frequency <= 870000000 ) )
{
if( Channels[id].Band != BAND_G1_4 )
{
Channels[id].Band = BAND_G1_4;
}
}
else
{
Channels[id].Frequency = 0;
Channels[id].DrRange.Value = 0;
}
#elif ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
Channels[id].Band = 0; // No duty cycle on US915 band
#else
#error "Please define a frequency band in the compiler options."
#endif
// Check if it is a valid channel
if( Channels[id].Frequency == 0 )
{
LoRaMacChannelRemove( id );
}
}
void LoRaMacSetRx2Channel( Rx2ChannelParams_t param )
{
Rx2Channel = param;
}
void LoRaMacSetChannelsTxPower( int8_t txPower )
{
if( ( txPower >= LORAMAC_MAX_TX_POWER ) &&
( txPower <= LORAMAC_MIN_TX_POWER ) )
{
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
int8_t txPwr = LimitTxPower( txPower );
if( txPwr == txPower )
{
ChannelsTxPower = txPower;
}
#else
ChannelsTxPower = txPower;
#endif
}
}
void LoRaMacSetChannelsDatarate( int8_t datarate )
{
ChannelsDefaultDatarate = ChannelsDatarate = datarate;
}
void LoRaMacSetChannelsMask( uint16_t *mask )
{
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
if( ( CountNbEnabled125kHzChannels( mask ) < 6 ) &&
( CountNbEnabled125kHzChannels( mask ) > 0 ) )
{
}
else
{
LoRaMacMemCpy( (uint8_t* ) mask,
( uint8_t* ) ChannelsMask, 10 );
}
#else
if( ( mask[0] & 0x0007 ) != 0x0007 )
{
}
else
{
LoRaMacMemCpy( ( uint8_t* ) mask,
( uint8_t* ) ChannelsMask, 2 );
}
#endif
}
void LoRaMacSetChannelsNbRep( uint8_t nbRep )
{
if( nbRep < 1 )
{
nbRep = 1;
}
if( nbRep > 15 )
{
nbRep = 15;
}
ChannelsNbRep = nbRep;
}
void LoRaMacSetMaxRxWindow( uint32_t delay )
{
MaxRxWindow = delay;
}
void LoRaMacSetReceiveDelay1( uint32_t delay )
{
ReceiveDelay1 = delay;
}
void LoRaMacSetReceiveDelay2( uint32_t delay )
{
ReceiveDelay2 = delay;
}
void LoRaMacSetJoinAcceptDelay1( uint32_t delay )
{
JoinAcceptDelay1 = delay;
}
void LoRaMacSetJoinAcceptDelay2( uint32_t delay )
{
JoinAcceptDelay2 = delay;
}
uint32_t LoRaMacGetUpLinkCounter( void )
{
return UpLinkCounter;
}
uint32_t LoRaMacGetDownLinkCounter( void )
{
return DownLinkCounter;
}
/*!
* ============================================================================
* = LoRaMac test functions =
* ============================================================================
*/
void LoRaMacTestSetDutyCycleOn( bool enable )
{
DutyCycleOn = enable;
}
void LoRaMacTestRxWindowsOn( bool enable )
{
IsRxWindowsEnabled = enable;
}
void LoRaMacTestSetMic( uint16_t upLinkCounter )
{
UpLinkCounter = upLinkCounter;
IsUpLinkCounterFixed = true;
}


