Fork of Semtech LoRaWAN stack
Fork of LoRaWAN-lib by
LoRaMac.cpp
- Committer:
- mluis
- Date:
- 2017-04-24
- Revision:
- 32:26002607de9c
- Parent:
- 7:c16969e0f70f
- Child:
- 33:db4900d60c37
File content as of revision 32:26002607de9c:
/*
/ _____) _ | |
( (____ _____ ____ _| |_ _____ ____| |__
\____ \| ___ | (_ _) ___ |/ ___) _ \
_____) ) ____| | | || |_| ____( (___| | | |
(______/|_____)_|_|_| \__)_____)\____)_| |_|
(C)2013 Semtech
___ _____ _ ___ _ _____ ___ ___ ___ ___
/ __|_ _/_\ / __| |/ / __/ _ \| _ \/ __| __|
\__ \ | |/ _ \ (__| ' <| _| (_) | / (__| _|
|___/ |_/_/ \_\___|_|\_\_| \___/|_|_\\___|___|
embedded.connectivity.solutions===============
Description: LoRa MAC layer implementation
License: Revised BSD License, see LICENSE.TXT file include in the project
Maintainer: Miguel Luis ( Semtech ), Gregory Cristian ( Semtech ) and Daniel Jäckle ( STACKFORCE )
*/
#include <math.h>
#include "board.h"
#include "LoRaMacCrypto.h"
#include "LoRaMac.h"
#include "LoRaMacTest.h"
/*!
* Maximum PHY layer payload size
*/
#define LORAMAC_PHY_MAXPAYLOAD 255
/*!
* Maximum MAC commands buffer size
*/
#define LORA_MAC_COMMAND_MAX_LENGTH 15
/*!
* FRMPayload overhead to be used when setting the Radio.SetMaxPayloadLength
* in RxWindowSetup function.
* Maximum PHYPayload = MaxPayloadOfDatarate/MaxPayloadOfDatarateRepeater + LORA_MAC_FRMPAYLOAD_OVERHEAD
*/
#define LORA_MAC_FRMPAYLOAD_OVERHEAD 13 // MHDR(1) + FHDR(7) + Port(1) + MIC(4)
/*!
* LoRaMac duty cycle for the back-off procedure during the first hour.
*/
#define BACKOFF_DC_1_HOUR 100
/*!
* LoRaMac duty cycle for the back-off procedure during the next 10 hours.
*/
#define BACKOFF_DC_10_HOURS 1000
/*!
* LoRaMac duty cycle for the back-off procedure during the next 24 hours.
*/
#define BACKOFF_DC_24_HOURS 10000
/*!
* Device IEEE EUI
*/
static uint8_t *LoRaMacDevEui;
/*!
* Application IEEE EUI
*/
static uint8_t *LoRaMacAppEui;
/*!
* AES encryption/decryption cipher application key
*/
static uint8_t *LoRaMacAppKey;
/*!
* AES encryption/decryption cipher network session key
*/
static uint8_t LoRaMacNwkSKey[] =
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
/*!
* AES encryption/decryption cipher application session key
*/
static uint8_t LoRaMacAppSKey[] =
{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
/*!
* Device nonce is a random value extracted by issuing a sequence of RSSI
* measurements
*/
static uint16_t LoRaMacDevNonce;
/*!
* Network ID ( 3 bytes )
*/
static uint32_t LoRaMacNetID;
/*!
* Mote Address
*/
static uint32_t LoRaMacDevAddr;
/*!
* Multicast channels linked list
*/
static MulticastParams_t *MulticastChannels = NULL;
/*!
* Actual device class
*/
static DeviceClass_t LoRaMacDeviceClass;
/*!
* Indicates if the node is connected to a private or public network
*/
static bool PublicNetwork;
/*!
* Indicates if the node supports repeaters
*/
static bool RepeaterSupport;
/*!
* Buffer containing the data to be sent or received.
*/
static uint8_t LoRaMacBuffer[LORAMAC_PHY_MAXPAYLOAD];
/*!
* Length of packet in LoRaMacBuffer
*/
static uint16_t LoRaMacBufferPktLen = 0;
/*!
* Length of the payload in LoRaMacBuffer
*/
static uint8_t LoRaMacTxPayloadLen = 0;
/*!
* Buffer containing the upper layer data.
*/
static uint8_t LoRaMacRxPayload[LORAMAC_PHY_MAXPAYLOAD];
/*!
* LoRaMAC frame counter. Each time a packet is sent the counter is incremented.
* Only the 16 LSB bits are sent
*/
static uint32_t UpLinkCounter = 0;
/*!
* LoRaMAC frame counter. Each time a packet is received the counter is incremented.
* Only the 16 LSB bits are received
*/
static uint32_t DownLinkCounter = 0;
/*!
* IsPacketCounterFixed enables the MIC field tests by fixing the
* UpLinkCounter value
*/
static bool IsUpLinkCounterFixed = false;
/*!
* Used for test purposes. Disables the opening of the reception windows.
*/
static bool IsRxWindowsEnabled = true;
/*!
* Indicates if the MAC layer has already joined a network.
*/
static bool IsLoRaMacNetworkJoined = false;
/*!
* LoRaMac ADR control status
*/
static bool AdrCtrlOn = false;
/*!
* Counts the number of missed ADR acknowledgements
*/
static uint32_t AdrAckCounter = 0;
/*!
* If the node has sent a FRAME_TYPE_DATA_CONFIRMED_UP this variable indicates
* if the nodes needs to manage the server acknowledgement.
*/
static bool NodeAckRequested = false;
/*!
* If the server has sent a FRAME_TYPE_DATA_CONFIRMED_DOWN this variable indicates
* if the ACK bit must be set for the next transmission
*/
static bool SrvAckRequested = false;
/*!
* Indicates if the MAC layer wants to send MAC commands
*/
static bool MacCommandsInNextTx = false;
/*!
* Contains the current MacCommandsBuffer index
*/
static uint8_t MacCommandsBufferIndex = 0;
/*!
* Contains the current MacCommandsBuffer index for MAC commands to repeat
*/
static uint8_t MacCommandsBufferToRepeatIndex = 0;
/*!
* Buffer containing the MAC layer commands
*/
static uint8_t MacCommandsBuffer[LORA_MAC_COMMAND_MAX_LENGTH];
/*!
* Buffer containing the MAC layer commands which must be repeated
*/
static uint8_t MacCommandsBufferToRepeat[LORA_MAC_COMMAND_MAX_LENGTH];
#if defined( USE_BAND_433 )
/*!
* Data rates table definition
*/
const uint8_t Datarates[] = { 12, 11, 10, 9, 8, 7, 7, 50 };
/*!
* Bandwidths table definition in Hz
*/
const uint32_t Bandwidths[] = { 125e3, 125e3, 125e3, 125e3, 125e3, 125e3, 250e3, 0 };
/*!
* Maximum payload with respect to the datarate index. Cannot operate with repeater.
*/
const uint8_t MaxPayloadOfDatarate[] = { 51, 51, 51, 115, 242, 242, 242, 242 };
/*!
* Maximum payload with respect to the datarate index. Can operate with repeater.
*/
const uint8_t MaxPayloadOfDatarateRepeater[] = { 51, 51, 51, 115, 222, 222, 222, 222 };
/*!
* Tx output powers table definition
*/
const int8_t TxPowers[] = { 10, 7, 4, 1, -2, -5 };
/*!
* LoRaMac bands
*/
static Band_t Bands[LORA_MAX_NB_BANDS] =
{
BAND0,
};
/*!
* LoRaMAC channels
*/
static ChannelParams_t Channels[LORA_MAX_NB_CHANNELS] =
{
LC1,
LC2,
LC3,
};
#elif defined( USE_BAND_470 )
/*!
* Data rates table definition
*/
const uint8_t Datarates[] = { 12, 11, 10, 9, 8, 7 };
/*!
* Bandwidths table definition in Hz
*/
const uint32_t Bandwidths[] = { 125e3, 125e3, 125e3, 125e3, 125e3, 125e3 };
/*!
* Maximum payload with respect to the datarate index. Cannot operate with repeater.
*/
const uint8_t MaxPayloadOfDatarate[] = { 51, 51, 51, 115, 222, 222 };
/*!
* Maximum payload with respect to the datarate index. Can operate with repeater.
*/
const uint8_t MaxPayloadOfDatarateRepeater[] = { 51, 51, 51, 115, 222, 222 };
/*!
* Tx output powers table definition
*/
const int8_t TxPowers[] = { 17, 16, 14, 12, 10, 7, 5, 2 };
/*!
* LoRaMac bands
*/
static Band_t Bands[LORA_MAX_NB_BANDS] =
{
BAND0,
};
/*!
* LoRaMAC channels
*/
static ChannelParams_t Channels[LORA_MAX_NB_CHANNELS];
/*!
* Defines the first channel for RX window 1 for CN470 band
*/
#define LORAMAC_FIRST_RX1_CHANNEL ( (uint32_t) 500.3e6 )
/*!
* Defines the last channel for RX window 1 for CN470 band
*/
#define LORAMAC_LAST_RX1_CHANNEL ( (uint32_t) 509.7e6 )
/*!
* Defines the step width of the channels for RX window 1
*/
#define LORAMAC_STEPWIDTH_RX1_CHANNEL ( (uint32_t) 200e3 )
#elif defined( USE_BAND_780 )
/*!
* Data rates table definition
*/
const uint8_t Datarates[] = { 12, 11, 10, 9, 8, 7, 7, 50 };
/*!
* Bandwidths table definition in Hz
*/
const uint32_t Bandwidths[] = { 125e3, 125e3, 125e3, 125e3, 125e3, 125e3, 250e3, 0 };
/*!
* Maximum payload with respect to the datarate index. Cannot operate with repeater.
*/
const uint8_t MaxPayloadOfDatarate[] = { 51, 51, 51, 115, 242, 242, 242, 242 };
/*!
* Maximum payload with respect to the datarate index. Can operate with repeater.
*/
const uint8_t MaxPayloadOfDatarateRepeater[] = { 51, 51, 51, 115, 222, 222, 222, 222 };
/*!
* Tx output powers table definition
*/
const int8_t TxPowers[] = { 10, 7, 4, 1, -2, -5 };
/*!
* LoRaMac bands
*/
static Band_t Bands[LORA_MAX_NB_BANDS] =
{
BAND0,
};
/*!
* LoRaMAC channels
*/
static ChannelParams_t Channels[LORA_MAX_NB_CHANNELS] =
{
LC1,
LC2,
LC3,
};
#elif defined( USE_BAND_868 )
/*!
* Data rates table definition
*/
const uint8_t Datarates[] = { 12, 11, 10, 9, 8, 7, 7, 50 };
/*!
* Bandwidths table definition in Hz
*/
const uint32_t Bandwidths[] = { 125e3, 125e3, 125e3, 125e3, 125e3, 125e3, 250e3, 0 };
/*!
* Maximum payload with respect to the datarate index. Cannot operate with repeater.
*/
const uint8_t MaxPayloadOfDatarate[] = { 51, 51, 51, 115, 242, 242, 242, 242 };
/*!
* Maximum payload with respect to the datarate index. Can operate with repeater.
*/
const uint8_t MaxPayloadOfDatarateRepeater[] = { 51, 51, 51, 115, 222, 222, 222, 222 };
/*!
* Tx output powers table definition
*/
const int8_t TxPowers[] = { 20, 14, 11, 8, 5, 2 };
/*!
* LoRaMac bands
*/
static Band_t Bands[LORA_MAX_NB_BANDS] =
{
BAND0,
BAND1,
BAND2,
BAND3,
BAND4,
};
/*!
* LoRaMAC channels
*/
static ChannelParams_t Channels[LORA_MAX_NB_CHANNELS] =
{
LC1,
LC2,
LC3,
};
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
/*!
* Data rates table definition
*/
const uint8_t Datarates[] = { 10, 9, 8, 7, 8, 0, 0, 0, 12, 11, 10, 9, 8, 7, 0, 0 };
/*!
* Bandwidths table definition in Hz
*/
const uint32_t Bandwidths[] = { 125e3, 125e3, 125e3, 125e3, 500e3, 0, 0, 0, 500e3, 500e3, 500e3, 500e3, 500e3, 500e3, 0, 0 };
/*!
* Up/Down link data rates offset definition
*/
const int8_t DatarateOffsets[5][4] =
{
{ DR_10, DR_9 , DR_8 , DR_8 }, // DR_0
{ DR_11, DR_10, DR_9 , DR_8 }, // DR_1
{ DR_12, DR_11, DR_10, DR_9 }, // DR_2
{ DR_13, DR_12, DR_11, DR_10 }, // DR_3
{ DR_13, DR_13, DR_12, DR_11 }, // DR_4
};
/*!
* Maximum payload with respect to the datarate index. Cannot operate with repeater.
*/
const uint8_t MaxPayloadOfDatarate[] = { 11, 53, 125, 242, 242, 0, 0, 0, 53, 129, 242, 242, 242, 242, 0, 0 };
/*!
* Maximum payload with respect to the datarate index. Can operate with repeater.
*/
const uint8_t MaxPayloadOfDatarateRepeater[] = { 11, 53, 125, 242, 242, 0, 0, 0, 33, 109, 222, 222, 222, 222, 0, 0 };
/*!
* Tx output powers table definition
*/
const int8_t TxPowers[] = { 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10 };
/*!
* LoRaMac bands
*/
static Band_t Bands[LORA_MAX_NB_BANDS] =
{
BAND0,
};
/*!
* LoRaMAC channels
*/
static ChannelParams_t Channels[LORA_MAX_NB_CHANNELS];
/*!
* Contains the channels which remain to be applied.
*/
static uint16_t ChannelsMaskRemaining[6];
/*!
* Defines the first channel for RX window 1 for US band
*/
#define LORAMAC_FIRST_RX1_CHANNEL ( (uint32_t) 923.3e6 )
/*!
* Defines the last channel for RX window 1 for US band
*/
#define LORAMAC_LAST_RX1_CHANNEL ( (uint32_t) 927.5e6 )
/*!
* Defines the step width of the channels for RX window 1
*/
#define LORAMAC_STEPWIDTH_RX1_CHANNEL ( (uint32_t) 600e3 )
#else
#error "Please define a frequency band in the compiler options."
#endif
/*!
* LoRaMac parameters
*/
LoRaMacParams_t LoRaMacParams;
/*!
* LoRaMac default parameters
*/
LoRaMacParams_t LoRaMacParamsDefaults;
/*!
* Uplink messages repetitions counter
*/
static uint8_t ChannelsNbRepCounter = 0;
/*!
* Maximum duty cycle
* \remark Possibility to shutdown the device.
*/
static uint8_t MaxDCycle = 0;
/*!
* Aggregated duty cycle management
*/
static uint16_t AggregatedDCycle;
static TimerTime_t AggregatedLastTxDoneTime;
static TimerTime_t AggregatedTimeOff;
/*!
* Enables/Disables duty cycle management (Test only)
*/
static bool DutyCycleOn;
/*!
* Current channel index
*/
static uint8_t Channel;
/*!
* Stores the time at LoRaMac initialization.
*
* \remark Used for the BACKOFF_DC computation.
*/
static TimerTime_t LoRaMacInitializationTime = 0;
/*!
* LoRaMac internal states
*/
enum eLoRaMacState
{
LORAMAC_IDLE = 0x00000000,
LORAMAC_TX_RUNNING = 0x00000001,
LORAMAC_RX = 0x00000002,
LORAMAC_ACK_REQ = 0x00000004,
LORAMAC_ACK_RETRY = 0x00000008,
LORAMAC_TX_DELAYED = 0x00000010,
LORAMAC_TX_CONFIG = 0x00000020,
LORAMAC_RX_ABORT = 0x00000040,
};
/*!
* LoRaMac internal state
*/
uint32_t LoRaMacState = LORAMAC_IDLE;
/*!
* LoRaMac timer used to check the LoRaMacState (runs every second)
*/
static TimerEvent_t MacStateCheckTimer;
/*!
* LoRaMac upper layer event functions
*/
static LoRaMacPrimitives_t *LoRaMacPrimitives;
/*!
* LoRaMac upper layer callback functions
*/
static LoRaMacCallback_t *LoRaMacCallbacks;
/*!
* Radio events function pointer
*/
static RadioEvents_t RadioEvents;
/*!
* LoRaMac duty cycle delayed Tx timer
*/
static TimerEvent_t TxDelayedTimer;
/*!
* LoRaMac reception windows timers
*/
static TimerEvent_t RxWindowTimer1;
static TimerEvent_t RxWindowTimer2;
/*!
* LoRaMac reception windows delay
* \remark normal frame: RxWindowXDelay = ReceiveDelayX - RADIO_WAKEUP_TIME
* join frame : RxWindowXDelay = JoinAcceptDelayX - RADIO_WAKEUP_TIME
*/
static uint32_t RxWindow1Delay;
static uint32_t RxWindow2Delay;
/*!
* Rx window parameters
*/
typedef struct
{
int8_t Datarate;
uint8_t Bandwidth;
uint32_t RxWindowTimeout;
int32_t RxOffset;
}RxConfigParams_t;
/*!
* Rx windows params
*/
static RxConfigParams_t RxWindowsParams[2];
/*!
* Acknowledge timeout timer. Used for packet retransmissions.
*/
static TimerEvent_t AckTimeoutTimer;
/*!
* Number of trials to get a frame acknowledged
*/
static uint8_t AckTimeoutRetries = 1;
/*!
* Number of trials to get a frame acknowledged
*/
static uint8_t AckTimeoutRetriesCounter = 1;
/*!
* Indicates if the AckTimeout timer has expired or not
*/
static bool AckTimeoutRetry = false;
/*!
* Last transmission time on air
*/
TimerTime_t TxTimeOnAir = 0;
/*!
* Number of trials for the Join Request
*/
static uint8_t JoinRequestTrials;
/*!
* Maximum number of trials for the Join Request
*/
static uint8_t MaxJoinRequestTrials;
/*!
* Structure to hold an MCPS indication data.
*/
static McpsIndication_t McpsIndication;
/*!
* Structure to hold MCPS confirm data.
*/
static McpsConfirm_t McpsConfirm;
/*!
* Structure to hold MLME confirm data.
*/
static MlmeConfirm_t MlmeConfirm;
/*!
* Holds the current rx window slot
*/
static uint8_t RxSlot = 0;
/*!
* LoRaMac tx/rx operation state
*/
LoRaMacFlags_t LoRaMacFlags;
/*!
* \brief Function to be executed on Radio Tx Done event
*/
static void OnRadioTxDone( void );
/*!
* \brief This function prepares the MAC to abort the execution of function
* OnRadioRxDone in case of a reception error.
*/
static void PrepareRxDoneAbort( void );
/*!
* \brief Function to be executed on Radio Rx Done event
*/
static void OnRadioRxDone( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr );
/*!
* \brief Function executed on Radio Tx Timeout event
*/
static void OnRadioTxTimeout( void );
/*!
* \brief Function executed on Radio Rx error event
*/
static void OnRadioRxError( void );
/*!
* \brief Function executed on Radio Rx Timeout event
*/
static void OnRadioRxTimeout( void );
/*!
* \brief Function executed on Resend Frame timer event.
*/
static void OnMacStateCheckTimerEvent( void );
/*!
* \brief Function executed on duty cycle delayed Tx timer event
*/
static void OnTxDelayedTimerEvent( void );
/*!
* \brief Function executed on first Rx window timer event
*/
static void OnRxWindow1TimerEvent( void );
/*!
* \brief Function executed on second Rx window timer event
*/
static void OnRxWindow2TimerEvent( void );
/*!
* \brief Function executed on AckTimeout timer event
*/
static void OnAckTimeoutTimerEvent( void );
/*!
* \brief Searches and set the next random available channel
*
* \param [OUT] Time to wait for the next transmission according to the duty
* cycle.
*
* \retval status Function status [1: OK, 0: Unable to find a channel on the
* current datarate]
*/
static bool SetNextChannel( TimerTime_t* time );
/*!
* \brief Initializes and opens the reception window
*
* \param [IN] freq window channel frequency
* \param [IN] datarate window channel datarate
* \param [IN] bandwidth window channel bandwidth
* \param [IN] timeout window channel timeout
*
* \retval status Operation status [true: Success, false: Fail]
*/
static bool RxWindowSetup( uint32_t freq, int8_t datarate, uint32_t bandwidth, uint16_t timeout, bool rxContinuous );
/*!
* \brief Verifies if the RX window 2 frequency is in range
*
* \param [IN] freq window channel frequency
*
* \retval status Function status [1: OK, 0: Frequency not applicable]
*/
static bool Rx2FreqInRange( uint32_t freq );
/*!
* \brief Adds a new MAC command to be sent.
*
* \Remark MAC layer internal function
*
* \param [in] cmd MAC command to be added
* [MOTE_MAC_LINK_CHECK_REQ,
* MOTE_MAC_LINK_ADR_ANS,
* MOTE_MAC_DUTY_CYCLE_ANS,
* MOTE_MAC_RX2_PARAM_SET_ANS,
* MOTE_MAC_DEV_STATUS_ANS
* MOTE_MAC_NEW_CHANNEL_ANS]
* \param [in] p1 1st parameter ( optional depends on the command )
* \param [in] p2 2nd parameter ( optional depends on the command )
*
* \retval status Function status [0: OK, 1: Unknown command, 2: Buffer full]
*/
static LoRaMacStatus_t AddMacCommand( uint8_t cmd, uint8_t p1, uint8_t p2 );
/*!
* \brief Parses the MAC commands which must be repeated.
*
* \Remark MAC layer internal function
*
* \param [IN] cmdBufIn Buffer which stores the MAC commands to send
* \param [IN] length Length of the input buffer to parse
* \param [OUT] cmdBufOut Buffer which stores the MAC commands which must be
* repeated.
*
* \retval Size of the MAC commands to repeat.
*/
static uint8_t ParseMacCommandsToRepeat( uint8_t* cmdBufIn, uint8_t length, uint8_t* cmdBufOut );
/*!
* \brief Validates if the payload fits into the frame, taking the datarate
* into account.
*
* \details Refer to chapter 4.3.2 of the LoRaWAN specification, v1.0
*
* \param lenN Length of the application payload. The length depends on the
* datarate and is region specific
*
* \param datarate Current datarate
*
* \param fOptsLen Length of the fOpts field
*
* \retval [false: payload does not fit into the frame, true: payload fits into
* the frame]
*/
static bool ValidatePayloadLength( uint8_t lenN, int8_t datarate, uint8_t fOptsLen );
/*!
* \brief Counts the number of bits in a mask.
*
* \param [IN] mask A mask from which the function counts the active bits.
* \param [IN] nbBits The number of bits to check.
*
* \retval Number of enabled bits in the mask.
*/
static uint8_t CountBits( uint16_t mask, uint8_t nbBits );
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
/*!
* \brief Counts the number of enabled 125 kHz channels in the channel mask.
* This function can only be applied to US915 band.
*
* \param [IN] channelsMask Pointer to the first element of the channel mask
*
* \retval Number of enabled channels in the channel mask
*/
static uint8_t CountNbEnabled125kHzChannels( uint16_t *channelsMask );
#if defined( USE_BAND_915_HYBRID )
/*!
* \brief Validates the correctness of the channel mask for US915, hybrid mode.
*
* \param [IN] mask Block definition to set.
* \param [OUT] channelsMask Pointer to the first element of the channel mask
*/
static void ReenableChannels( uint16_t mask, uint16_t* channelsMask );
/*!
* \brief Validates the correctness of the channel mask for US915, hybrid mode.
*
* \param [IN] channelsMask Pointer to the first element of the channel mask
*
* \retval [true: channel mask correct, false: channel mask not correct]
*/
static bool ValidateChannelMask( uint16_t* channelsMask );
#endif
#endif
/*!
* \brief Validates the correctness of the datarate against the enable channels.
*
* \param [IN] datarate Datarate to be check
* \param [IN] channelsMask Pointer to the first element of the channel mask
*
* \retval [true: datarate can be used, false: datarate can not be used]
*/
static bool ValidateDatarate( int8_t datarate, uint16_t* channelsMask );
/*!
* \brief Limits the Tx power according to the number of enabled channels
*
* \param [IN] txPower txPower to limit
* \param [IN] maxBandTxPower Maximum band allowed TxPower
*
* \retval Returns the maximum valid tx power
*/
static int8_t LimitTxPower( int8_t txPower, int8_t maxBandTxPower );
/*!
* \brief Verifies, if a value is in a given range.
*
* \param value Value to verify, if it is in range
*
* \param min Minimum possible value
*
* \param max Maximum possible value
*
* \retval Returns the maximum valid tx power
*/
static bool ValueInRange( int8_t value, int8_t min, int8_t max );
/*!
* \brief Calculates the next datarate to set, when ADR is on or off
*
* \param [IN] adrEnabled Specify whether ADR is on or off
*
* \param [IN] updateChannelMask Set to true, if the channel masks shall be updated
*
* \param [OUT] datarateOut Reports the datarate which will be used next
*
* \retval Returns the state of ADR ack request
*/
static bool AdrNextDr( bool adrEnabled, bool updateChannelMask, int8_t* datarateOut );
/*!
* \brief Disables channel in a specified channel mask
*
* \param [IN] id - Id of the channel
*
* \param [IN] mask - Pointer to the channel mask to edit
*
* \retval [true, if disable was successful, false if not]
*/
static bool DisableChannelInMask( uint8_t id, uint16_t* mask );
/*!
* \brief Decodes MAC commands in the fOpts field and in the payload
*/
static void ProcessMacCommands( uint8_t *payload, uint8_t macIndex, uint8_t commandsSize, uint8_t snr );
/*!
* \brief LoRaMAC layer generic send frame
*
* \param [IN] macHdr MAC header field
* \param [IN] fPort MAC payload port
* \param [IN] fBuffer MAC data buffer to be sent
* \param [IN] fBufferSize MAC data buffer size
* \retval status Status of the operation.
*/
LoRaMacStatus_t Send( LoRaMacHeader_t *macHdr, uint8_t fPort, void *fBuffer, uint16_t fBufferSize );
/*!
* \brief LoRaMAC layer frame buffer initialization
*
* \param [IN] macHdr MAC header field
* \param [IN] fCtrl MAC frame control field
* \param [IN] fOpts MAC commands buffer
* \param [IN] fPort MAC payload port
* \param [IN] fBuffer MAC data buffer to be sent
* \param [IN] fBufferSize MAC data buffer size
* \retval status Status of the operation.
*/
LoRaMacStatus_t PrepareFrame( LoRaMacHeader_t *macHdr, LoRaMacFrameCtrl_t *fCtrl, uint8_t fPort, void *fBuffer, uint16_t fBufferSize );
/*
* \brief Schedules the frame according to the duty cycle
*
* \retval Status of the operation
*/
static LoRaMacStatus_t ScheduleTx( void );
/*
* \brief Sets the duty cycle for the join procedure.
*
* \retval Duty cycle
*/
static uint16_t JoinDutyCycle( void );
/*
* \brief Calculates the back-off time for the band of a channel.
*
* \param [IN] channel The last Tx channel index
*/
static void CalculateBackOff( uint8_t channel );
/*
* \brief Alternates the datarate of the channel for the join request.
*
* \param [IN] nbTrials Number of performed join requests.
* \retval Datarate to apply
*/
static int8_t AlternateDatarate( uint16_t nbTrials );
/*!
* \brief LoRaMAC layer prepared frame buffer transmission with channel specification
*
* \remark PrepareFrame must be called at least once before calling this
* function.
*
* \param [IN] channel Channel parameters
* \retval status Status of the operation.
*/
LoRaMacStatus_t SendFrameOnChannel( ChannelParams_t channel );
/*!
* \brief Sets the radio in continuous transmission mode
*
* \remark Uses the radio parameters set on the previous transmission.
*
* \param [IN] timeout Time in seconds while the radio is kept in continuous wave mode
* \retval status Status of the operation.
*/
LoRaMacStatus_t SetTxContinuousWave( uint16_t timeout );
/*!
* \brief Sets the radio in continuous transmission mode
*
* \remark Uses the radio parameters set on the previous transmission.
*
* \param [IN] timeout Time in seconds while the radio is kept in continuous wave mode
* \param [IN] frequency RF frequency to be set.
* \param [IN] power RF ouptput power to be set.
* \retval status Status of the operation.
*/
LoRaMacStatus_t SetTxContinuousWave1( uint16_t timeout, uint32_t frequency, uint8_t power );
/*!
* \brief Resets MAC specific parameters to default
*/
static void ResetMacParameters( void );
/*
* Rx window precise timing
*
* For more details please consult the following document, chapter 3.1.2.
* http://www.semtech.com/images/datasheet/SX1272_settings_for_LoRaWAN_v2.0.pdf
* or
* http://www.semtech.com/images/datasheet/SX1276_settings_for_LoRaWAN_v2.0.pdf
*
* Downlink start: T = Tx + 1s (+/- 20 us)
* |
* TRxEarly | TRxLate
* | | |
* | | +---+---+---+---+---+---+---+---+
* | | | Latest Rx window |
* | | +---+---+---+---+---+---+---+---+
* | | |
* +---+---+---+---+---+---+---+---+
* | Earliest Rx window |
* +---+---+---+---+---+---+---+---+
* |
* +---+---+---+---+---+---+---+---+
*Downlink preamble 8 symbols | | | | | | | | |
* +---+---+---+---+---+---+---+---+
*
* Worst case Rx window timings
*
* TRxLate = DEFAULT_MIN_RX_SYMBOLS * tSymbol - RADIO_WAKEUP_TIME
* TRxEarly = 8 - DEFAULT_MIN_RX_SYMBOLS * tSymbol - RxWindowTimeout - RADIO_WAKEUP_TIME
*
* TRxLate - TRxEarly = 2 * DEFAULT_SYSTEM_MAX_RX_ERROR
*
* RxOffset = ( TRxLate + TRxEarly ) / 2
*
* RxWindowTimeout = ( 2 * DEFAULT_MIN_RX_SYMBOLS - 8 ) * tSymbol + 2 * DEFAULT_SYSTEM_MAX_RX_ERROR
* RxOffset = 4 * tSymbol - RxWindowTimeout / 2 - RADIO_WAKE_UP_TIME
*
* Minimal value of RxWindowTimeout must be 5 symbols which implies that the system always tolerates at least an error of 1.5 * tSymbol
*/
/*!
* Computes the Rx window parameters.
*
* \param [IN] datarate Rx window datarate to be used
* \param [IN] rxError Maximum timing error of the receiver. in milliseconds
* The receiver will turn on in a [-rxError : +rxError] ms
* interval around RxOffset
*
* \retval rxConfigParams Returns a RxConfigParams_t structure.
*/
static RxConfigParams_t ComputeRxWindowParameters( int8_t datarate, uint32_t rxError );
static void OnRadioTxDone( void )
{
TimerTime_t curTime = TimerGetCurrentTime( );
if( LoRaMacDeviceClass != CLASS_C )
{
Radio.Sleep( );
}
else
{
OnRxWindow2TimerEvent( );
}
// Setup timers
if( IsRxWindowsEnabled == true )
{
TimerSetValue( &RxWindowTimer1, RxWindow1Delay );
TimerStart( &RxWindowTimer1 );
if( LoRaMacDeviceClass != CLASS_C )
{
TimerSetValue( &RxWindowTimer2, RxWindow2Delay );
TimerStart( &RxWindowTimer2 );
}
if( ( LoRaMacDeviceClass == CLASS_C ) || ( NodeAckRequested == true ) )
{
TimerSetValue( &AckTimeoutTimer, RxWindow2Delay + ACK_TIMEOUT +
randr( -ACK_TIMEOUT_RND, ACK_TIMEOUT_RND ) );
TimerStart( &AckTimeoutTimer );
}
}
else
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT;
if( LoRaMacFlags.Value == 0 )
{
LoRaMacFlags.Bits.McpsReq = 1;
}
LoRaMacFlags.Bits.MacDone = 1;
}
// Update last tx done time for the current channel
Bands[Channels[Channel].Band].LastTxDoneTime = curTime;
// Update Aggregated last tx done time
AggregatedLastTxDoneTime = curTime;
// Update Backoff
CalculateBackOff( Channel );
if( NodeAckRequested == false )
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
ChannelsNbRepCounter++;
}
}
static void PrepareRxDoneAbort( void )
{
LoRaMacState |= LORAMAC_RX_ABORT;
if( NodeAckRequested )
{
OnAckTimeoutTimerEvent( );
}
LoRaMacFlags.Bits.McpsInd = 1;
LoRaMacFlags.Bits.MacDone = 1;
// Trig OnMacCheckTimerEvent call as soon as possible
TimerSetValue( &MacStateCheckTimer, 1 );
TimerStart( &MacStateCheckTimer );
}
static void OnRadioRxDone( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr )
{
LoRaMacHeader_t macHdr;
LoRaMacFrameCtrl_t fCtrl;
bool skipIndication = false;
uint8_t pktHeaderLen = 0;
uint32_t address = 0;
uint8_t appPayloadStartIndex = 0;
uint8_t port = 0xFF;
uint8_t frameLen = 0;
uint32_t mic = 0;
uint32_t micRx = 0;
uint16_t sequenceCounter = 0;
uint16_t sequenceCounterPrev = 0;
uint16_t sequenceCounterDiff = 0;
uint32_t downLinkCounter = 0;
MulticastParams_t *curMulticastParams = NULL;
uint8_t *nwkSKey = LoRaMacNwkSKey;
uint8_t *appSKey = LoRaMacAppSKey;
uint8_t multicast = 0;
bool isMicOk = false;
McpsConfirm.AckReceived = false;
McpsIndication.Rssi = rssi;
McpsIndication.Snr = snr;
McpsIndication.RxSlot = RxSlot;
McpsIndication.Port = 0;
McpsIndication.Multicast = 0;
McpsIndication.FramePending = 0;
McpsIndication.Buffer = NULL;
McpsIndication.BufferSize = 0;
McpsIndication.RxData = false;
McpsIndication.AckReceived = false;
McpsIndication.DownLinkCounter = 0;
McpsIndication.McpsIndication = MCPS_UNCONFIRMED;
Radio.Sleep( );
TimerStop( &RxWindowTimer2 );
macHdr.Value = payload[pktHeaderLen++];
switch( macHdr.Bits.MType )
{
case FRAME_TYPE_JOIN_ACCEPT:
if( IsLoRaMacNetworkJoined == true )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
PrepareRxDoneAbort( );
return;
}
LoRaMacJoinDecrypt( payload + 1, size - 1, LoRaMacAppKey, LoRaMacRxPayload + 1 );
LoRaMacRxPayload[0] = macHdr.Value;
LoRaMacJoinComputeMic( LoRaMacRxPayload, size - LORAMAC_MFR_LEN, LoRaMacAppKey, &mic );
micRx |= ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN];
micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 1] << 8 );
micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 2] << 16 );
micRx |= ( ( uint32_t )LoRaMacRxPayload[size - LORAMAC_MFR_LEN + 3] << 24 );
if( micRx == mic )
{
LoRaMacJoinComputeSKeys( LoRaMacAppKey, LoRaMacRxPayload + 1, LoRaMacDevNonce, LoRaMacNwkSKey, LoRaMacAppSKey );
LoRaMacNetID = ( uint32_t )LoRaMacRxPayload[4];
LoRaMacNetID |= ( ( uint32_t )LoRaMacRxPayload[5] << 8 );
LoRaMacNetID |= ( ( uint32_t )LoRaMacRxPayload[6] << 16 );
LoRaMacDevAddr = ( uint32_t )LoRaMacRxPayload[7];
LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[8] << 8 );
LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[9] << 16 );
LoRaMacDevAddr |= ( ( uint32_t )LoRaMacRxPayload[10] << 24 );
// DLSettings
LoRaMacParams.Rx1DrOffset = ( LoRaMacRxPayload[11] >> 4 ) & 0x07;
LoRaMacParams.Rx2Channel.Datarate = LoRaMacRxPayload[11] & 0x0F;
// RxDelay
LoRaMacParams.ReceiveDelay1 = ( LoRaMacRxPayload[12] & 0x0F );
if( LoRaMacParams.ReceiveDelay1 == 0 )
{
LoRaMacParams.ReceiveDelay1 = 1;
}
LoRaMacParams.ReceiveDelay1 *= 1e3;
LoRaMacParams.ReceiveDelay2 = LoRaMacParams.ReceiveDelay1 + 1e3;
#if !( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
//CFList
if( ( size - 1 ) > 16 )
{
ChannelParams_t param;
param.DrRange.Value = ( DR_5 << 4 ) | DR_0;
LoRaMacState |= LORAMAC_TX_CONFIG;
for( uint8_t i = 3, j = 0; i < ( 5 + 3 ); i++, j += 3 )
{
param.Frequency = ( ( uint32_t )LoRaMacRxPayload[13 + j] | ( ( uint32_t )LoRaMacRxPayload[14 + j] << 8 ) | ( ( uint32_t )LoRaMacRxPayload[15 + j] << 16 ) ) * 100;
if( param.Frequency != 0 )
{
LoRaMacChannelAdd( i, param );
}
else
{
LoRaMacChannelRemove( i );
}
}
LoRaMacState &= ~LORAMAC_TX_CONFIG;
}
#endif
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
IsLoRaMacNetworkJoined = true;
LoRaMacParams.ChannelsDatarate = LoRaMacParamsDefaults.ChannelsDatarate;
}
else
{
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_JOIN_FAIL;
}
break;
case FRAME_TYPE_DATA_CONFIRMED_DOWN:
case FRAME_TYPE_DATA_UNCONFIRMED_DOWN:
{
address = payload[pktHeaderLen++];
address |= ( (uint32_t)payload[pktHeaderLen++] << 8 );
address |= ( (uint32_t)payload[pktHeaderLen++] << 16 );
address |= ( (uint32_t)payload[pktHeaderLen++] << 24 );
if( address != LoRaMacDevAddr )
{
curMulticastParams = MulticastChannels;
while( curMulticastParams != NULL )
{
if( address == curMulticastParams->Address )
{
multicast = 1;
nwkSKey = curMulticastParams->NwkSKey;
appSKey = curMulticastParams->AppSKey;
downLinkCounter = curMulticastParams->DownLinkCounter;
break;
}
curMulticastParams = curMulticastParams->Next;
}
if( multicast == 0 )
{
// We are not the destination of this frame.
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ADDRESS_FAIL;
PrepareRxDoneAbort( );
return;
}
}
else
{
multicast = 0;
nwkSKey = LoRaMacNwkSKey;
appSKey = LoRaMacAppSKey;
downLinkCounter = DownLinkCounter;
}
fCtrl.Value = payload[pktHeaderLen++];
sequenceCounter = ( uint16_t )payload[pktHeaderLen++];
sequenceCounter |= ( uint16_t )payload[pktHeaderLen++] << 8;
appPayloadStartIndex = 8 + fCtrl.Bits.FOptsLen;
micRx |= ( uint32_t )payload[size - LORAMAC_MFR_LEN];
micRx |= ( ( uint32_t )payload[size - LORAMAC_MFR_LEN + 1] << 8 );
micRx |= ( ( uint32_t )payload[size - LORAMAC_MFR_LEN + 2] << 16 );
micRx |= ( ( uint32_t )payload[size - LORAMAC_MFR_LEN + 3] << 24 );
sequenceCounterPrev = ( uint16_t )downLinkCounter;
sequenceCounterDiff = ( sequenceCounter - sequenceCounterPrev );
if( sequenceCounterDiff < ( 1 << 15 ) )
{
downLinkCounter += sequenceCounterDiff;
LoRaMacComputeMic( payload, size - LORAMAC_MFR_LEN, nwkSKey, address, DOWN_LINK, downLinkCounter, &mic );
if( micRx == mic )
{
isMicOk = true;
}
}
else
{
// check for sequence roll-over
uint32_t downLinkCounterTmp = downLinkCounter + 0x10000 + ( int16_t )sequenceCounterDiff;
LoRaMacComputeMic( payload, size - LORAMAC_MFR_LEN, nwkSKey, address, DOWN_LINK, downLinkCounterTmp, &mic );
if( micRx == mic )
{
isMicOk = true;
downLinkCounter = downLinkCounterTmp;
}
}
// Check for a the maximum allowed counter difference
if( sequenceCounterDiff >= MAX_FCNT_GAP )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_DOWNLINK_TOO_MANY_FRAMES_LOSS;
McpsIndication.DownLinkCounter = downLinkCounter;
PrepareRxDoneAbort( );
return;
}
if( isMicOk == true )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_OK;
McpsIndication.Multicast = multicast;
McpsIndication.FramePending = fCtrl.Bits.FPending;
McpsIndication.Buffer = NULL;
McpsIndication.BufferSize = 0;
McpsIndication.DownLinkCounter = downLinkCounter;
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
AdrAckCounter = 0;
MacCommandsBufferToRepeatIndex = 0;
// Update 32 bits downlink counter
if( multicast == 1 )
{
McpsIndication.McpsIndication = MCPS_MULTICAST;
if( ( curMulticastParams->DownLinkCounter == downLinkCounter ) &&
( curMulticastParams->DownLinkCounter != 0 ) )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_DOWNLINK_REPEATED;
McpsIndication.DownLinkCounter = downLinkCounter;
PrepareRxDoneAbort( );
return;
}
curMulticastParams->DownLinkCounter = downLinkCounter;
}
else
{
if( macHdr.Bits.MType == FRAME_TYPE_DATA_CONFIRMED_DOWN )
{
SrvAckRequested = true;
McpsIndication.McpsIndication = MCPS_CONFIRMED;
if( ( DownLinkCounter == downLinkCounter ) &&
( DownLinkCounter != 0 ) )
{
// Duplicated confirmed downlink. Skip indication.
// In this case, the MAC layer shall accept the MAC commands
// which are included in the downlink retransmission.
// It should not provide the same frame to the application
// layer again.
skipIndication = true;
}
}
else
{
SrvAckRequested = false;
McpsIndication.McpsIndication = MCPS_UNCONFIRMED;
if( ( DownLinkCounter == downLinkCounter ) &&
( DownLinkCounter != 0 ) )
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_DOWNLINK_REPEATED;
McpsIndication.DownLinkCounter = downLinkCounter;
PrepareRxDoneAbort( );
return;
}
}
DownLinkCounter = downLinkCounter;
}
// This must be done before parsing the payload and the MAC commands.
// We need to reset the MacCommandsBufferIndex here, since we need
// to take retransmissions and repititions into account. Error cases
// will be handled in function OnMacStateCheckTimerEvent.
if( McpsConfirm.McpsRequest == MCPS_CONFIRMED )
{
if( fCtrl.Bits.Ack == 1 )
{// Reset MacCommandsBufferIndex when we have received an ACK.
MacCommandsBufferIndex = 0;
}
}
else
{// Reset the variable if we have received any valid frame.
MacCommandsBufferIndex = 0;
}
// Process payload and MAC commands
if( ( ( size - 4 ) - appPayloadStartIndex ) > 0 )
{
port = payload[appPayloadStartIndex++];
frameLen = ( size - 4 ) - appPayloadStartIndex;
McpsIndication.Port = port;
if( port == 0 )
{
// Only allow frames which do not have fOpts
if( fCtrl.Bits.FOptsLen == 0 )
{
LoRaMacPayloadDecrypt( payload + appPayloadStartIndex,
frameLen,
nwkSKey,
address,
DOWN_LINK,
downLinkCounter,
LoRaMacRxPayload );
// Decode frame payload MAC commands
ProcessMacCommands( LoRaMacRxPayload, 0, frameLen, snr );
}
else
{
skipIndication = true;
}
}
else
{
if( fCtrl.Bits.FOptsLen > 0 )
{
// Decode Options field MAC commands. Omit the fPort.
ProcessMacCommands( payload, 8, appPayloadStartIndex - 1, snr );
}
LoRaMacPayloadDecrypt( payload + appPayloadStartIndex,
frameLen,
appSKey,
address,
DOWN_LINK,
downLinkCounter,
LoRaMacRxPayload );
if( skipIndication == false )
{
McpsIndication.Buffer = LoRaMacRxPayload;
McpsIndication.BufferSize = frameLen;
McpsIndication.RxData = true;
}
}
}
else
{
if( fCtrl.Bits.FOptsLen > 0 )
{
// Decode Options field MAC commands
ProcessMacCommands( payload, 8, appPayloadStartIndex, snr );
}
}
if( skipIndication == false )
{
// Check if the frame is an acknowledgement
if( fCtrl.Bits.Ack == 1 )
{
McpsConfirm.AckReceived = true;
McpsIndication.AckReceived = true;
// Stop the AckTimeout timer as no more retransmissions
// are needed.
TimerStop( &AckTimeoutTimer );
}
else
{
McpsConfirm.AckReceived = false;
if( AckTimeoutRetriesCounter > AckTimeoutRetries )
{
// Stop the AckTimeout timer as no more retransmissions
// are needed.
TimerStop( &AckTimeoutTimer );
}
}
}
// Provide always an indication, skip the callback to the user application,
// in case of a confirmed downlink retransmission.
LoRaMacFlags.Bits.McpsInd = 1;
LoRaMacFlags.Bits.McpsIndSkip = skipIndication;
}
else
{
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_MIC_FAIL;
PrepareRxDoneAbort( );
return;
}
}
break;
case FRAME_TYPE_PROPRIETARY:
{
memcpy1( LoRaMacRxPayload, &payload[pktHeaderLen], size );
McpsIndication.McpsIndication = MCPS_PROPRIETARY;
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_OK;
McpsIndication.Buffer = LoRaMacRxPayload;
McpsIndication.BufferSize = size - pktHeaderLen;
LoRaMacFlags.Bits.McpsInd = 1;
break;
}
default:
McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
PrepareRxDoneAbort( );
break;
}
LoRaMacFlags.Bits.MacDone = 1;
// Trig OnMacCheckTimerEvent call as soon as possible
TimerSetValue( &MacStateCheckTimer, 1 );
TimerStart( &MacStateCheckTimer );
}
static void OnRadioTxTimeout( void )
{
if( LoRaMacDeviceClass != CLASS_C )
{
Radio.Sleep( );
}
else
{
OnRxWindow2TimerEvent( );
}
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT;
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT;
LoRaMacFlags.Bits.MacDone = 1;
}
static void OnRadioRxError( void )
{
if( LoRaMacDeviceClass != CLASS_C )
{
Radio.Sleep( );
}
else
{
OnRxWindow2TimerEvent( );
}
if( RxSlot == 0 )
{
if( NodeAckRequested == true )
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX1_ERROR;
}
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX1_ERROR;
if( TimerGetElapsedTime( AggregatedLastTxDoneTime ) >= RxWindow2Delay )
{
LoRaMacFlags.Bits.MacDone = 1;
}
}
else
{
if( NodeAckRequested == true )
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_ERROR;
}
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_ERROR;
LoRaMacFlags.Bits.MacDone = 1;
}
}
static void OnRadioRxTimeout( void )
{
if( LoRaMacDeviceClass != CLASS_C )
{
Radio.Sleep( );
}
else
{
OnRxWindow2TimerEvent( );
}
if( RxSlot == 1 )
{
if( NodeAckRequested == true )
{
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT;
}
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT;
LoRaMacFlags.Bits.MacDone = 1;
}
}
static void OnMacStateCheckTimerEvent( void )
{
TimerStop( &MacStateCheckTimer );
bool txTimeout = false;
if( LoRaMacFlags.Bits.MacDone == 1 )
{
if( ( LoRaMacState & LORAMAC_RX_ABORT ) == LORAMAC_RX_ABORT )
{
LoRaMacState &= ~LORAMAC_RX_ABORT;
LoRaMacState &= ~LORAMAC_TX_RUNNING;
}
if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) || ( ( LoRaMacFlags.Bits.McpsReq == 1 ) ) )
{
if( ( McpsConfirm.Status == LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT ) ||
( MlmeConfirm.Status == LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT ) )
{
// Stop transmit cycle due to tx timeout.
LoRaMacState &= ~LORAMAC_TX_RUNNING;
MacCommandsBufferIndex = 0;
McpsConfirm.NbRetries = AckTimeoutRetriesCounter;
McpsConfirm.AckReceived = false;
McpsConfirm.TxTimeOnAir = 0;
txTimeout = true;
}
}
if( ( NodeAckRequested == false ) && ( txTimeout == false ) )
{
if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) || ( ( LoRaMacFlags.Bits.McpsReq == 1 ) ) )
{
if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) && ( MlmeConfirm.MlmeRequest == MLME_JOIN ) )
{// Procedure for the join request
MlmeConfirm.NbRetries = JoinRequestTrials;
if( MlmeConfirm.Status == LORAMAC_EVENT_INFO_STATUS_OK )
{// Node joined successfully
UpLinkCounter = 0;
ChannelsNbRepCounter = 0;
LoRaMacState &= ~LORAMAC_TX_RUNNING;
}
else
{
if( JoinRequestTrials >= MaxJoinRequestTrials )
{
LoRaMacState &= ~LORAMAC_TX_RUNNING;
}
else
{
LoRaMacFlags.Bits.MacDone = 0;
// Sends the same frame again
OnTxDelayedTimerEvent( );
}
}
}
else
{// Procedure for all other frames
if( ( ChannelsNbRepCounter >= LoRaMacParams.ChannelsNbRep ) || ( LoRaMacFlags.Bits.McpsInd == 1 ) )
{
if( LoRaMacFlags.Bits.McpsInd == 0 )
{ // Maximum repititions without downlink. Reset MacCommandsBufferIndex. Increase ADR Ack counter.
// Only process the case when the MAC did not receive a downlink.
MacCommandsBufferIndex = 0;
AdrAckCounter++;
}
ChannelsNbRepCounter = 0;
if( IsUpLinkCounterFixed == false )
{
UpLinkCounter++;
}
LoRaMacState &= ~LORAMAC_TX_RUNNING;
}
else
{
LoRaMacFlags.Bits.MacDone = 0;
// Sends the same frame again
OnTxDelayedTimerEvent( );
}
}
}
}
if( LoRaMacFlags.Bits.McpsInd == 1 )
{// Procedure if we received a frame
if( ( McpsConfirm.AckReceived == true ) || ( AckTimeoutRetriesCounter > AckTimeoutRetries ) )
{
AckTimeoutRetry = false;
NodeAckRequested = false;
if( IsUpLinkCounterFixed == false )
{
UpLinkCounter++;
}
McpsConfirm.NbRetries = AckTimeoutRetriesCounter;
LoRaMacState &= ~LORAMAC_TX_RUNNING;
}
}
if( ( AckTimeoutRetry == true ) && ( ( LoRaMacState & LORAMAC_TX_DELAYED ) == 0 ) )
{// Retransmissions procedure for confirmed uplinks
AckTimeoutRetry = false;
if( ( AckTimeoutRetriesCounter < AckTimeoutRetries ) && ( AckTimeoutRetriesCounter <= MAX_ACK_RETRIES ) )
{
AckTimeoutRetriesCounter++;
if( ( AckTimeoutRetriesCounter % 2 ) == 1 )
{
LoRaMacParams.ChannelsDatarate = MAX( LoRaMacParams.ChannelsDatarate - 1, LORAMAC_TX_MIN_DATARATE );
}
// Try to send the frame again
if( ScheduleTx( ) == LORAMAC_STATUS_OK )
{
LoRaMacFlags.Bits.MacDone = 0;
}
else
{
// The DR is not applicable for the payload size
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_TX_DR_PAYLOAD_SIZE_ERROR;
MacCommandsBufferIndex = 0;
LoRaMacState &= ~LORAMAC_TX_RUNNING;
NodeAckRequested = false;
McpsConfirm.AckReceived = false;
McpsConfirm.NbRetries = AckTimeoutRetriesCounter;
McpsConfirm.Datarate = LoRaMacParams.ChannelsDatarate;
if( IsUpLinkCounterFixed == false )
{
UpLinkCounter++;
}
}
}
else
{
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
// Re-enable default channels LC1, LC2, LC3
LoRaMacParams.ChannelsMask[0] = LoRaMacParams.ChannelsMask[0] | ( LC( 1 ) + LC( 2 ) + LC( 3 ) );
#elif defined( USE_BAND_470 )
// Re-enable default channels
memcpy1( ( uint8_t* )LoRaMacParams.ChannelsMask, ( uint8_t* )LoRaMacParamsDefaults.ChannelsMask, sizeof( LoRaMacParams.ChannelsMask ) );
#elif defined( USE_BAND_915 )
// Re-enable default channels
memcpy1( ( uint8_t* )LoRaMacParams.ChannelsMask, ( uint8_t* )LoRaMacParamsDefaults.ChannelsMask, sizeof( LoRaMacParams.ChannelsMask ) );
#elif defined( USE_BAND_915_HYBRID )
// Re-enable default channels
ReenableChannels( LoRaMacParamsDefaults.ChannelsMask[4], LoRaMacParams.ChannelsMask );
#else
#error "Please define a frequency band in the compiler options."
#endif
LoRaMacState &= ~LORAMAC_TX_RUNNING;
MacCommandsBufferIndex = 0;
NodeAckRequested = false;
McpsConfirm.AckReceived = false;
McpsConfirm.NbRetries = AckTimeoutRetriesCounter;
if( IsUpLinkCounterFixed == false )
{
UpLinkCounter++;
}
}
}
}
// Handle reception for Class B and Class C
if( ( LoRaMacState & LORAMAC_RX ) == LORAMAC_RX )
{
LoRaMacState &= ~LORAMAC_RX;
}
if( LoRaMacState == LORAMAC_IDLE )
{
if( LoRaMacFlags.Bits.McpsReq == 1 )
{
LoRaMacPrimitives->MacMcpsConfirm( &McpsConfirm );
LoRaMacFlags.Bits.McpsReq = 0;
}
if( LoRaMacFlags.Bits.MlmeReq == 1 )
{
LoRaMacPrimitives->MacMlmeConfirm( &MlmeConfirm );
LoRaMacFlags.Bits.MlmeReq = 0;
}
// Procedure done. Reset variables.
LoRaMacFlags.Bits.MacDone = 0;
}
else
{
// Operation not finished restart timer
TimerSetValue( &MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT );
TimerStart( &MacStateCheckTimer );
}
if( LoRaMacFlags.Bits.McpsInd == 1 )
{
if( LoRaMacDeviceClass == CLASS_C )
{// Activate RX2 window for Class C
OnRxWindow2TimerEvent( );
}
if( LoRaMacFlags.Bits.McpsIndSkip == 0 )
{
LoRaMacPrimitives->MacMcpsIndication( &McpsIndication );
}
LoRaMacFlags.Bits.McpsIndSkip = 0;
LoRaMacFlags.Bits.McpsInd = 0;
}
}
static void OnTxDelayedTimerEvent( void )
{
LoRaMacHeader_t macHdr;
LoRaMacFrameCtrl_t fCtrl;
TimerStop( &TxDelayedTimer );
LoRaMacState &= ~LORAMAC_TX_DELAYED;
if( ( LoRaMacFlags.Bits.MlmeReq == 1 ) && ( MlmeConfirm.MlmeRequest == MLME_JOIN ) )
{
ResetMacParameters( );
// Add a +1, since we start to count from 0
LoRaMacParams.ChannelsDatarate = AlternateDatarate( JoinRequestTrials + 1 );
macHdr.Value = 0;
macHdr.Bits.MType = FRAME_TYPE_JOIN_REQ;
fCtrl.Value = 0;
fCtrl.Bits.Adr = AdrCtrlOn;
/* In case of join request retransmissions, the stack must prepare
* the frame again, because the network server keeps track of the random
* LoRaMacDevNonce values to prevent reply attacks. */
PrepareFrame( &macHdr, &fCtrl, 0, NULL, 0 );
}
ScheduleTx( );
}
static void OnRxWindow1TimerEvent( void )
{
TimerStop( &RxWindowTimer1 );
RxSlot = 0;
if( LoRaMacDeviceClass == CLASS_C )
{
Radio.Standby( );
}
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
RxWindowSetup( Channels[Channel].Frequency, RxWindowsParams[0].Datarate, RxWindowsParams[0].Bandwidth, RxWindowsParams[0].RxWindowTimeout, false );
#elif defined( USE_BAND_470 )
RxWindowSetup( LORAMAC_FIRST_RX1_CHANNEL + ( Channel % 48 ) * LORAMAC_STEPWIDTH_RX1_CHANNEL, RxWindowsParams[0].Datarate, RxWindowsParams[0].Bandwidth, RxWindowsParams[0].RxWindowTimeout, false );
#elif ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
RxWindowSetup( LORAMAC_FIRST_RX1_CHANNEL + ( Channel % 8 ) * LORAMAC_STEPWIDTH_RX1_CHANNEL, RxWindowsParams[0].Datarate, RxWindowsParams[0].Bandwidth, RxWindowsParams[0].RxWindowTimeout, false );
#else
#error "Please define a frequency band in the compiler options."
#endif
}
static void OnRxWindow2TimerEvent( void )
{
bool rxContinuousMode = false;
TimerStop( &RxWindowTimer2 );
if( LoRaMacDeviceClass == CLASS_C )
{
rxContinuousMode = true;
}
if( RxWindowSetup( LoRaMacParams.Rx2Channel.Frequency, RxWindowsParams[1].Datarate, RxWindowsParams[1].Bandwidth, RxWindowsParams[1].RxWindowTimeout, rxContinuousMode ) == true )
{
RxSlot = 1;
}
}
static void OnAckTimeoutTimerEvent( void )
{
TimerStop( &AckTimeoutTimer );
if( NodeAckRequested == true )
{
AckTimeoutRetry = true;
LoRaMacState &= ~LORAMAC_ACK_REQ;
}
if( LoRaMacDeviceClass == CLASS_C )
{
LoRaMacFlags.Bits.MacDone = 1;
}
}
static bool SetNextChannel( TimerTime_t* time )
{
uint8_t nbEnabledChannels = 0;
uint8_t delayTx = 0;
uint8_t enabledChannels[LORA_MAX_NB_CHANNELS];
TimerTime_t nextTxDelay = ( TimerTime_t )( -1 );
memset1( enabledChannels, 0, LORA_MAX_NB_CHANNELS );
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
if( CountNbEnabled125kHzChannels( ChannelsMaskRemaining ) == 0 )
{ // Restore default channels
memcpy1( ( uint8_t* ) ChannelsMaskRemaining, ( uint8_t* ) LoRaMacParams.ChannelsMask, 8 );
}
if( ( LoRaMacParams.ChannelsDatarate >= DR_4 ) && ( ( ChannelsMaskRemaining[4] & 0x00FF ) == 0 ) )
{ // Make sure, that the channels are activated
ChannelsMaskRemaining[4] = LoRaMacParams.ChannelsMask[4];
}
#elif defined( USE_BAND_470 )
if( ( CountBits( LoRaMacParams.ChannelsMask[0], 16 ) == 0 ) &&
( CountBits( LoRaMacParams.ChannelsMask[1], 16 ) == 0 ) &&
( CountBits( LoRaMacParams.ChannelsMask[2], 16 ) == 0 ) &&
( CountBits( LoRaMacParams.ChannelsMask[3], 16 ) == 0 ) &&
( CountBits( LoRaMacParams.ChannelsMask[4], 16 ) == 0 ) &&
( CountBits( LoRaMacParams.ChannelsMask[5], 16 ) == 0 ) )
{
memcpy1( ( uint8_t* )LoRaMacParams.ChannelsMask, ( uint8_t* )LoRaMacParamsDefaults.ChannelsMask, sizeof( LoRaMacParams.ChannelsMask ) );
}
#else
if( CountBits( LoRaMacParams.ChannelsMask[0], 16 ) == 0 )
{
// Re-enable default channels, if no channel is enabled
LoRaMacParams.ChannelsMask[0] = LoRaMacParams.ChannelsMask[0] | ( LC( 1 ) + LC( 2 ) + LC( 3 ) );
}
#endif
// Update Aggregated duty cycle
if( AggregatedTimeOff <= TimerGetElapsedTime( AggregatedLastTxDoneTime ) )
{
AggregatedTimeOff = 0;
// Update bands Time OFF
for( uint8_t i = 0; i < LORA_MAX_NB_BANDS; i++ )
{
if( ( IsLoRaMacNetworkJoined == false ) || ( DutyCycleOn == true ) )
{
if( Bands[i].TimeOff <= TimerGetElapsedTime( Bands[i].LastTxDoneTime ) )
{
Bands[i].TimeOff = 0;
}
if( Bands[i].TimeOff != 0 )
{
nextTxDelay = MIN( Bands[i].TimeOff - TimerGetElapsedTime( Bands[i].LastTxDoneTime ), nextTxDelay );
}
}
else
{
if( DutyCycleOn == false )
{
Bands[i].TimeOff = 0;
}
}
}
// Search how many channels are enabled
for( uint8_t i = 0, k = 0; i < LORA_MAX_NB_CHANNELS; i += 16, k++ )
{
for( uint8_t j = 0; j < 16; j++ )
{
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
if( ( ChannelsMaskRemaining[k] & ( 1 << j ) ) != 0 )
#else
if( ( LoRaMacParams.ChannelsMask[k] & ( 1 << j ) ) != 0 )
#endif
{
if( Channels[i + j].Frequency == 0 )
{ // Check if the channel is enabled
continue;
}
#if defined( USE_BAND_868 ) || defined( USE_BAND_433 ) || defined( USE_BAND_780 )
if( IsLoRaMacNetworkJoined == false )
{
if( ( JOIN_CHANNELS & ( 1 << j ) ) == 0 )
{
continue;
}
}
#endif
if( ( ( Channels[i + j].DrRange.Fields.Min <= LoRaMacParams.ChannelsDatarate ) &&
( LoRaMacParams.ChannelsDatarate <= Channels[i + j].DrRange.Fields.Max ) ) == false )
{ // Check if the current channel selection supports the given datarate
continue;
}
if( Bands[Channels[i + j].Band].TimeOff > 0 )
{ // Check if the band is available for transmission
delayTx++;
continue;
}
enabledChannels[nbEnabledChannels++] = i + j;
}
}
}
}
else
{
delayTx++;
nextTxDelay = AggregatedTimeOff - TimerGetElapsedTime( AggregatedLastTxDoneTime );
}
if( nbEnabledChannels > 0 )
{
Channel = enabledChannels[randr( 0, nbEnabledChannels - 1 )];
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
if( Channel < ( LORA_MAX_NB_CHANNELS - 8 ) )
{
DisableChannelInMask( Channel, ChannelsMaskRemaining );
}
#endif
*time = 0;
return true;
}
else
{
if( delayTx > 0 )
{
// Delay transmission due to AggregatedTimeOff or to a band time off
*time = nextTxDelay;
return true;
}
// Datarate not supported by any channel
*time = 0;
return false;
}
}
static bool RxWindowSetup( uint32_t freq, int8_t datarate, uint32_t bandwidth, uint16_t timeout, bool rxContinuous )
{
uint8_t downlinkDatarate = Datarates[datarate];
RadioModems_t modem;
if( Radio.GetStatus( ) == RF_IDLE )
{
Radio.SetChannel( freq );
// Store downlink datarate
McpsIndication.RxDatarate = ( uint8_t ) datarate;
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
if( datarate == DR_7 )
{
modem = MODEM_FSK;
Radio.SetRxConfig( modem, 50e3, downlinkDatarate * 1e3, 0, 83.333e3, 5, timeout, false, 0, true, 0, 0, false, rxContinuous );
}
else
{
modem = MODEM_LORA;
Radio.SetRxConfig( modem, bandwidth, downlinkDatarate, 1, 0, 8, timeout, false, 0, false, 0, 0, true, rxContinuous );
}
#elif defined( USE_BAND_470 ) || defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
modem = MODEM_LORA;
Radio.SetRxConfig( modem, bandwidth, downlinkDatarate, 1, 0, 8, timeout, false, 0, false, 0, 0, true, rxContinuous );
#endif
if( RepeaterSupport == true )
{
Radio.SetMaxPayloadLength( modem, MaxPayloadOfDatarateRepeater[datarate] + LORA_MAC_FRMPAYLOAD_OVERHEAD );
}
else
{
Radio.SetMaxPayloadLength( modem, MaxPayloadOfDatarate[datarate] + LORA_MAC_FRMPAYLOAD_OVERHEAD );
}
if( rxContinuous == false )
{
Radio.Rx( LoRaMacParams.MaxRxWindow );
}
else
{
Radio.Rx( 0 ); // Continuous mode
}
return true;
}
return false;
}
static bool Rx2FreqInRange( uint32_t freq )
{
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
if( Radio.CheckRfFrequency( freq ) == true )
#elif defined( USE_BAND_470 ) || defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
if( ( Radio.CheckRfFrequency( freq ) == true ) &&
( freq >= LORAMAC_FIRST_RX1_CHANNEL ) &&
( freq <= LORAMAC_LAST_RX1_CHANNEL ) &&
( ( ( freq - ( uint32_t ) LORAMAC_FIRST_RX1_CHANNEL ) % ( uint32_t ) LORAMAC_STEPWIDTH_RX1_CHANNEL ) == 0 ) )
#endif
{
return true;
}
return false;
}
static bool ValidatePayloadLength( uint8_t lenN, int8_t datarate, uint8_t fOptsLen )
{
uint16_t maxN = 0;
uint16_t payloadSize = 0;
// Get the maximum payload length
if( RepeaterSupport == true )
{
maxN = MaxPayloadOfDatarateRepeater[datarate];
}
else
{
maxN = MaxPayloadOfDatarate[datarate];
}
// Calculate the resulting payload size
payloadSize = ( lenN + fOptsLen );
// Validation of the application payload size
if( ( payloadSize <= maxN ) && ( payloadSize <= LORAMAC_PHY_MAXPAYLOAD ) )
{
return true;
}
return false;
}
static uint8_t CountBits( uint16_t mask, uint8_t nbBits )
{
uint8_t nbActiveBits = 0;
for( uint8_t j = 0; j < nbBits; j++ )
{
if( ( mask & ( 1 << j ) ) == ( 1 << j ) )
{
nbActiveBits++;
}
}
return nbActiveBits;
}
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
static uint8_t CountNbEnabled125kHzChannels( uint16_t *channelsMask )
{
uint8_t nb125kHzChannels = 0;
for( uint8_t i = 0, k = 0; i < LORA_MAX_NB_CHANNELS - 8; i += 16, k++ )
{
nb125kHzChannels += CountBits( channelsMask[k], 16 );
}
return nb125kHzChannels;
}
#if defined( USE_BAND_915_HYBRID )
static void ReenableChannels( uint16_t mask, uint16_t* channelsMask )
{
uint16_t blockMask = mask;
for( uint8_t i = 0, j = 0; i < 4; i++, j += 2 )
{
channelsMask[i] = 0;
if( ( blockMask & ( 1 << j ) ) != 0 )
{
channelsMask[i] |= 0x00FF;
}
if( ( blockMask & ( 1 << ( j + 1 ) ) ) != 0 )
{
channelsMask[i] |= 0xFF00;
}
}
channelsMask[4] = blockMask;
channelsMask[5] = 0x0000;
}
static bool ValidateChannelMask( uint16_t* channelsMask )
{
bool chanMaskState = false;
uint16_t block1 = 0;
uint16_t block2 = 0;
uint8_t index = 0;
for( uint8_t i = 0; i < 4; i++ )
{
block1 = channelsMask[i] & 0x00FF;
block2 = channelsMask[i] & 0xFF00;
if( ( CountBits( block1, 16 ) > 5 ) && ( chanMaskState == false ) )
{
channelsMask[i] &= block1;
channelsMask[4] = 1 << ( i * 2 );
chanMaskState = true;
index = i;
}
else if( ( CountBits( block2, 16 ) > 5 ) && ( chanMaskState == false ) )
{
channelsMask[i] &= block2;
channelsMask[4] = 1 << ( i * 2 + 1 );
chanMaskState = true;
index = i;
}
}
// Do only change the channel mask, if we have found a valid block.
if( chanMaskState == true )
{
for( uint8_t i = 0; i < 4; i++ )
{
if( i != index )
{
channelsMask[i] = 0;
}
}
}
return chanMaskState;
}
#endif
#endif
static bool ValidateDatarate( int8_t datarate, uint16_t* channelsMask )
{
if( ValueInRange( datarate, LORAMAC_TX_MIN_DATARATE, LORAMAC_TX_MAX_DATARATE ) == false )
{
return false;
}
for( uint8_t i = 0, k = 0; i < LORA_MAX_NB_CHANNELS; i += 16, k++ )
{
for( uint8_t j = 0; j < 16; j++ )
{
if( ( ( channelsMask[k] & ( 1 << j ) ) != 0 ) )
{// Check datarate validity for enabled channels
if( ValueInRange( datarate, Channels[i + j].DrRange.Fields.Min, Channels[i + j].DrRange.Fields.Max ) == true )
{
// At least 1 channel has been found we can return OK.
return true;
}
}
}
}
return false;
}
static int8_t LimitTxPower( int8_t txPower, int8_t maxBandTxPower )
{
int8_t resultTxPower = txPower;
// Limit tx power to the band max
resultTxPower = MAX( txPower, maxBandTxPower );
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
if( ( LoRaMacParams.ChannelsDatarate == DR_4 ) ||
( ( LoRaMacParams.ChannelsDatarate >= DR_8 ) && ( LoRaMacParams.ChannelsDatarate <= DR_13 ) ) )
{// Limit tx power to max 26dBm
resultTxPower = MAX( txPower, TX_POWER_26_DBM );
}
else
{
if( CountNbEnabled125kHzChannels( LoRaMacParams.ChannelsMask ) < 50 )
{// Limit tx power to max 21dBm
resultTxPower = MAX( txPower, TX_POWER_20_DBM );
}
}
#endif
return resultTxPower;
}
static bool ValueInRange( int8_t value, int8_t min, int8_t max )
{
if( ( value >= min ) && ( value <= max ) )
{
return true;
}
return false;
}
static bool DisableChannelInMask( uint8_t id, uint16_t* mask )
{
uint8_t index = 0;
index = id / 16;
if( ( index > 4 ) || ( id >= LORA_MAX_NB_CHANNELS ) )
{
return false;
}
// Deactivate channel
mask[index] &= ~( 1 << ( id % 16 ) );
return true;
}
static bool AdrNextDr( bool adrEnabled, bool updateChannelMask, int8_t* datarateOut )
{
bool adrAckReq = false;
int8_t datarate = LoRaMacParams.ChannelsDatarate;
if( adrEnabled == true )
{
if( datarate == LORAMAC_TX_MIN_DATARATE )
{
AdrAckCounter = 0;
adrAckReq = false;
}
else
{
if( AdrAckCounter >= ADR_ACK_LIMIT )
{
adrAckReq = true;
LoRaMacParams.ChannelsTxPower = LORAMAC_MAX_TX_POWER;
}
else
{
adrAckReq = false;
}
if( AdrAckCounter >= ( ADR_ACK_LIMIT + ADR_ACK_DELAY ) )
{
if( ( AdrAckCounter % ADR_ACK_DELAY ) == 1 )
{
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
if( datarate > LORAMAC_TX_MIN_DATARATE )
{
datarate--;
}
if( datarate == LORAMAC_TX_MIN_DATARATE )
{
if( updateChannelMask == true )
{
// Re-enable default channels LC1, LC2, LC3
LoRaMacParams.ChannelsMask[0] = LoRaMacParams.ChannelsMask[0] | ( LC( 1 ) + LC( 2 ) + LC( 3 ) );
}
}
#elif defined( USE_BAND_470 )
if( datarate > LORAMAC_TX_MIN_DATARATE )
{
datarate--;
}
if( datarate == LORAMAC_TX_MIN_DATARATE )
{
if( updateChannelMask == true )
{
// Re-enable default channels
memcpy1( ( uint8_t* )LoRaMacParams.ChannelsMask, ( uint8_t* )LoRaMacParamsDefaults.ChannelsMask, sizeof( LoRaMacParams.ChannelsMask ) );
}
}
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
if( ( datarate > LORAMAC_TX_MIN_DATARATE ) && ( datarate == DR_8 ) )
{
datarate = DR_4;
}
else if( datarate > LORAMAC_TX_MIN_DATARATE )
{
datarate--;
}
if( datarate == LORAMAC_TX_MIN_DATARATE )
{
if( updateChannelMask == true )
{
#if defined( USE_BAND_915 )
// Re-enable default channels
memcpy1( ( uint8_t* )LoRaMacParams.ChannelsMask, ( uint8_t* )LoRaMacParamsDefaults.ChannelsMask, sizeof( LoRaMacParams.ChannelsMask ) );
#else // defined( USE_BAND_915_HYBRID )
// Re-enable default channels
ReenableChannels( LoRaMacParamsDefaults.ChannelsMask[4], LoRaMacParams.ChannelsMask );
#endif
}
}
#else
#error "Please define a frequency band in the compiler options."
#endif
}
}
}
}
*datarateOut = datarate;
return adrAckReq;
}
static LoRaMacStatus_t AddMacCommand( uint8_t cmd, uint8_t p1, uint8_t p2 )
{
LoRaMacStatus_t status = LORAMAC_STATUS_BUSY;
// The maximum buffer length must take MAC commands to re-send into account.
uint8_t bufLen = LORA_MAC_COMMAND_MAX_LENGTH - MacCommandsBufferToRepeatIndex;
switch( cmd )
{
case MOTE_MAC_LINK_CHECK_REQ:
if( MacCommandsBufferIndex < bufLen )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// No payload for this command
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_LINK_ADR_ANS:
if( MacCommandsBufferIndex < ( bufLen - 1 ) )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// Margin
MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_DUTY_CYCLE_ANS:
if( MacCommandsBufferIndex < bufLen )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// No payload for this answer
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_RX_PARAM_SETUP_ANS:
if( MacCommandsBufferIndex < ( bufLen - 1 ) )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// Status: Datarate ACK, Channel ACK
MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_DEV_STATUS_ANS:
if( MacCommandsBufferIndex < ( bufLen - 2 ) )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// 1st byte Battery
// 2nd byte Margin
MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
MacCommandsBuffer[MacCommandsBufferIndex++] = p2;
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_NEW_CHANNEL_ANS:
if( MacCommandsBufferIndex < ( bufLen - 1 ) )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// Status: Datarate range OK, Channel frequency OK
MacCommandsBuffer[MacCommandsBufferIndex++] = p1;
status = LORAMAC_STATUS_OK;
}
break;
case MOTE_MAC_RX_TIMING_SETUP_ANS:
if( MacCommandsBufferIndex < bufLen )
{
MacCommandsBuffer[MacCommandsBufferIndex++] = cmd;
// No payload for this answer
status = LORAMAC_STATUS_OK;
}
break;
default:
return LORAMAC_STATUS_SERVICE_UNKNOWN;
}
if( status == LORAMAC_STATUS_OK )
{
MacCommandsInNextTx = true;
}
return status;
}
static uint8_t ParseMacCommandsToRepeat( uint8_t* cmdBufIn, uint8_t length, uint8_t* cmdBufOut )
{
uint8_t i = 0;
uint8_t cmdCount = 0;
if( ( cmdBufIn == NULL ) || ( cmdBufOut == NULL ) )
{
return 0;
}
for( i = 0; i < length; i++ )
{
switch( cmdBufIn[i] )
{
// STICKY
case MOTE_MAC_RX_PARAM_SETUP_ANS:
{
cmdBufOut[cmdCount++] = cmdBufIn[i++];
cmdBufOut[cmdCount++] = cmdBufIn[i];
break;
}
case MOTE_MAC_RX_TIMING_SETUP_ANS:
{
cmdBufOut[cmdCount++] = cmdBufIn[i];
break;
}
// NON-STICKY
case MOTE_MAC_DEV_STATUS_ANS:
{ // 2 bytes payload
i += 2;
break;
}
case MOTE_MAC_LINK_ADR_ANS:
case MOTE_MAC_NEW_CHANNEL_ANS:
{ // 1 byte payload
i++;
break;
}
case MOTE_MAC_DUTY_CYCLE_ANS:
case MOTE_MAC_LINK_CHECK_REQ:
{ // 0 byte payload
break;
}
default:
break;
}
}
return cmdCount;
}
static void ProcessMacCommands( uint8_t *payload, uint8_t macIndex, uint8_t commandsSize, uint8_t snr )
{
while( macIndex < commandsSize )
{
// Decode Frame MAC commands
switch( payload[macIndex++] )
{
case SRV_MAC_LINK_CHECK_ANS:
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK;
MlmeConfirm.DemodMargin = payload[macIndex++];
MlmeConfirm.NbGateways = payload[macIndex++];
break;
case SRV_MAC_LINK_ADR_REQ:
{
uint8_t i;
uint8_t status = 0x07;
uint16_t chMask;
int8_t txPower = 0;
int8_t datarate = 0;
uint8_t nbRep = 0;
uint8_t chMaskCntl = 0;
uint16_t channelsMask[6] = { 0, 0, 0, 0, 0, 0 };
// Initialize local copy of the channels mask array
for( i = 0; i < 6; i++ )
{
channelsMask[i] = LoRaMacParams.ChannelsMask[i];
}
datarate = payload[macIndex++];
txPower = datarate & 0x0F;
datarate = ( datarate >> 4 ) & 0x0F;
if( ( AdrCtrlOn == false ) &&
( ( LoRaMacParams.ChannelsDatarate != datarate ) || ( LoRaMacParams.ChannelsTxPower != txPower ) ) )
{ // ADR disabled don't handle ADR requests if server tries to change datarate or txpower
// Answer the server with fail status
// Power ACK = 0
// Data rate ACK = 0
// Channel mask = 0
AddMacCommand( MOTE_MAC_LINK_ADR_ANS, 0, 0 );
macIndex += 3; // Skip over the remaining bytes of the request
break;
}
chMask = ( uint16_t )payload[macIndex++];
chMask |= ( uint16_t )payload[macIndex++] << 8;
nbRep = payload[macIndex++];
chMaskCntl = ( nbRep >> 4 ) & 0x07;
nbRep &= 0x0F;
if( nbRep == 0 )
{
nbRep = 1;
}
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
if( ( chMaskCntl == 0 ) && ( chMask == 0 ) )
{
status &= 0xFE; // Channel mask KO
}
else if( ( ( chMaskCntl >= 1 ) && ( chMaskCntl <= 5 )) ||
( chMaskCntl >= 7 ) )
{
// RFU
status &= 0xFE; // Channel mask KO
}
else
{
for( i = 0; i < LORA_MAX_NB_CHANNELS; i++ )
{
if( chMaskCntl == 6 )
{
if( Channels[i].Frequency != 0 )
{
chMask |= 1 << i;
}
}
else
{
if( ( ( chMask & ( 1 << i ) ) != 0 ) &&
( Channels[i].Frequency == 0 ) )
{// Trying to enable an undefined channel
status &= 0xFE; // Channel mask KO
}
}
}
channelsMask[0] = chMask;
}
#elif defined( USE_BAND_470 )
if( chMaskCntl == 6 )
{
// Enable all 125 kHz channels
for( uint8_t i = 0, k = 0; i < LORA_MAX_NB_CHANNELS; i += 16, k++ )
{
for( uint8_t j = 0; j < 16; j++ )
{
if( Channels[i + j].Frequency != 0 )
{
channelsMask[k] |= 1 << j;
}
}
}
}
else if( chMaskCntl == 7 )
{
status &= 0xFE; // Channel mask KO
}
else
{
for( uint8_t i = 0; i < 16; i++ )
{
if( ( ( chMask & ( 1 << i ) ) != 0 ) &&
( Channels[chMaskCntl * 16 + i].Frequency == 0 ) )
{// Trying to enable an undefined channel
status &= 0xFE; // Channel mask KO
}
}
channelsMask[chMaskCntl] = chMask;
}
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
if( chMaskCntl == 6 )
{
// Enable all 125 kHz channels
channelsMask[0] = 0xFFFF;
channelsMask[1] = 0xFFFF;
channelsMask[2] = 0xFFFF;
channelsMask[3] = 0xFFFF;
// Apply chMask to channels 64 to 71
channelsMask[4] = chMask;
}
else if( chMaskCntl == 7 )
{
// Disable all 125 kHz channels
channelsMask[0] = 0x0000;
channelsMask[1] = 0x0000;
channelsMask[2] = 0x0000;
channelsMask[3] = 0x0000;
// Apply chMask to channels 64 to 71
channelsMask[4] = chMask;
}
else if( chMaskCntl == 5 )
{
// RFU
status &= 0xFE; // Channel mask KO
}
else
{
channelsMask[chMaskCntl] = chMask;
// FCC 15.247 paragraph F mandates to hop on at least 2 125 kHz channels
if( ( datarate < DR_4 ) && ( CountNbEnabled125kHzChannels( channelsMask ) < 2 ) )
{
status &= 0xFE; // Channel mask KO
}
#if defined( USE_BAND_915_HYBRID )
if( ValidateChannelMask( channelsMask ) == false )
{
status &= 0xFE; // Channel mask KO
}
#endif
}
#else
#error "Please define a frequency band in the compiler options."
#endif
if( ValidateDatarate( datarate, channelsMask ) == false )
{
status &= 0xFD; // Datarate KO
}
//
// Remark MaxTxPower = 0 and MinTxPower = 5
//
if( ValueInRange( txPower, LORAMAC_MAX_TX_POWER, LORAMAC_MIN_TX_POWER ) == false )
{
status &= 0xFB; // TxPower KO
}
if( ( status & 0x07 ) == 0x07 )
{
LoRaMacParams.ChannelsDatarate = datarate;
LoRaMacParams.ChannelsTxPower = txPower;
memcpy1( ( uint8_t* )LoRaMacParams.ChannelsMask, ( uint8_t* )channelsMask, sizeof( LoRaMacParams.ChannelsMask ) );
LoRaMacParams.ChannelsNbRep = nbRep;
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
// Reset ChannelsMaskRemaining to the new ChannelsMask
ChannelsMaskRemaining[0] &= channelsMask[0];
ChannelsMaskRemaining[1] &= channelsMask[1];
ChannelsMaskRemaining[2] &= channelsMask[2];
ChannelsMaskRemaining[3] &= channelsMask[3];
ChannelsMaskRemaining[4] = channelsMask[4];
ChannelsMaskRemaining[5] = channelsMask[5];
#endif
}
AddMacCommand( MOTE_MAC_LINK_ADR_ANS, status, 0 );
}
break;
case SRV_MAC_DUTY_CYCLE_REQ:
MaxDCycle = payload[macIndex++];
AggregatedDCycle = 1 << MaxDCycle;
AddMacCommand( MOTE_MAC_DUTY_CYCLE_ANS, 0, 0 );
break;
case SRV_MAC_RX_PARAM_SETUP_REQ:
{
uint8_t status = 0x07;
int8_t datarate = 0;
int8_t drOffset = 0;
uint32_t freq = 0;
drOffset = ( payload[macIndex] >> 4 ) & 0x07;
datarate = payload[macIndex] & 0x0F;
macIndex++;
freq = ( uint32_t )payload[macIndex++];
freq |= ( uint32_t )payload[macIndex++] << 8;
freq |= ( uint32_t )payload[macIndex++] << 16;
freq *= 100;
if( Rx2FreqInRange( freq ) == false )
{
status &= 0xFE; // Channel frequency KO
}
if( ValueInRange( datarate, LORAMAC_RX_MIN_DATARATE, LORAMAC_RX_MAX_DATARATE ) == false )
{
status &= 0xFD; // Datarate KO
}
#if ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
if( ( ValueInRange( datarate, DR_5, DR_7 ) == true ) ||
( datarate > DR_13 ) )
{
status &= 0xFD; // Datarate KO
}
#endif
if( ValueInRange( drOffset, LORAMAC_MIN_RX1_DR_OFFSET, LORAMAC_MAX_RX1_DR_OFFSET ) == false )
{
status &= 0xFB; // Rx1DrOffset range KO
}
if( ( status & 0x07 ) == 0x07 )
{
LoRaMacParams.Rx2Channel.Datarate = datarate;
LoRaMacParams.Rx2Channel.Frequency = freq;
LoRaMacParams.Rx1DrOffset = drOffset;
}
AddMacCommand( MOTE_MAC_RX_PARAM_SETUP_ANS, status, 0 );
}
break;
case SRV_MAC_DEV_STATUS_REQ:
{
uint8_t batteryLevel = BAT_LEVEL_NO_MEASURE;
if( ( LoRaMacCallbacks != NULL ) && ( LoRaMacCallbacks->GetBatteryLevel != NULL ) )
{
batteryLevel = LoRaMacCallbacks->GetBatteryLevel( );
}
AddMacCommand( MOTE_MAC_DEV_STATUS_ANS, batteryLevel, snr );
break;
}
case SRV_MAC_NEW_CHANNEL_REQ:
{
uint8_t status = 0x03;
#if defined( USE_BAND_470 ) || defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
status &= 0xFC; // Channel frequency and datarate KO
macIndex += 5;
#else
int8_t channelIndex = 0;
ChannelParams_t chParam;
channelIndex = payload[macIndex++];
chParam.Frequency = ( uint32_t )payload[macIndex++];
chParam.Frequency |= ( uint32_t )payload[macIndex++] << 8;
chParam.Frequency |= ( uint32_t )payload[macIndex++] << 16;
chParam.Frequency *= 100;
chParam.DrRange.Value = payload[macIndex++];
LoRaMacState |= LORAMAC_TX_CONFIG;
if( chParam.Frequency == 0 )
{
if( channelIndex < 3 )
{
status &= 0xFC;
}
else
{
if( LoRaMacChannelRemove( channelIndex ) != LORAMAC_STATUS_OK )
{
status &= 0xFC;
}
}
}
else
{
switch( LoRaMacChannelAdd( channelIndex, chParam ) )
{
case LORAMAC_STATUS_OK:
{
break;
}
case LORAMAC_STATUS_FREQUENCY_INVALID:
{
status &= 0xFE;
break;
}
case LORAMAC_STATUS_DATARATE_INVALID:
{
status &= 0xFD;
break;
}
case LORAMAC_STATUS_FREQ_AND_DR_INVALID:
{
status &= 0xFC;
break;
}
default:
{
status &= 0xFC;
break;
}
}
}
LoRaMacState &= ~LORAMAC_TX_CONFIG;
#endif
AddMacCommand( MOTE_MAC_NEW_CHANNEL_ANS, status, 0 );
}
break;
case SRV_MAC_RX_TIMING_SETUP_REQ:
{
uint8_t delay = payload[macIndex++] & 0x0F;
if( delay == 0 )
{
delay++;
}
LoRaMacParams.ReceiveDelay1 = delay * 1e3;
LoRaMacParams.ReceiveDelay2 = LoRaMacParams.ReceiveDelay1 + 1e3;
AddMacCommand( MOTE_MAC_RX_TIMING_SETUP_ANS, 0, 0 );
}
break;
default:
// Unknown command. ABORT MAC commands processing
return;
}
}
}
LoRaMacStatus_t Send( LoRaMacHeader_t *macHdr, uint8_t fPort, void *fBuffer, uint16_t fBufferSize )
{
LoRaMacFrameCtrl_t fCtrl;
LoRaMacStatus_t status = LORAMAC_STATUS_PARAMETER_INVALID;
fCtrl.Value = 0;
fCtrl.Bits.FOptsLen = 0;
fCtrl.Bits.FPending = 0;
fCtrl.Bits.Ack = false;
fCtrl.Bits.AdrAckReq = false;
fCtrl.Bits.Adr = AdrCtrlOn;
// Prepare the frame
status = PrepareFrame( macHdr, &fCtrl, fPort, fBuffer, fBufferSize );
// Validate status
if( status != LORAMAC_STATUS_OK )
{
return status;
}
// Reset confirm parameters
McpsConfirm.NbRetries = 0;
McpsConfirm.AckReceived = false;
McpsConfirm.UpLinkCounter = UpLinkCounter;
status = ScheduleTx( );
return status;
}
static LoRaMacStatus_t ScheduleTx( void )
{
TimerTime_t dutyCycleTimeOff = 0;
// Check if the device is off
if( MaxDCycle == 255 )
{
return LORAMAC_STATUS_DEVICE_OFF;
}
if( MaxDCycle == 0 )
{
AggregatedTimeOff = 0;
}
// Select channel
while( SetNextChannel( &dutyCycleTimeOff ) == false )
{
// Set the default datarate
LoRaMacParams.ChannelsDatarate = LoRaMacParamsDefaults.ChannelsDatarate;
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
// Re-enable default channels LC1, LC2, LC3
LoRaMacParams.ChannelsMask[0] = LoRaMacParams.ChannelsMask[0] | ( LC( 1 ) + LC( 2 ) + LC( 3 ) );
#endif
}
// Compute Rx1 windows parameters
#if ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
RxWindowsParams[0] = ComputeRxWindowParameters( DatarateOffsets[LoRaMacParams.ChannelsDatarate][LoRaMacParams.Rx1DrOffset], LoRaMacParams.SystemMaxRxError );
#else
RxWindowsParams[0] = ComputeRxWindowParameters( MAX( DR_0, LoRaMacParams.ChannelsDatarate - LoRaMacParams.Rx1DrOffset ), LoRaMacParams.SystemMaxRxError );
#endif
// Compute Rx2 windows parameters
RxWindowsParams[1] = ComputeRxWindowParameters( LoRaMacParams.Rx2Channel.Datarate, LoRaMacParams.SystemMaxRxError );
if( IsLoRaMacNetworkJoined == false )
{
RxWindow1Delay = LoRaMacParams.JoinAcceptDelay1 + RxWindowsParams[0].RxOffset;
RxWindow2Delay = LoRaMacParams.JoinAcceptDelay2 + RxWindowsParams[1].RxOffset;
}
else
{
if( ValidatePayloadLength( LoRaMacTxPayloadLen, LoRaMacParams.ChannelsDatarate, MacCommandsBufferIndex ) == false )
{
return LORAMAC_STATUS_LENGTH_ERROR;
}
RxWindow1Delay = LoRaMacParams.ReceiveDelay1 + RxWindowsParams[0].RxOffset;
RxWindow2Delay = LoRaMacParams.ReceiveDelay2 + RxWindowsParams[1].RxOffset;
}
// Schedule transmission of frame
if( dutyCycleTimeOff == 0 )
{
// Try to send now
return SendFrameOnChannel( Channels[Channel] );
}
else
{
// Send later - prepare timer
LoRaMacState |= LORAMAC_TX_DELAYED;
TimerSetValue( &TxDelayedTimer, dutyCycleTimeOff );
TimerStart( &TxDelayedTimer );
return LORAMAC_STATUS_OK;
}
}
static uint16_t JoinDutyCycle( void )
{
uint16_t dutyCycle = 0;
TimerTime_t timeElapsed = TimerGetElapsedTime( LoRaMacInitializationTime );
if( timeElapsed < 3600e3 )
{
dutyCycle = BACKOFF_DC_1_HOUR;
}
else if( timeElapsed < ( 3600e3 + 36000e3 ) )
{
dutyCycle = BACKOFF_DC_10_HOURS;
}
else
{
dutyCycle = BACKOFF_DC_24_HOURS;
}
return dutyCycle;
}
static void CalculateBackOff( uint8_t channel )
{
uint16_t dutyCycle = Bands[Channels[channel].Band].DCycle;
uint16_t joinDutyCycle = 0;
// Reset time-off to initial value.
Bands[Channels[channel].Band].TimeOff = 0;
if( IsLoRaMacNetworkJoined == false )
{
// The node has not joined yet. Apply join duty cycle to all regions.
joinDutyCycle = JoinDutyCycle( );
dutyCycle = MAX( dutyCycle, joinDutyCycle );
// Update Band time-off.
Bands[Channels[channel].Band].TimeOff = TxTimeOnAir * dutyCycle - TxTimeOnAir;
}
else
{
if( DutyCycleOn == true )
{
Bands[Channels[channel].Band].TimeOff = TxTimeOnAir * dutyCycle - TxTimeOnAir;
}
}
// Update Aggregated Time OFF
AggregatedTimeOff = AggregatedTimeOff + ( TxTimeOnAir * AggregatedDCycle - TxTimeOnAir );
}
static int8_t AlternateDatarate( uint16_t nbTrials )
{
int8_t datarate = LORAMAC_TX_MIN_DATARATE;
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
#if defined( USE_BAND_915 )
// Re-enable 500 kHz default channels
LoRaMacParams.ChannelsMask[4] = 0x00FF;
#else // defined( USE_BAND_915_HYBRID )
// Re-enable 500 kHz default channels
ReenableChannels( LoRaMacParamsDefaults.ChannelsMask[4], LoRaMacParams.ChannelsMask );
#endif
if( ( nbTrials & 0x01 ) == 0x01 )
{
datarate = DR_4;
}
else
{
datarate = DR_0;
}
#else
if( ( nbTrials % 48 ) == 0 )
{
datarate = DR_0;
}
else if( ( nbTrials % 32 ) == 0 )
{
datarate = DR_1;
}
else if( ( nbTrials % 24 ) == 0 )
{
datarate = DR_2;
}
else if( ( nbTrials % 16 ) == 0 )
{
datarate = DR_3;
}
else if( ( nbTrials % 8 ) == 0 )
{
datarate = DR_4;
}
else
{
datarate = DR_5;
}
#endif
return datarate;
}
static void ResetMacParameters( void )
{
IsLoRaMacNetworkJoined = false;
// Counters
UpLinkCounter = 0;
DownLinkCounter = 0;
AdrAckCounter = 0;
ChannelsNbRepCounter = 0;
AckTimeoutRetries = 1;
AckTimeoutRetriesCounter = 1;
AckTimeoutRetry = false;
MaxDCycle = 0;
AggregatedDCycle = 1;
MacCommandsBufferIndex = 0;
MacCommandsBufferToRepeatIndex = 0;
IsRxWindowsEnabled = true;
LoRaMacParams.ChannelsTxPower = LoRaMacParamsDefaults.ChannelsTxPower;
LoRaMacParams.ChannelsDatarate = LoRaMacParamsDefaults.ChannelsDatarate;
LoRaMacParams.Rx1DrOffset = LoRaMacParamsDefaults.Rx1DrOffset;
LoRaMacParams.Rx2Channel = LoRaMacParamsDefaults.Rx2Channel;
memcpy1( ( uint8_t* ) LoRaMacParams.ChannelsMask, ( uint8_t* ) LoRaMacParamsDefaults.ChannelsMask, sizeof( LoRaMacParams.ChannelsMask ) );
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
memcpy1( ( uint8_t* ) ChannelsMaskRemaining, ( uint8_t* ) LoRaMacParamsDefaults.ChannelsMask, sizeof( LoRaMacParams.ChannelsMask ) );
#endif
NodeAckRequested = false;
SrvAckRequested = false;
MacCommandsInNextTx = false;
// Reset Multicast downlink counters
MulticastParams_t *cur = MulticastChannels;
while( cur != NULL )
{
cur->DownLinkCounter = 0;
cur = cur->Next;
}
// Initialize channel index.
Channel = LORA_MAX_NB_CHANNELS;
}
LoRaMacStatus_t PrepareFrame( LoRaMacHeader_t *macHdr, LoRaMacFrameCtrl_t *fCtrl, uint8_t fPort, void *fBuffer, uint16_t fBufferSize )
{
uint16_t i;
uint8_t pktHeaderLen = 0;
uint32_t mic = 0;
const void* payload = fBuffer;
uint8_t framePort = fPort;
LoRaMacBufferPktLen = 0;
NodeAckRequested = false;
if( fBuffer == NULL )
{
fBufferSize = 0;
}
LoRaMacTxPayloadLen = fBufferSize;
LoRaMacBuffer[pktHeaderLen++] = macHdr->Value;
switch( macHdr->Bits.MType )
{
case FRAME_TYPE_JOIN_REQ:
LoRaMacBufferPktLen = pktHeaderLen;
memcpyr( LoRaMacBuffer + LoRaMacBufferPktLen, LoRaMacAppEui, 8 );
LoRaMacBufferPktLen += 8;
memcpyr( LoRaMacBuffer + LoRaMacBufferPktLen, LoRaMacDevEui, 8 );
LoRaMacBufferPktLen += 8;
LoRaMacDevNonce = Radio.Random( );
LoRaMacBuffer[LoRaMacBufferPktLen++] = LoRaMacDevNonce & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( LoRaMacDevNonce >> 8 ) & 0xFF;
LoRaMacJoinComputeMic( LoRaMacBuffer, LoRaMacBufferPktLen & 0xFF, LoRaMacAppKey, &mic );
LoRaMacBuffer[LoRaMacBufferPktLen++] = mic & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 8 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 16 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen++] = ( mic >> 24 ) & 0xFF;
break;
case FRAME_TYPE_DATA_CONFIRMED_UP:
NodeAckRequested = true;
//Intentional fallthrough
case FRAME_TYPE_DATA_UNCONFIRMED_UP:
if( IsLoRaMacNetworkJoined == false )
{
return LORAMAC_STATUS_NO_NETWORK_JOINED; // No network has been joined yet
}
fCtrl->Bits.AdrAckReq = AdrNextDr( fCtrl->Bits.Adr, true, &LoRaMacParams.ChannelsDatarate );
if( SrvAckRequested == true )
{
SrvAckRequested = false;
fCtrl->Bits.Ack = 1;
}
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 8 ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 16 ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( LoRaMacDevAddr >> 24 ) & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = fCtrl->Value;
LoRaMacBuffer[pktHeaderLen++] = UpLinkCounter & 0xFF;
LoRaMacBuffer[pktHeaderLen++] = ( UpLinkCounter >> 8 ) & 0xFF;
// Copy the MAC commands which must be re-send into the MAC command buffer
memcpy1( &MacCommandsBuffer[MacCommandsBufferIndex], MacCommandsBufferToRepeat, MacCommandsBufferToRepeatIndex );
MacCommandsBufferIndex += MacCommandsBufferToRepeatIndex;
if( ( payload != NULL ) && ( LoRaMacTxPayloadLen > 0 ) )
{
if( ( MacCommandsBufferIndex <= LORA_MAC_COMMAND_MAX_LENGTH ) && ( MacCommandsInNextTx == true ) )
{
fCtrl->Bits.FOptsLen += MacCommandsBufferIndex;
// Update FCtrl field with new value of OptionsLength
LoRaMacBuffer[0x05] = fCtrl->Value;
for( i = 0; i < MacCommandsBufferIndex; i++ )
{
LoRaMacBuffer[pktHeaderLen++] = MacCommandsBuffer[i];
}
}
}
else
{
if( ( MacCommandsBufferIndex > 0 ) && ( MacCommandsInNextTx ) )
{
LoRaMacTxPayloadLen = MacCommandsBufferIndex;
payload = MacCommandsBuffer;
framePort = 0;
}
}
MacCommandsInNextTx = false;
// Store MAC commands which must be re-send in case the device does not receive a downlink anymore
MacCommandsBufferToRepeatIndex = ParseMacCommandsToRepeat( MacCommandsBuffer, MacCommandsBufferIndex, MacCommandsBufferToRepeat );
if( MacCommandsBufferToRepeatIndex > 0 )
{
MacCommandsInNextTx = true;
}
if( ( payload != NULL ) && ( LoRaMacTxPayloadLen > 0 ) )
{
LoRaMacBuffer[pktHeaderLen++] = framePort;
if( framePort == 0 )
{
LoRaMacPayloadEncrypt( (uint8_t* ) payload, LoRaMacTxPayloadLen, LoRaMacNwkSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, &LoRaMacBuffer[pktHeaderLen] );
}
else
{
LoRaMacPayloadEncrypt( (uint8_t* ) payload, LoRaMacTxPayloadLen, LoRaMacAppSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, &LoRaMacBuffer[pktHeaderLen] );
}
}
LoRaMacBufferPktLen = pktHeaderLen + LoRaMacTxPayloadLen;
LoRaMacComputeMic( LoRaMacBuffer, LoRaMacBufferPktLen, LoRaMacNwkSKey, LoRaMacDevAddr, UP_LINK, UpLinkCounter, &mic );
LoRaMacBuffer[LoRaMacBufferPktLen + 0] = mic & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen + 1] = ( mic >> 8 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen + 2] = ( mic >> 16 ) & 0xFF;
LoRaMacBuffer[LoRaMacBufferPktLen + 3] = ( mic >> 24 ) & 0xFF;
LoRaMacBufferPktLen += LORAMAC_MFR_LEN;
break;
case FRAME_TYPE_PROPRIETARY:
if( ( fBuffer != NULL ) && ( LoRaMacTxPayloadLen > 0 ) )
{
memcpy1( LoRaMacBuffer + pktHeaderLen, ( uint8_t* ) fBuffer, LoRaMacTxPayloadLen );
LoRaMacBufferPktLen = pktHeaderLen + LoRaMacTxPayloadLen;
}
break;
default:
return LORAMAC_STATUS_SERVICE_UNKNOWN;
}
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t SendFrameOnChannel( ChannelParams_t channel )
{
int8_t datarate = Datarates[LoRaMacParams.ChannelsDatarate];
int8_t txPowerIndex = 0;
int8_t txPower = 0;
txPowerIndex = LimitTxPower( LoRaMacParams.ChannelsTxPower, Bands[channel.Band].TxMaxPower );
txPower = TxPowers[txPowerIndex];
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
McpsConfirm.Datarate = LoRaMacParams.ChannelsDatarate;
McpsConfirm.TxPower = txPowerIndex;
McpsConfirm.UpLinkFrequency = channel.Frequency;
Radio.SetChannel( channel.Frequency );
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
if( LoRaMacParams.ChannelsDatarate == DR_7 )
{ // High Speed FSK channel
Radio.SetMaxPayloadLength( MODEM_FSK, LoRaMacBufferPktLen );
Radio.SetTxConfig( MODEM_FSK, txPower, 25e3, 0, datarate * 1e3, 0, 5, false, true, 0, 0, false, 3e3 );
TxTimeOnAir = Radio.TimeOnAir( MODEM_FSK, LoRaMacBufferPktLen );
}
else if( LoRaMacParams.ChannelsDatarate == DR_6 )
{ // High speed LoRa channel
Radio.SetMaxPayloadLength( MODEM_LORA, LoRaMacBufferPktLen );
Radio.SetTxConfig( MODEM_LORA, txPower, 0, 1, datarate, 1, 8, false, true, 0, 0, false, 3e3 );
TxTimeOnAir = Radio.TimeOnAir( MODEM_LORA, LoRaMacBufferPktLen );
}
else
{ // Normal LoRa channel
Radio.SetMaxPayloadLength( MODEM_LORA, LoRaMacBufferPktLen );
Radio.SetTxConfig( MODEM_LORA, txPower, 0, 0, datarate, 1, 8, false, true, 0, 0, false, 3e3 );
TxTimeOnAir = Radio.TimeOnAir( MODEM_LORA, LoRaMacBufferPktLen );
}
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
Radio.SetMaxPayloadLength( MODEM_LORA, LoRaMacBufferPktLen );
if( LoRaMacParams.ChannelsDatarate >= DR_4 )
{ // High speed LoRa channel BW500 kHz
Radio.SetTxConfig( MODEM_LORA, txPower, 0, 2, datarate, 1, 8, false, true, 0, 0, false, 3e3 );
TxTimeOnAir = Radio.TimeOnAir( MODEM_LORA, LoRaMacBufferPktLen );
}
else
{ // Normal LoRa channel
Radio.SetTxConfig( MODEM_LORA, txPower, 0, 0, datarate, 1, 8, false, true, 0, 0, false, 3e3 );
TxTimeOnAir = Radio.TimeOnAir( MODEM_LORA, LoRaMacBufferPktLen );
}
#elif defined( USE_BAND_470 )
Radio.SetMaxPayloadLength( MODEM_LORA, LoRaMacBufferPktLen );
Radio.SetTxConfig( MODEM_LORA, txPower, 0, 0, datarate, 1, 8, false, true, 0, 0, false, 3e3 );
TxTimeOnAir = Radio.TimeOnAir( MODEM_LORA, LoRaMacBufferPktLen );
#else
#error "Please define a frequency band in the compiler options."
#endif
// Store the time on air
McpsConfirm.TxTimeOnAir = TxTimeOnAir;
MlmeConfirm.TxTimeOnAir = TxTimeOnAir;
// Starts the MAC layer status check timer
TimerSetValue( &MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT );
TimerStart( &MacStateCheckTimer );
if( IsLoRaMacNetworkJoined == false )
{
JoinRequestTrials++;
}
// Send now
Radio.Send( LoRaMacBuffer, LoRaMacBufferPktLen );
LoRaMacState |= LORAMAC_TX_RUNNING;
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t SetTxContinuousWave( uint16_t timeout )
{
int8_t txPowerIndex = 0;
int8_t txPower = 0;
txPowerIndex = LimitTxPower( LoRaMacParams.ChannelsTxPower, Bands[Channels[Channel].Band].TxMaxPower );
txPower = TxPowers[txPowerIndex];
// Starts the MAC layer status check timer
TimerSetValue( &MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT );
TimerStart( &MacStateCheckTimer );
Radio.SetTxContinuousWave( Channels[Channel].Frequency, txPower, timeout );
LoRaMacState |= LORAMAC_TX_RUNNING;
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t SetTxContinuousWave1( uint16_t timeout, uint32_t frequency, uint8_t power )
{
Radio.SetTxContinuousWave( frequency, power, timeout );
// Starts the MAC layer status check timer
TimerSetValue( &MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT );
TimerStart( &MacStateCheckTimer );
LoRaMacState |= LORAMAC_TX_RUNNING;
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMacInitialization( LoRaMacPrimitives_t *primitives, LoRaMacCallback_t *callbacks )
{
if( primitives == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( primitives->MacMcpsConfirm == NULL ) ||
( primitives->MacMcpsIndication == NULL ) ||
( primitives->MacMlmeConfirm == NULL ) )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
LoRaMacPrimitives = primitives;
LoRaMacCallbacks = callbacks;
LoRaMacFlags.Value = 0;
LoRaMacDeviceClass = CLASS_A;
LoRaMacState = LORAMAC_IDLE;
JoinRequestTrials = 0;
MaxJoinRequestTrials = 1;
RepeaterSupport = false;
// Reset duty cycle times
AggregatedLastTxDoneTime = 0;
AggregatedTimeOff = 0;
// Duty cycle
#if defined( USE_BAND_433 )
DutyCycleOn = true;
#elif defined( USE_BAND_470 )
DutyCycleOn = false;
#elif defined( USE_BAND_780 )
DutyCycleOn = true;
#elif defined( USE_BAND_868 )
DutyCycleOn = true;
#elif defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
DutyCycleOn = false;
#else
#error "Please define a frequency band in the compiler options."
#endif
// Reset to defaults
LoRaMacParamsDefaults.ChannelsTxPower = LORAMAC_DEFAULT_TX_POWER;
LoRaMacParamsDefaults.ChannelsDatarate = LORAMAC_DEFAULT_DATARATE;
LoRaMacParamsDefaults.SystemMaxRxError = 10;
LoRaMacParamsDefaults.MinRxSymbols = 6;
LoRaMacParamsDefaults.MaxRxWindow = MAX_RX_WINDOW;
LoRaMacParamsDefaults.ReceiveDelay1 = RECEIVE_DELAY1;
LoRaMacParamsDefaults.ReceiveDelay2 = RECEIVE_DELAY2;
LoRaMacParamsDefaults.JoinAcceptDelay1 = JOIN_ACCEPT_DELAY1;
LoRaMacParamsDefaults.JoinAcceptDelay2 = JOIN_ACCEPT_DELAY2;
LoRaMacParamsDefaults.ChannelsNbRep = 1;
LoRaMacParamsDefaults.Rx1DrOffset = 0;
LoRaMacParamsDefaults.Rx2Channel = ( Rx2ChannelParams_t )RX_WND_2_CHANNEL;
// Channel mask
#if defined( USE_BAND_433 )
LoRaMacParamsDefaults.ChannelsMask[0] = LC( 1 ) + LC( 2 ) + LC( 3 );
#elif defined ( USE_BAND_470 )
LoRaMacParamsDefaults.ChannelsMask[0] = 0xFFFF;
LoRaMacParamsDefaults.ChannelsMask[1] = 0xFFFF;
LoRaMacParamsDefaults.ChannelsMask[2] = 0xFFFF;
LoRaMacParamsDefaults.ChannelsMask[3] = 0xFFFF;
LoRaMacParamsDefaults.ChannelsMask[4] = 0xFFFF;
LoRaMacParamsDefaults.ChannelsMask[5] = 0xFFFF;
#elif defined( USE_BAND_780 )
LoRaMacParamsDefaults.ChannelsMask[0] = LC( 1 ) + LC( 2 ) + LC( 3 );
#elif defined( USE_BAND_868 )
LoRaMacParamsDefaults.ChannelsMask[0] = LC( 1 ) + LC( 2 ) + LC( 3 );
#elif defined( USE_BAND_915 )
LoRaMacParamsDefaults.ChannelsMask[0] = 0xFFFF;
LoRaMacParamsDefaults.ChannelsMask[1] = 0xFFFF;
LoRaMacParamsDefaults.ChannelsMask[2] = 0xFFFF;
LoRaMacParamsDefaults.ChannelsMask[3] = 0xFFFF;
LoRaMacParamsDefaults.ChannelsMask[4] = 0x00FF;
LoRaMacParamsDefaults.ChannelsMask[5] = 0x0000;
#elif defined( USE_BAND_915_HYBRID )
LoRaMacParamsDefaults.ChannelsMask[0] = 0x00FF;
LoRaMacParamsDefaults.ChannelsMask[1] = 0x0000;
LoRaMacParamsDefaults.ChannelsMask[2] = 0x0000;
LoRaMacParamsDefaults.ChannelsMask[3] = 0x0000;
LoRaMacParamsDefaults.ChannelsMask[4] = 0x0001;
LoRaMacParamsDefaults.ChannelsMask[5] = 0x0000;
#else
#error "Please define a frequency band in the compiler options."
#endif
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
// 125 kHz channels
for( uint8_t i = 0; i < LORA_MAX_NB_CHANNELS - 8; i++ )
{
Channels[i].Frequency = 902.3e6 + i * 200e3;
Channels[i].DrRange.Value = ( DR_3 << 4 ) | DR_0;
Channels[i].Band = 0;
}
// 500 kHz channels
for( uint8_t i = LORA_MAX_NB_CHANNELS - 8; i < LORA_MAX_NB_CHANNELS; i++ )
{
Channels[i].Frequency = 903.0e6 + ( i - ( LORA_MAX_NB_CHANNELS - 8 ) ) * 1.6e6;
Channels[i].DrRange.Value = ( DR_4 << 4 ) | DR_4;
Channels[i].Band = 0;
}
#elif defined( USE_BAND_470 )
// 125 kHz channels
for( uint8_t i = 0; i < LORA_MAX_NB_CHANNELS; i++ )
{
Channels[i].Frequency = 470.3e6 + i * 200e3;
Channels[i].DrRange.Value = ( DR_5 << 4 ) | DR_0;
Channels[i].Band = 0;
}
#endif
// Init parameters which are not set in function ResetMacParameters
LoRaMacParams.SystemMaxRxError = LoRaMacParamsDefaults.SystemMaxRxError;
LoRaMacParams.MinRxSymbols = LoRaMacParamsDefaults.MinRxSymbols;
LoRaMacParams.MaxRxWindow = LoRaMacParamsDefaults.MaxRxWindow;
LoRaMacParams.ReceiveDelay1 = LoRaMacParamsDefaults.ReceiveDelay1;
LoRaMacParams.ReceiveDelay2 = LoRaMacParamsDefaults.ReceiveDelay2;
LoRaMacParams.JoinAcceptDelay1 = LoRaMacParamsDefaults.JoinAcceptDelay1;
LoRaMacParams.JoinAcceptDelay2 = LoRaMacParamsDefaults.JoinAcceptDelay2;
LoRaMacParams.ChannelsNbRep = LoRaMacParamsDefaults.ChannelsNbRep;
ResetMacParameters( );
// Initialize timers
TimerInit( &MacStateCheckTimer, OnMacStateCheckTimerEvent );
TimerSetValue( &MacStateCheckTimer, MAC_STATE_CHECK_TIMEOUT );
TimerInit( &TxDelayedTimer, OnTxDelayedTimerEvent );
TimerInit( &RxWindowTimer1, OnRxWindow1TimerEvent );
TimerInit( &RxWindowTimer2, OnRxWindow2TimerEvent );
TimerInit( &AckTimeoutTimer, OnAckTimeoutTimerEvent );
// Store the current initialization time
LoRaMacInitializationTime = TimerGetCurrentTime( );
// Initialize Radio driver
RadioEvents.TxDone = OnRadioTxDone;
RadioEvents.RxDone = OnRadioRxDone;
RadioEvents.RxError = OnRadioRxError;
RadioEvents.TxTimeout = OnRadioTxTimeout;
RadioEvents.RxTimeout = OnRadioRxTimeout;
Radio.Init( &RadioEvents );
// Random seed initialization
srand1( Radio.Random( ) );
PublicNetwork = true;
Radio.SetPublicNetwork( PublicNetwork );
Radio.Sleep( );
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMacQueryTxPossible( uint8_t size, LoRaMacTxInfo_t* txInfo )
{
int8_t datarate = LoRaMacParamsDefaults.ChannelsDatarate;
uint8_t fOptLen = MacCommandsBufferIndex + MacCommandsBufferToRepeatIndex;
if( txInfo == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
AdrNextDr( AdrCtrlOn, false, &datarate );
if( RepeaterSupport == true )
{
txInfo->CurrentPayloadSize = MaxPayloadOfDatarateRepeater[datarate];
}
else
{
txInfo->CurrentPayloadSize = MaxPayloadOfDatarate[datarate];
}
if( txInfo->CurrentPayloadSize >= fOptLen )
{
txInfo->MaxPossiblePayload = txInfo->CurrentPayloadSize - fOptLen;
}
else
{
return LORAMAC_STATUS_MAC_CMD_LENGTH_ERROR;
}
if( ValidatePayloadLength( size, datarate, 0 ) == false )
{
return LORAMAC_STATUS_LENGTH_ERROR;
}
if( ValidatePayloadLength( size, datarate, fOptLen ) == false )
{
return LORAMAC_STATUS_MAC_CMD_LENGTH_ERROR;
}
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMacMibGetRequestConfirm( MibRequestConfirm_t *mibGet )
{
LoRaMacStatus_t status = LORAMAC_STATUS_OK;
if( mibGet == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
switch( mibGet->Type )
{
case MIB_DEVICE_CLASS:
{
mibGet->Param.Class = LoRaMacDeviceClass;
break;
}
case MIB_NETWORK_JOINED:
{
mibGet->Param.IsNetworkJoined = IsLoRaMacNetworkJoined;
break;
}
case MIB_ADR:
{
mibGet->Param.AdrEnable = AdrCtrlOn;
break;
}
case MIB_NET_ID:
{
mibGet->Param.NetID = LoRaMacNetID;
break;
}
case MIB_DEV_ADDR:
{
mibGet->Param.DevAddr = LoRaMacDevAddr;
break;
}
case MIB_NWK_SKEY:
{
mibGet->Param.NwkSKey = LoRaMacNwkSKey;
break;
}
case MIB_APP_SKEY:
{
mibGet->Param.AppSKey = LoRaMacAppSKey;
break;
}
case MIB_PUBLIC_NETWORK:
{
mibGet->Param.EnablePublicNetwork = PublicNetwork;
break;
}
case MIB_REPEATER_SUPPORT:
{
mibGet->Param.EnableRepeaterSupport = RepeaterSupport;
break;
}
case MIB_CHANNELS:
{
mibGet->Param.ChannelList = Channels;
break;
}
case MIB_RX2_CHANNEL:
{
mibGet->Param.Rx2Channel = LoRaMacParams.Rx2Channel;
break;
}
case MIB_RX2_DEFAULT_CHANNEL:
{
mibGet->Param.Rx2Channel = LoRaMacParamsDefaults.Rx2Channel;
break;
}
case MIB_CHANNELS_DEFAULT_MASK:
{
mibGet->Param.ChannelsDefaultMask = LoRaMacParamsDefaults.ChannelsMask;
break;
}
case MIB_CHANNELS_MASK:
{
mibGet->Param.ChannelsMask = LoRaMacParams.ChannelsMask;
break;
}
case MIB_CHANNELS_NB_REP:
{
mibGet->Param.ChannelNbRep = LoRaMacParams.ChannelsNbRep;
break;
}
case MIB_MAX_RX_WINDOW_DURATION:
{
mibGet->Param.MaxRxWindow = LoRaMacParams.MaxRxWindow;
break;
}
case MIB_RECEIVE_DELAY_1:
{
mibGet->Param.ReceiveDelay1 = LoRaMacParams.ReceiveDelay1;
break;
}
case MIB_RECEIVE_DELAY_2:
{
mibGet->Param.ReceiveDelay2 = LoRaMacParams.ReceiveDelay2;
break;
}
case MIB_JOIN_ACCEPT_DELAY_1:
{
mibGet->Param.JoinAcceptDelay1 = LoRaMacParams.JoinAcceptDelay1;
break;
}
case MIB_JOIN_ACCEPT_DELAY_2:
{
mibGet->Param.JoinAcceptDelay2 = LoRaMacParams.JoinAcceptDelay2;
break;
}
case MIB_CHANNELS_DEFAULT_DATARATE:
{
mibGet->Param.ChannelsDefaultDatarate = LoRaMacParamsDefaults.ChannelsDatarate;
break;
}
case MIB_CHANNELS_DATARATE:
{
mibGet->Param.ChannelsDatarate = LoRaMacParams.ChannelsDatarate;
break;
}
case MIB_CHANNELS_DEFAULT_TX_POWER:
{
mibGet->Param.ChannelsDefaultTxPower = LoRaMacParamsDefaults.ChannelsTxPower;
break;
}
case MIB_CHANNELS_TX_POWER:
{
mibGet->Param.ChannelsTxPower = LoRaMacParams.ChannelsTxPower;
break;
}
case MIB_UPLINK_COUNTER:
{
mibGet->Param.UpLinkCounter = UpLinkCounter;
break;
}
case MIB_DOWNLINK_COUNTER:
{
mibGet->Param.DownLinkCounter = DownLinkCounter;
break;
}
case MIB_MULTICAST_CHANNEL:
{
mibGet->Param.MulticastList = MulticastChannels;
break;
}
case MIB_SYSTEM_MAX_RX_ERROR:
{
mibGet->Param.SystemMaxRxError = LoRaMacParams.SystemMaxRxError;
break;
}
case MIB_MIN_RX_SYMBOLS:
{
mibGet->Param.MinRxSymbols = LoRaMacParams.MinRxSymbols;
break;
}
default:
status = LORAMAC_STATUS_SERVICE_UNKNOWN;
break;
}
return status;
}
LoRaMacStatus_t LoRaMacMibSetRequestConfirm( MibRequestConfirm_t *mibSet )
{
LoRaMacStatus_t status = LORAMAC_STATUS_OK;
if( mibSet == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING )
{
return LORAMAC_STATUS_BUSY;
}
switch( mibSet->Type )
{
case MIB_DEVICE_CLASS:
{
LoRaMacDeviceClass = mibSet->Param.Class;
switch( LoRaMacDeviceClass )
{
case CLASS_A:
{
// Set the radio into sleep to setup a defined state
Radio.Sleep( );
break;
}
case CLASS_B:
{
break;
}
case CLASS_C:
{
// Set the NodeAckRequested indicator to default
NodeAckRequested = false;
OnRxWindow2TimerEvent( );
break;
}
}
break;
}
case MIB_NETWORK_JOINED:
{
IsLoRaMacNetworkJoined = mibSet->Param.IsNetworkJoined;
break;
}
case MIB_ADR:
{
AdrCtrlOn = mibSet->Param.AdrEnable;
break;
}
case MIB_NET_ID:
{
LoRaMacNetID = mibSet->Param.NetID;
break;
}
case MIB_DEV_ADDR:
{
LoRaMacDevAddr = mibSet->Param.DevAddr;
break;
}
case MIB_NWK_SKEY:
{
if( mibSet->Param.NwkSKey != NULL )
{
memcpy1( LoRaMacNwkSKey, mibSet->Param.NwkSKey,
sizeof( LoRaMacNwkSKey ) );
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_APP_SKEY:
{
if( mibSet->Param.AppSKey != NULL )
{
memcpy1( LoRaMacAppSKey, mibSet->Param.AppSKey,
sizeof( LoRaMacAppSKey ) );
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_PUBLIC_NETWORK:
{
PublicNetwork = mibSet->Param.EnablePublicNetwork;
Radio.SetPublicNetwork( PublicNetwork );
break;
}
case MIB_REPEATER_SUPPORT:
{
RepeaterSupport = mibSet->Param.EnableRepeaterSupport;
break;
}
case MIB_RX2_CHANNEL:
{
LoRaMacParams.Rx2Channel = mibSet->Param.Rx2Channel;
break;
}
case MIB_RX2_DEFAULT_CHANNEL:
{
LoRaMacParamsDefaults.Rx2Channel = mibSet->Param.Rx2DefaultChannel;
break;
}
case MIB_CHANNELS_DEFAULT_MASK:
{
if( mibSet->Param.ChannelsDefaultMask )
{
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
bool chanMaskState = true;
#if defined( USE_BAND_915_HYBRID )
chanMaskState = ValidateChannelMask( mibSet->Param.ChannelsDefaultMask );
#endif
if( chanMaskState == true )
{
if( ( CountNbEnabled125kHzChannels( mibSet->Param.ChannelsMask ) < 2 ) &&
( CountNbEnabled125kHzChannels( mibSet->Param.ChannelsMask ) > 0 ) )
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
else
{
memcpy1( ( uint8_t* ) LoRaMacParamsDefaults.ChannelsMask,
( uint8_t* ) mibSet->Param.ChannelsDefaultMask, sizeof( LoRaMacParamsDefaults.ChannelsMask ) );
for ( uint8_t i = 0; i < sizeof( LoRaMacParamsDefaults.ChannelsMask ) / 2; i++ )
{
// Disable channels which are no longer available
ChannelsMaskRemaining[i] &= LoRaMacParamsDefaults.ChannelsMask[i];
}
}
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
#elif defined( USE_BAND_470 )
memcpy1( ( uint8_t* ) LoRaMacParamsDefaults.ChannelsMask,
( uint8_t* ) mibSet->Param.ChannelsDefaultMask, sizeof( LoRaMacParamsDefaults.ChannelsMask ) );
#else
memcpy1( ( uint8_t* ) LoRaMacParamsDefaults.ChannelsMask,
( uint8_t* ) mibSet->Param.ChannelsDefaultMask, 2 );
#endif
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_CHANNELS_MASK:
{
if( mibSet->Param.ChannelsMask )
{
#if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
bool chanMaskState = true;
#if defined( USE_BAND_915_HYBRID )
chanMaskState = ValidateChannelMask( mibSet->Param.ChannelsMask );
#endif
if( chanMaskState == true )
{
if( ( CountNbEnabled125kHzChannels( mibSet->Param.ChannelsMask ) < 2 ) &&
( CountNbEnabled125kHzChannels( mibSet->Param.ChannelsMask ) > 0 ) )
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
else
{
memcpy1( ( uint8_t* ) LoRaMacParams.ChannelsMask,
( uint8_t* ) mibSet->Param.ChannelsMask, sizeof( LoRaMacParams.ChannelsMask ) );
for ( uint8_t i = 0; i < sizeof( LoRaMacParams.ChannelsMask ) / 2; i++ )
{
// Disable channels which are no longer available
ChannelsMaskRemaining[i] &= LoRaMacParams.ChannelsMask[i];
}
}
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
#elif defined( USE_BAND_470 )
memcpy1( ( uint8_t* ) LoRaMacParams.ChannelsMask,
( uint8_t* ) mibSet->Param.ChannelsMask, sizeof( LoRaMacParams.ChannelsMask ) );
#else
memcpy1( ( uint8_t* ) LoRaMacParams.ChannelsMask,
( uint8_t* ) mibSet->Param.ChannelsMask, 2 );
#endif
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_CHANNELS_NB_REP:
{
if( ( mibSet->Param.ChannelNbRep >= 1 ) &&
( mibSet->Param.ChannelNbRep <= 15 ) )
{
LoRaMacParams.ChannelsNbRep = mibSet->Param.ChannelNbRep;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_MAX_RX_WINDOW_DURATION:
{
LoRaMacParams.MaxRxWindow = mibSet->Param.MaxRxWindow;
break;
}
case MIB_RECEIVE_DELAY_1:
{
LoRaMacParams.ReceiveDelay1 = mibSet->Param.ReceiveDelay1;
break;
}
case MIB_RECEIVE_DELAY_2:
{
LoRaMacParams.ReceiveDelay2 = mibSet->Param.ReceiveDelay2;
break;
}
case MIB_JOIN_ACCEPT_DELAY_1:
{
LoRaMacParams.JoinAcceptDelay1 = mibSet->Param.JoinAcceptDelay1;
break;
}
case MIB_JOIN_ACCEPT_DELAY_2:
{
LoRaMacParams.JoinAcceptDelay2 = mibSet->Param.JoinAcceptDelay2;
break;
}
case MIB_CHANNELS_DEFAULT_DATARATE:
{
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
if( ValueInRange( mibSet->Param.ChannelsDefaultDatarate,
DR_0, DR_5 ) )
{
LoRaMacParamsDefaults.ChannelsDatarate = mibSet->Param.ChannelsDefaultDatarate;
}
#else
if( ValueInRange( mibSet->Param.ChannelsDefaultDatarate,
LORAMAC_TX_MIN_DATARATE, LORAMAC_TX_MAX_DATARATE ) )
{
LoRaMacParamsDefaults.ChannelsDatarate = mibSet->Param.ChannelsDefaultDatarate;
}
#endif
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_CHANNELS_DATARATE:
{
if( ValueInRange( mibSet->Param.ChannelsDatarate,
LORAMAC_TX_MIN_DATARATE, LORAMAC_TX_MAX_DATARATE ) )
{
LoRaMacParams.ChannelsDatarate = mibSet->Param.ChannelsDatarate;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_CHANNELS_DEFAULT_TX_POWER:
{
if( ValueInRange( mibSet->Param.ChannelsDefaultTxPower,
LORAMAC_MAX_TX_POWER, LORAMAC_MIN_TX_POWER ) )
{
LoRaMacParamsDefaults.ChannelsTxPower = mibSet->Param.ChannelsDefaultTxPower;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_CHANNELS_TX_POWER:
{
if( ValueInRange( mibSet->Param.ChannelsTxPower,
LORAMAC_MAX_TX_POWER, LORAMAC_MIN_TX_POWER ) )
{
LoRaMacParams.ChannelsTxPower = mibSet->Param.ChannelsTxPower;
}
else
{
status = LORAMAC_STATUS_PARAMETER_INVALID;
}
break;
}
case MIB_UPLINK_COUNTER:
{
UpLinkCounter = mibSet->Param.UpLinkCounter;
break;
}
case MIB_DOWNLINK_COUNTER:
{
DownLinkCounter = mibSet->Param.DownLinkCounter;
break;
}
case MIB_SYSTEM_MAX_RX_ERROR:
{
LoRaMacParams.SystemMaxRxError = LoRaMacParamsDefaults.SystemMaxRxError = mibSet->Param.SystemMaxRxError;
break;
}
case MIB_MIN_RX_SYMBOLS:
{
LoRaMacParams.MinRxSymbols = LoRaMacParamsDefaults.MinRxSymbols = mibSet->Param.MinRxSymbols;
break;
}
default:
status = LORAMAC_STATUS_SERVICE_UNKNOWN;
break;
}
return status;
}
LoRaMacStatus_t LoRaMacChannelAdd( uint8_t id, ChannelParams_t params )
{
#if defined( USE_BAND_470 ) || defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID )
return LORAMAC_STATUS_PARAMETER_INVALID;
#else
bool datarateInvalid = false;
bool frequencyInvalid = false;
uint8_t band = 0;
// The id must not exceed LORA_MAX_NB_CHANNELS
if( id >= LORA_MAX_NB_CHANNELS )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
// Validate if the MAC is in a correct state
if( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING )
{
if( ( LoRaMacState & LORAMAC_TX_CONFIG ) != LORAMAC_TX_CONFIG )
{
return LORAMAC_STATUS_BUSY;
}
}
// Validate the datarate
if( ( params.DrRange.Fields.Min > params.DrRange.Fields.Max ) ||
( ValueInRange( params.DrRange.Fields.Min, LORAMAC_TX_MIN_DATARATE,
LORAMAC_TX_MAX_DATARATE ) == false ) ||
( ValueInRange( params.DrRange.Fields.Max, LORAMAC_TX_MIN_DATARATE,
LORAMAC_TX_MAX_DATARATE ) == false ) )
{
datarateInvalid = true;
}
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
if( id < 3 )
{
if( params.Frequency != Channels[id].Frequency )
{
frequencyInvalid = true;
}
if( params.DrRange.Fields.Min > DR_0 )
{
datarateInvalid = true;
}
if( ValueInRange( params.DrRange.Fields.Max, DR_5, LORAMAC_TX_MAX_DATARATE ) == false )
{
datarateInvalid = true;
}
}
#endif
// Validate the frequency
if( ( Radio.CheckRfFrequency( params.Frequency ) == true ) && ( params.Frequency > 0 ) && ( frequencyInvalid == false ) )
{
#if defined( USE_BAND_868 )
if( ( params.Frequency >= 863000000 ) && ( params.Frequency < 865000000 ) )
{
band = BAND_G1_2;
}
else if( ( params.Frequency >= 865000000 ) && ( params.Frequency <= 868000000 ) )
{
band = BAND_G1_0;
}
else if( ( params.Frequency > 868000000 ) && ( params.Frequency <= 868600000 ) )
{
band = BAND_G1_1;
}
else if( ( params.Frequency >= 868700000 ) && ( params.Frequency <= 869200000 ) )
{
band = BAND_G1_2;
}
else if( ( params.Frequency >= 869400000 ) && ( params.Frequency <= 869650000 ) )
{
band = BAND_G1_3;
}
else if( ( params.Frequency >= 869700000 ) && ( params.Frequency <= 870000000 ) )
{
band = BAND_G1_4;
}
else
{
frequencyInvalid = true;
}
#endif
}
else
{
frequencyInvalid = true;
}
if( ( datarateInvalid == true ) && ( frequencyInvalid == true ) )
{
return LORAMAC_STATUS_FREQ_AND_DR_INVALID;
}
if( datarateInvalid == true )
{
return LORAMAC_STATUS_DATARATE_INVALID;
}
if( frequencyInvalid == true )
{
return LORAMAC_STATUS_FREQUENCY_INVALID;
}
// Every parameter is valid, activate the channel
Channels[id] = params;
Channels[id].Band = band;
LoRaMacParams.ChannelsMask[0] |= ( 1 << id );
return LORAMAC_STATUS_OK;
#endif
}
LoRaMacStatus_t LoRaMacChannelRemove( uint8_t id )
{
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
if( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING )
{
if( ( LoRaMacState & LORAMAC_TX_CONFIG ) != LORAMAC_TX_CONFIG )
{
return LORAMAC_STATUS_BUSY;
}
}
if( ( id < 3 ) || ( id >= LORA_MAX_NB_CHANNELS ) )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
else
{
// Remove the channel from the list of channels
Channels[id] = ( ChannelParams_t ){ 0, { 0 }, 0 };
// Disable the channel as it doesn't exist anymore
if( DisableChannelInMask( id, LoRaMacParams.ChannelsMask ) == false )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
}
return LORAMAC_STATUS_OK;
#elif ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) || defined( USE_BAND_470 ) )
return LORAMAC_STATUS_PARAMETER_INVALID;
#endif
}
LoRaMacStatus_t LoRaMacMulticastChannelLink( MulticastParams_t *channelParam )
{
if( channelParam == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING )
{
return LORAMAC_STATUS_BUSY;
}
// Reset downlink counter
channelParam->DownLinkCounter = 0;
if( MulticastChannels == NULL )
{
// New node is the fist element
MulticastChannels = channelParam;
}
else
{
MulticastParams_t *cur = MulticastChannels;
// Search the last node in the list
while( cur->Next != NULL )
{
cur = cur->Next;
}
// This function always finds the last node
cur->Next = channelParam;
}
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMacMulticastChannelUnlink( MulticastParams_t *channelParam )
{
if( channelParam == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING )
{
return LORAMAC_STATUS_BUSY;
}
if( MulticastChannels != NULL )
{
if( MulticastChannels == channelParam )
{
// First element
MulticastChannels = channelParam->Next;
}
else
{
MulticastParams_t *cur = MulticastChannels;
// Search the node in the list
while( cur->Next && cur->Next != channelParam )
{
cur = cur->Next;
}
// If we found the node, remove it
if( cur->Next )
{
cur->Next = channelParam->Next;
}
}
channelParam->Next = NULL;
}
return LORAMAC_STATUS_OK;
}
LoRaMacStatus_t LoRaMacMlmeRequest( MlmeReq_t *mlmeRequest )
{
LoRaMacStatus_t status = LORAMAC_STATUS_SERVICE_UNKNOWN;
LoRaMacHeader_t macHdr;
if( mlmeRequest == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING )
{
return LORAMAC_STATUS_BUSY;
}
memset1( ( uint8_t* ) &MlmeConfirm, 0, sizeof( MlmeConfirm ) );
MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
switch( mlmeRequest->Type )
{
case MLME_JOIN:
{
if( ( LoRaMacState & LORAMAC_TX_DELAYED ) == LORAMAC_TX_DELAYED )
{
return LORAMAC_STATUS_BUSY;
}
if( ( mlmeRequest->Req.Join.DevEui == NULL ) ||
( mlmeRequest->Req.Join.AppEui == NULL ) ||
( mlmeRequest->Req.Join.AppKey == NULL ) ||
( mlmeRequest->Req.Join.NbTrials == 0 ) )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
#if ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) )
// Enables at least the usage of the 2 datarates.
if( mlmeRequest->Req.Join.NbTrials < 2 )
{
mlmeRequest->Req.Join.NbTrials = 2;
}
#else
// Enables at least the usage of all datarates.
if( mlmeRequest->Req.Join.NbTrials < 48 )
{
mlmeRequest->Req.Join.NbTrials = 48;
}
#endif
LoRaMacFlags.Bits.MlmeReq = 1;
MlmeConfirm.MlmeRequest = mlmeRequest->Type;
LoRaMacDevEui = mlmeRequest->Req.Join.DevEui;
LoRaMacAppEui = mlmeRequest->Req.Join.AppEui;
LoRaMacAppKey = mlmeRequest->Req.Join.AppKey;
MaxJoinRequestTrials = mlmeRequest->Req.Join.NbTrials;
// Reset variable JoinRequestTrials
JoinRequestTrials = 0;
// Setup header information
macHdr.Value = 0;
macHdr.Bits.MType = FRAME_TYPE_JOIN_REQ;
ResetMacParameters( );
// Add a +1, since we start to count from 0
LoRaMacParams.ChannelsDatarate = AlternateDatarate( JoinRequestTrials + 1 );
status = Send( &macHdr, 0, NULL, 0 );
break;
}
case MLME_LINK_CHECK:
{
LoRaMacFlags.Bits.MlmeReq = 1;
// LoRaMac will send this command piggy-pack
MlmeConfirm.MlmeRequest = mlmeRequest->Type;
status = AddMacCommand( MOTE_MAC_LINK_CHECK_REQ, 0, 0 );
break;
}
case MLME_TXCW:
{
MlmeConfirm.MlmeRequest = mlmeRequest->Type;
LoRaMacFlags.Bits.MlmeReq = 1;
status = SetTxContinuousWave( mlmeRequest->Req.TxCw.Timeout );
break;
}
case MLME_TXCW_1:
{
MlmeConfirm.MlmeRequest = mlmeRequest->Type;
LoRaMacFlags.Bits.MlmeReq = 1;
status = SetTxContinuousWave1( mlmeRequest->Req.TxCw.Timeout, mlmeRequest->Req.TxCw.Frequency, mlmeRequest->Req.TxCw.Power );
break;
}
default:
break;
}
if( status != LORAMAC_STATUS_OK )
{
NodeAckRequested = false;
LoRaMacFlags.Bits.MlmeReq = 0;
}
return status;
}
LoRaMacStatus_t LoRaMacMcpsRequest( McpsReq_t *mcpsRequest )
{
LoRaMacStatus_t status = LORAMAC_STATUS_SERVICE_UNKNOWN;
LoRaMacHeader_t macHdr;
uint8_t fPort = 0;
void *fBuffer;
uint16_t fBufferSize;
int8_t datarate;
bool readyToSend = false;
if( mcpsRequest == NULL )
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
if( ( ( LoRaMacState & LORAMAC_TX_RUNNING ) == LORAMAC_TX_RUNNING ) ||
( ( LoRaMacState & LORAMAC_TX_DELAYED ) == LORAMAC_TX_DELAYED ) )
{
return LORAMAC_STATUS_BUSY;
}
macHdr.Value = 0;
memset1 ( ( uint8_t* ) &McpsConfirm, 0, sizeof( McpsConfirm ) );
McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_ERROR;
switch( mcpsRequest->Type )
{
case MCPS_UNCONFIRMED:
{
readyToSend = true;
AckTimeoutRetries = 1;
macHdr.Bits.MType = FRAME_TYPE_DATA_UNCONFIRMED_UP;
fPort = mcpsRequest->Req.Unconfirmed.fPort;
fBuffer = mcpsRequest->Req.Unconfirmed.fBuffer;
fBufferSize = mcpsRequest->Req.Unconfirmed.fBufferSize;
datarate = mcpsRequest->Req.Unconfirmed.Datarate;
break;
}
case MCPS_CONFIRMED:
{
readyToSend = true;
AckTimeoutRetriesCounter = 1;
AckTimeoutRetries = mcpsRequest->Req.Confirmed.NbTrials;
macHdr.Bits.MType = FRAME_TYPE_DATA_CONFIRMED_UP;
fPort = mcpsRequest->Req.Confirmed.fPort;
fBuffer = mcpsRequest->Req.Confirmed.fBuffer;
fBufferSize = mcpsRequest->Req.Confirmed.fBufferSize;
datarate = mcpsRequest->Req.Confirmed.Datarate;
break;
}
case MCPS_PROPRIETARY:
{
readyToSend = true;
AckTimeoutRetries = 1;
macHdr.Bits.MType = FRAME_TYPE_PROPRIETARY;
fBuffer = mcpsRequest->Req.Proprietary.fBuffer;
fBufferSize = mcpsRequest->Req.Proprietary.fBufferSize;
datarate = mcpsRequest->Req.Proprietary.Datarate;
break;
}
default:
break;
}
if( readyToSend == true )
{
if( AdrCtrlOn == false )
{
if( ValueInRange( datarate, LORAMAC_TX_MIN_DATARATE, LORAMAC_TX_MAX_DATARATE ) == true )
{
LoRaMacParams.ChannelsDatarate = datarate;
}
else
{
return LORAMAC_STATUS_PARAMETER_INVALID;
}
}
status = Send( &macHdr, fPort, fBuffer, fBufferSize );
if( status == LORAMAC_STATUS_OK )
{
McpsConfirm.McpsRequest = mcpsRequest->Type;
LoRaMacFlags.Bits.McpsReq = 1;
}
else
{
NodeAckRequested = false;
}
}
return status;
}
void LoRaMacTestRxWindowsOn( bool enable )
{
IsRxWindowsEnabled = enable;
}
void LoRaMacTestSetMic( uint16_t txPacketCounter )
{
UpLinkCounter = txPacketCounter;
IsUpLinkCounterFixed = true;
}
void LoRaMacTestSetDutyCycleOn( bool enable )
{
#if ( defined( USE_BAND_868 ) || defined( USE_BAND_433 ) || defined( USE_BAND_780 ) )
DutyCycleOn = enable;
#else
DutyCycleOn = false;
#endif
}
void LoRaMacTestSetChannel( uint8_t channel )
{
Channel = channel;
}
static RxConfigParams_t ComputeRxWindowParameters( int8_t datarate, uint32_t rxError )
{
RxConfigParams_t rxConfigParams = { 0, 0, 0, 0 };
double tSymbol = 0.0;
rxConfigParams.Datarate = datarate;
switch( Bandwidths[datarate] )
{
default:
case 125000:
rxConfigParams.Bandwidth = 0;
break;
case 250000:
rxConfigParams.Bandwidth = 1;
break;
case 500000:
rxConfigParams.Bandwidth = 2;
break;
}
#if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 )
if( datarate == DR_7 )
{ // FSK
tSymbol = ( 1.0 / ( double )Datarates[datarate] ) * 8.0; // 1 symbol equals 1 byte
}
else
#endif
{ // LoRa
tSymbol = ( ( double )( 1 << Datarates[datarate] ) / ( double )Bandwidths[datarate] ) * 1e3;
}
rxConfigParams.RxWindowTimeout = MAX( ( uint32_t )ceil( ( ( 2 * LoRaMacParams.MinRxSymbols - 8 ) * tSymbol + 2 * rxError ) / tSymbol ), LoRaMacParams.MinRxSymbols ); // Computed number of symbols
rxConfigParams.RxOffset = ( int32_t )ceil( ( 4.0 * tSymbol ) - ( ( rxConfigParams.RxWindowTimeout * tSymbol ) / 2.0 ) - RADIO_WAKEUP_TIME );
return rxConfigParams;
}
