LoRaWAN application using SX1272
Dependencies: X_NUCLEO_IKS01A1 driver_mbed_TH02 LoRaWAN-lib-v1_0_1 SX1272Lib mbed
Fork of LoRaWAN-SX1272-Application-Demo by
LoRaWAN-SX1272-Application Demo uses https://os.mbed.com/components/SX1272MB2xAS/ mbed component shield on a nucleo board platform to demonstrate a Class-A LoRaWAN device in the 915MHz ISM band for North American region. It uses the LoRaWAN-lib and SX1272Lib libraries.
Comissioning.h (LoRaWAN Network Configuration)
The end-device can be activated in one of the two ways:
Over the Air (OTA) activation can be enabled as shown in the figure below.
The end-device must be configured with the following parameters:
LORAWAN_DEVICE_EUI
(8 Bytes) : Fist 3 Bytes is the Organizationally Unique Identifier (OUI) followed by 5 bytes of unique ID. If not defined by user, then the firmware automatically assigns one to the end-deviceLORAWAN_APPLICATION_EUI
(8 Bytes)LORAWAN_APPLICATION_KEY
(or DEVKEY) (16 Bytes)
Activation by Personalization (ABP) can be enabled as shown in the figure below.
The end-device must be configured with the following parameters:
LORAWAN_DEVICE_ADDRESS
(4 Bytes) : If not defined by user, then the firmware automatically assigns one to the end-deviceLORAWAN_NWKSKEY
(16 Bytes)LORAWAN_APPSKEY
(16 Bytes)
Config.h (LoRaWAN Communication Parameters)
- Mode of Operation : Hybrid
If the end-device needs to be configured to operate over 8-channels, then
Hybrid Mode
needs to be enabled
- Mode of Operation : Frequency Hop
If the end-device needs to be configured to operate over 64-channels, then
Hybrid Mode
needs to be disabled
- Delay between successive JOIN REQUESTs :
The delay between successive Join Requests (until the end-device joins the network) can be configured using the parameter
OVER_THE_AIR_ACTIVATION_DUTYCYCLE
- Inter-Frame Delay :
One can change the delay between each frame transmission using
APP_TX_DUTYCYCLE
It is advisable thatAPP_TX_DUTYCYCLE
is greater than or equal to 3sec.
- Data Rate :
The data rate can be configured as per LoRaWAN specification using the paramter
LORAWAN_DEFAULT_DATARATE
. The range of values are DR_0, DR_1, DR_2, DR_3 and DR_4
- Confirmed/Unconfirmed Messages :
The uplink message or payload can be chosen to be confirmed or unconfirmed using the parameter
LORAWAN_CONFIRMED_MSG_ON
. When set to 1, the transmitted messages need to be confirmed with anACK
by the network server in the subsequent RX window. When set to 0, noACK
is requested.
- ADR ON/OFF :
The ADR can be enabled or disabled using the parameter
LORAWAN_ADR_ON
. When set to 1, ADR is enabled and disabled when set to 0.
- Application Port :
The application port can be set using parameter
LORAWAN_APP_PORT
. A few examples are associated to specific Application Port, and are defined in Config.h
- Payload Length :
The lenght of the payload (in bytes) to be transmitted can be configured using
LORAWAN_APP_DATA_SIZE
- Transmit Power :
The transmit power can be configured using
LORAWAN_TX_POWER
(LoRaMAC verifies if the set power is compliant with the LoRaWAN spec and FCC guidelines)
The baud-rate for serial terminal display is 115200
system/timer.cpp
- Committer:
- ubhat
- Date:
- 2018-08-12
- Revision:
- 9:a47750bce9f8
- Parent:
- 0:6cc76d70e2a1
File content as of revision 9:a47750bce9f8:
/* / _____) _ | | ( (____ _____ ____ _| |_ _____ ____| |__ \____ \| ___ | (_ _) ___ |/ ___) _ \ _____) ) ____| | | || |_| ____( (___| | | | (______/|_____)_|_|_| \__)_____)\____)_| |_| (C)2013 Semtech Description: Timer objects and scheduling management License: Revised BSD License, see LICENSE.TXT file include in the project Maintainer: Miguel Luis and Gregory Cristian */ #include "board.h" Timer TimeCounter; Ticker LoadTimeCounter; volatile uint32_t CurrentTime = 0; void TimerResetTimeCounter( void ) { CurrentTime = CurrentTime + TimeCounter.read_us( ); TimeCounter.reset( ); TimeCounter.start( ); } void TimerTimeCounterInit( void ) { TimeCounter.start( ); LoadTimeCounter.attach( &TimerResetTimeCounter, 10 ); } TimerTime_t TimerGetCurrentTime( void ) { CurrentTime += TimeCounter.read_us( ); TimeCounter.reset( ); TimeCounter.start( ); return ( ( TimerTime_t )CurrentTime ); } TimerTime_t TimerGetElapsedTime( TimerTime_t savedTime ) { CurrentTime += TimeCounter.read_us( ); TimeCounter.reset( ); TimeCounter.start( ); return ( TimerTime_t )( CurrentTime - savedTime ); } TimerTime_t TimerGetFutureTime( TimerTime_t eventInFuture ) { CurrentTime += TimeCounter.read_us( ); TimeCounter.reset( ); TimeCounter.start( ); return ( TimerTime_t )( CurrentTime + eventInFuture ); } void TimerInit( TimerEvent_t *obj, void ( *callback )( void ) ) { obj->value = 0; obj->Callback = callback; } void TimerStart( TimerEvent_t *obj ) { obj->Timer.attach_us( obj->Callback, obj->value ); } void TimerStop( TimerEvent_t *obj ) { obj->Timer.detach( ); } void TimerSetValue( TimerEvent_t *obj, uint32_t value ) { obj->value = value; }