AS5048A SPI - Magnetic rotary encoder library
Library for communication over the SPI interface with the ams.com AS5048A magnetic rotary encoder.
Example:
Simple readout of a single angle measurement from a single sensor on the SPI-bus
#include "mbed.h"
#include <as5048spi.h>
// The sensors connection are attached to pins 5-8
As5048Spi sensor(p5, p6, p7, p8);
Serial pc(USBTX, USBRX); // tx, rx
int main() {
while(1) {
//
const int* angles = sensor.read_angle();
int angle = angles[0];
// The read angle returns the value returned over the SPI bus, including parity bit
pc.printf("Read result: %x\r\n", angle);
if( As5048Spi::parity_check(angle) )
{
// Convert range from 0 to 2^14-1 to 0 - 360 degrees
int degrees = As5048Spi::degrees(angle)/100;
pc.printf("Parity check succesfull.\r\n");
pc.printf("Angle: %i degrees\r\n", degrees );
}
else
{
pc.printf("Parity check failed.\r\n");
}
wait_ms(500);
}
}
The class supports daisy chaining multiple sensors on the SPI-bus as well. See: SPI-Daisy-Chaining.
as5048spi.cpp
- Committer:
- JSpikker
- Date:
- 2015-03-17
- Revision:
- 4:06b89a41109e
- Parent:
- 2:2958500883e0
File content as of revision 4:06b89a41109e:
#include "as5048spi.h"
As5048Spi::As5048Spi(PinName mosi, PinName miso, PinName sclk, PinName chipselect, int ndevices) :
_nDevices(ndevices),
_chipSelectN(chipselect),
_spi(mosi, miso, sclk)
{
_chipSelectN.write(1);
// AS5048 needs 16-bits for is commands
// Mode = 1:
// clock polarity = 0 --> clock pulse is high
// clock phase = 1 --> sample on falling edge of clock pulse
_spi.format(16, 1);
// Set clock frequency to 1 MHz (max is 10Mhz)
_spi.frequency(1000000);
_readBuffer = new int[ndevices];
}
As5048Spi::~As5048Spi()
{
delete [] _readBuffer;
}
int As5048Spi::degrees(int sensor_result)
{
return mask(sensor_result) * 36000 / 0x4000;
}
int As5048Spi::radian(int sensor_result)
{
return mask(sensor_result) * 62832 / 0x4000;
}
bool As5048Spi::error(int device)
{
if( device == -1 ) {
for(int i = 0; i < _nDevices; ++i) {
if( _readBuffer[i] & 0x4000 ) {
return true;
}
}
} else if( device < _nDevices ) {
return (_readBuffer[device] & 0x4000) == 0x4000;
}
return false;
}
void As5048Spi::frequency(int hz)
{
_spi.frequency(hz);
}
int As5048Spi::mask(int sensor_result)
{
return sensor_result & 0x3FFF; // return lowest 14-bits
}
void As5048Spi::mask(int* sensor_results, int n)
{
for(int i = 0; i < n; ++i) {
sensor_results[i] &= 0x3FFF;
}
}
bool As5048Spi::parity_check(int sensor_result)
{
// Use the LSb of result to keep track of parity (0 = even, 1 = odd)
int result = sensor_result;
for(int i = 1; i <= 15; ++i) {
sensor_result >>= 1;
result ^= sensor_result;
}
// Parity should be even
return (result & 0x0001) == 0;
}
const int* As5048Spi::read(As5048Command command)
{
_read(command); // Send command to device(s)
return _read(AS_CMD_NOP); // Read-out device(s)
}
const int* As5048Spi::read_sequential(As5048Command command)
{
return _read(command);
}
const int* As5048Spi::read_angle()
{
_read(AS_CMD_ANGLE); // Send command to device(s)
return _read(AS_CMD_NOP); // Read-out device(s)
}
const int* As5048Spi::read_angle_sequential()
{
return _read(AS_CMD_ANGLE);
}
int* As5048Spi::_read(As5048Command command)
{
if(_nDevices == 1)
{
// Give command to start reading the angle
_chipSelectN.write(0);
wait_us(1); // Wait at least 350ns after chip select
_readBuffer[0] = _spi.write(command);
_chipSelectN.write(1);
wait_us(1); // Wait at least 350ns after chip select
} else
{
// Enable the sensor on the chain
_chipSelectN.write(0);
wait_us(1); // Wait at least 350ns after chip select
for(int i = 0; i < _nDevices; ++i)
{
_readBuffer[i] = _spi.write(command);
}
_chipSelectN.write(1);
wait_us(1); // Wait at least 350ns after chip select
}
return _readBuffer;
}