Prototype RF driver for STM Sub-1 GHz RF expansion board based on the SPSGRF-868 module for STM32 Nucleo.
Prototype RF Driver for STM Sub-1 GHz RF Expansion Boards based on the SPSGRF-868 and SPSGRF-915 Modules for STM32 Nucleo
Currently supported boards:
Note, in order to use expansion board X-NUCLEO-IDS01A4 in mbed you need to perform the following HW modifications on the board:
- Unmount resistor
R4 - Mount resistor
R7
Furthermore, on some Nucleo development boards (e.g. the NUCLEO_F429ZI), in order to be able to use Ethernet together with these Sub-1 GHz RF expansion boards, you need to compile this driver with macro SPIRIT1_SPI_MOSI=PB_5 defined, while the development board typically requires some HW modification as e.g. described here!
This driver can be used together with the 6LoWPAN stack (a.k.a. Nanostack).
mbed_driver_api.cpp
- Committer:
- Wolfgang Betz
- Date:
- 2016-11-14
- Revision:
- 25:2ec45788f28c
- Parent:
- 24:03e351bfc9c9
- Child:
- 27:e68ffb6ac223
File content as of revision 25:2ec45788f28c:
#include "SimpleSpirit1.h"
#include "nanostack/platform/arm_hal_phy.h"
#include "platform/arm_hal_interrupt.h"
#include "mbed_trace.h"
#define TRACE_GROUP "SPIRIT"
/* Define beyond macro if you want to perform heavy debug tracing also in IRQ context */
// #define HEAVY_TRACING
/* Define beyond macro if you want to use acknowledgment frames with only 3 bytes */
#define SHORT_ACK_FRAMES
/*Atmel RF Part Type*/
// betzw - TODO
typedef enum
{
ATMEL_UNKNOW_DEV = 0,
ATMEL_AT86RF212,
ATMEL_AT86RF231,
ATMEL_AT86RF233
}rf_trx_part_e;
static uint8_t mac_address[8] = {
MBED_CONF_SPIRIT1_MAC_ADDRESS_0,
MBED_CONF_SPIRIT1_MAC_ADDRESS_1,
MBED_CONF_SPIRIT1_MAC_ADDRESS_2,
MBED_CONF_SPIRIT1_MAC_ADDRESS_3,
MBED_CONF_SPIRIT1_MAC_ADDRESS_4,
MBED_CONF_SPIRIT1_MAC_ADDRESS_5,
MBED_CONF_SPIRIT1_MAC_ADDRESS_6,
MBED_CONF_SPIRIT1_MAC_ADDRESS_7
};
static phy_device_driver_s device_driver;
static int8_t rf_radio_driver_id = -1;
const phy_rf_channel_configuration_s phy_subghz = {868000000, 1000000, 250000, 11, M_GFSK};
static phy_device_channel_page_s phy_channel_pages[] = {
{CHANNEL_PAGE_2, &phy_subghz},
{CHANNEL_PAGE_0, NULL}
};
static uint8_t need_ack = 0;
static uint8_t tx_sequence = 0xff;
static uint8_t mac_tx_handle = 0;
static SimpleSpirit1 *rf_device = NULL;
static uint8_t rf_rx_buf[MAX_PACKET_LEN];
static uint8_t stored_mac_address[8];
static uint16_t stored_short_adr;
static uint16_t stored_pan_id;
#define RF_SIG_ACK_NEEDED (1<<0)
static Thread rf_ack_sender(osPriorityRealtime);
static uint8_t rf_rx_sequence;
#ifndef SHORT_ACK_FRAMES
static uint8_t rf_src_adr[8];
static uint8_t rf_src_adr_len = 0;
#endif
static bool rf_ack_sent = false;
/* MAC frame helper macros */
#define MAC_FCF_FRAME_TYPE_MASK 0x0007
#define MAC_FCF_FRAME_TYPE_SHIFT 0
#define MAC_FCF_SECURITY_BIT_MASK 0x0008
#define MAC_FCF_SECURITY_BIT_SHIFT 3
#define MAC_FCF_PENDING_BIT_MASK 0x0010
#define MAC_FCF_PENDING_BIT_SHIFT 4
#define MAC_FCF_ACK_REQ_BIT_MASK 0x0020
#define MAC_FCF_ACK_REQ_BIT_SHIFT 5
#define MAC_FCF_INTRA_PANID_MASK 0x0040
#define MAC_FCF_INTRA_PANID_SHIFT 6
#define MAC_FCF_DST_ADDR_MASK 0x0c00
#define MAC_FCF_DST_ADDR_SHIFT 10
#define MAC_FCF_VERSION_MASK 0x3000
#define MAC_FCF_VERSION_SHIFT 12
#define MAC_FCF_SRC_ADDR_MASK 0xc000
#define MAC_FCF_SRC_ADDR_SHIFT 14
/* MAC supported frame types */
#define FC_BEACON_FRAME 0x00
#define FC_DATA_FRAME 0x01
#define FC_ACK_FRAME 0x02
#define FC_CMD_FRAME 0x03
static void rf_if_lock(void)
{
platform_enter_critical();
}
static void rf_if_unlock(void)
{
platform_exit_critical();
}
static inline uint16_t rf_read_16_bit(uint8_t *data_ptr) { // little-endian
uint16_t ret;
ret = ((uint16_t)data_ptr[0]) + (((uint16_t)data_ptr[1]) << 8);
return ret;
}
static int8_t rf_trigger_send(uint8_t *data_ptr, uint16_t data_length, uint8_t tx_handle, data_protocol_e data_protocol)
{
#ifndef NDEBUG
debug_if(!(data_length >= 3), "\n\rassert failed in: %s (%d)\n\r", __func__, __LINE__);
#endif
/* Give 'rf_ack_sender' a better chance to run */
Thread::yield();
/* Get Lock */
rf_if_lock();
/*Check if transmitter is busy*/
if(rf_device->is_receiving()) { /* betzw - WAS: (rf_device->channel_clear() != 0)), do NOT use this but rather study and enable automatic CCA */
tr_debug("%s (%d)", __func__, __LINE__);
/* Release Lock */
rf_if_unlock();
/*Return busy*/
return -1;
} else {
uint16_t fcf = rf_read_16_bit(data_ptr);
/*Check if transmitted data needs to be acked*/
if((fcf & MAC_FCF_ACK_REQ_BIT_MASK) >> MAC_FCF_ACK_REQ_BIT_SHIFT)
need_ack = 1;
else
need_ack = 0;
/*Store the sequence number for ACK handling*/
tx_sequence = *(data_ptr + 2);
/*Store TX handle*/
mac_tx_handle = tx_handle;
// #ifdef HEAVY_TRACING
tr_info("%s (%d), len=%d, tx_handle=%x, tx_seq=%x, need_ack=%d (%x:%x, %x:%x, %x:%x, %x:%x)", __func__, __LINE__,
data_length, tx_handle, tx_sequence, need_ack,
data_ptr[3], data_ptr[4], data_ptr[5], data_ptr[6],
data_ptr[7], data_ptr[8], data_ptr[9], data_ptr[10]);
// #endif
/*Send the packet*/
rf_device->send(data_ptr, data_length);
/* Release Lock */
rf_if_unlock();
}
/*Return success*/
return 0;
}
static int8_t rf_interface_state_control(phy_interface_state_e new_state, uint8_t rf_channel)
{
int8_t ret_val = 0;
switch (new_state)
{
/*Reset PHY driver and set to idle*/
case PHY_INTERFACE_RESET:
tr_debug("%s (%d)", __func__, __LINE__);
rf_device->reset_board();
break;
/*Disable PHY Interface driver*/
case PHY_INTERFACE_DOWN:
tr_debug("%s (%d)", __func__, __LINE__);
ret_val = rf_device->off();
if(ret_val != 0) ret_val = -1;
break;
/*Enable PHY Interface driver*/
case PHY_INTERFACE_UP:
ret_val = rf_device->on();
if(ret_val != 0) {
tr_debug("%s (%d)", __func__, __LINE__);
ret_val = -1;
break;
}
tr_debug("%s (%d) - channel: %d", __func__, __LINE__, (int)rf_channel);
rf_device->set_channel(rf_channel);
break;
/*Enable wireless interface ED scan mode*/
case PHY_INTERFACE_RX_ENERGY_STATE:
tr_debug("%s (%d)", __func__, __LINE__);
break;
/*Enable Sniffer state*/
case PHY_INTERFACE_SNIFFER_STATE:
// TODO - if we really need this - WAS: rf_setup_sniffer(rf_channel);
tr_debug("%s (%d)", __func__, __LINE__);
ret_val = -1;
break;
default:
tr_debug("%s (%d)", __func__, __LINE__);
break;
}
return ret_val;
}
static int8_t rf_extension(phy_extension_type_e extension_type, uint8_t *data_ptr)
{
switch (extension_type)
{
/*Control MAC pending bit for Indirect data transmission*/
case PHY_EXTENSION_CTRL_PENDING_BIT:
tr_debug("%s (%d)", __func__, __LINE__);
break;
/*Return frame pending status*/
case PHY_EXTENSION_READ_LAST_ACK_PENDING_STATUS:
tr_debug("%s (%d), need_ack=%x", __func__, __LINE__, (unsigned int)need_ack);
*data_ptr = need_ack;
break;
/*Set channel, used for setting channel for energy scan*/
case PHY_EXTENSION_SET_CHANNEL:
tr_debug("%s (%d)", __func__, __LINE__);
break;
/*Read energy on the channel*/
case PHY_EXTENSION_READ_CHANNEL_ENERGY:
// TODO: *data_ptr = rf_get_channel_energy();
tr_debug("%s (%d)", __func__, __LINE__);
*data_ptr = rf_device->get_last_rssi_dbm();
break;
/*Read status of the link*/
case PHY_EXTENSION_READ_LINK_STATUS:
// TODO: *data_ptr = rf_get_link_status();
tr_debug("%s (%d)", __func__, __LINE__);
*data_ptr = rf_device->get_last_lqi()*17;
break;
default:
tr_debug("%s (%d)", __func__, __LINE__);
break;
}
return 0;
}
#if 0 // Not used in this example
static inline void rf_set_mac_48bit(uint8_t *ptr) {
tr_debug("%s (%d), adr0=%x, adr1=%x, adr2=%x, adr3=%x, adr4=%x, adr5=%x",
__func__, __LINE__,
ptr[0], ptr[1], ptr[2], ptr[3], ptr[4], ptr[5]);
}
#endif // 0
static inline void rf_set_mac_address(uint8_t *ptr) {
tr_debug("%s (%d), adr0=%x, adr1=%x, adr2=%x, adr3=%x, adr4=%x, adr5=%x, adr6=%x, adr7=%x",
__func__, __LINE__,
ptr[0], ptr[1], ptr[2], ptr[3], ptr[4], ptr[5], ptr[6], ptr[7]);
for(int i = 0; i < 8; i++) {
stored_mac_address[i] = ptr[i];
}
}
static inline void rf_set_short_adr(uint8_t *ptr) {
stored_short_adr = (ptr[0] << 8) + ptr[1]; // big-endian
tr_debug("%s (%d), adr0=%x, adr1=%x, val=%d",
__func__, __LINE__,
ptr[0], ptr[1], stored_short_adr);
}
static inline void rf_set_pan_id(uint8_t *ptr) {
stored_pan_id = (ptr[0] << 8) + ptr[1]; // big-endian
tr_debug("%s (%d), adr0=%x, adr1=%x, val=%d",
__func__, __LINE__,
ptr[0], ptr[1], stored_pan_id);
}
static int8_t rf_address_write(phy_address_type_e address_type, uint8_t *address_ptr)
{
switch (address_type)
{
/*Set 48-bit address*/
case PHY_MAC_48BIT:
/* Not used in this example */
// betzw - WAS: rf_set_mac_48bit(address_ptr);
break;
/*Set 64-bit address*/
case PHY_MAC_64BIT:
rf_set_mac_address(address_ptr);
break;
/*Set 16-bit address*/
case PHY_MAC_16BIT:
rf_set_short_adr(address_ptr);
break;
/*Set PAN Id*/
case PHY_MAC_PANID:
rf_set_pan_id(address_ptr);
break;
}
return 0;
}
/* Note: we are in IRQ context */
static void rf_handle_ack(uint8_t seq_number)
{
/*Received ACK sequence must be equal with transmitted packet sequence*/
if(tx_sequence == seq_number)
{
/* Reset 'need_ack' */
need_ack = 0;
/*Call PHY TX Done API*/
if(device_driver.phy_tx_done_cb){
device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, PHY_LINK_TX_DONE, 0, 0);
}
} else {
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
}
}
/* Note: we are in IRQ context */
static inline bool rf_check_mac_address(uint8_t *dest) {
for(int i = 0; i < 8; i++) {
if(dest[i] != stored_mac_address[7-i]) return false;
}
return true;
}
/* Note: we are in IRQ context */
/* Returns true if packet should be accepted */
static bool rf_check_destination(int len, uint8_t *ack_requested) {
uint8_t frame_type;
uint16_t dst_pan_id;
uint16_t dst_short_adr;
uint8_t dst_addr_mode = 0x0; /*0x00 = no address 0x01 = reserved 0x02 = 16-bit short address 0x03 = 64-bit extended address */
uint8_t src_addr_mode = 0x0; /*0x00 = no address 0x01 = reserved 0x02 = 16-bit short address 0x03 = 64-bit extended address */
uint8_t min_size = 3; // FCF & SeqNr
bool ret = false;
// #if !defined(SHORT_ACK_FRAMES) || defined(HEAVY_TRACING)
bool panid_compr = false;
// #endif
if(len < 3) {
tr_debug("%s (%d)", __func__, __LINE__);
return false;
}
uint16_t fcf = rf_read_16_bit(rf_rx_buf);
frame_type = ((fcf & MAC_FCF_FRAME_TYPE_MASK) >> MAC_FCF_FRAME_TYPE_SHIFT);
(*ack_requested) = ((fcf & MAC_FCF_ACK_REQ_BIT_MASK) >> MAC_FCF_ACK_REQ_BIT_SHIFT);
dst_addr_mode = ((fcf & MAC_FCF_DST_ADDR_MASK) >> MAC_FCF_DST_ADDR_SHIFT);
src_addr_mode = ((fcf & MAC_FCF_SRC_ADDR_MASK) >> MAC_FCF_SRC_ADDR_SHIFT);
#if !defined(SHORT_ACK_FRAMES) || defined(HEAVY_TRACING)
panid_compr = ((fcf & MAC_FCF_INTRA_PANID_MASK) >> MAC_FCF_INTRA_PANID_SHIFT);
#endif
// #ifdef HEAVY_TRACING
tr_info("%s (%d): len=%d, ftype=%x, snr=%x, ack=%d, dst=%x, src=%x, intra=%d", __func__, __LINE__, len, frame_type,
rf_rx_buf[2], (*ack_requested), dst_addr_mode, src_addr_mode, panid_compr);
// #endif
if(frame_type == FC_ACK_FRAME) { // betzw: we support up to two different forms of ACK frames!
#ifdef SHORT_ACK_FRAMES
if((len == 3) && (dst_addr_mode == 0x0) && (src_addr_mode == 0x0)) {
ret = true;
}
#else // !SHORT_ACK_FRAMES
if((dst_addr_mode == 0x3) && (src_addr_mode == 0x3)) {
if(panid_compr) { // no PAN ID is in the frame
ret = rf_check_mac_address(&rf_rx_buf[3]);
#ifdef HEAVY_TRACING
if(!ret) tr_debug("%s (%d)", __func__, __LINE__);
#endif
} else { // presence of dest pan id (even if indicating src pan id)
ret = rf_check_mac_address(&rf_rx_buf[5]);
#ifdef HEAVY_TRACING
if(!ret) tr_debug("%s (%d)", __func__, __LINE__);
#endif
}
} else if(dst_addr_mode == 0x2) {
dst_short_adr = rf_read_16_bit(&rf_rx_buf[5]);
if(dst_short_adr == stored_short_adr) {
tr_debug("%s (%d)", __func__, __LINE__);
ret = true;
} else {
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
}
}
#endif // !SHORT_ACK_FRAMES
#ifdef HEAVY_TRACING
tr_debug("%s (%d): ret=%d", __func__, __LINE__, ret);
#endif
(*ack_requested) = 0; // Never acknowledge ACK frames
return ret;
}
switch(dst_addr_mode) {
case 0x00:
ret = true; // no check possible;
break;
case 0x02:
min_size += 4; // pan id + short dest adr
if(len < 5) {
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
return false;
}
dst_pan_id = rf_read_16_bit(&rf_rx_buf[3]);
if(dst_pan_id == 0xFFFF) {
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
ret = true;
break;
}
if(dst_pan_id == stored_pan_id) {
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
ret = true;
break;
} else {
#ifdef HEAVY_TRACING
tr_debug("%s (%d): %d!=%d", __func__, __LINE__, dst_pan_id, stored_pan_id);
#endif
}
if(len < 7) {
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
return false;
}
dst_short_adr = rf_read_16_bit(&rf_rx_buf[5]);
if(dst_short_adr == stored_short_adr) {
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
ret = true;
break;
} else {
#ifdef HEAVY_TRACING
tr_debug("%s (%d): %d!=%d", __func__, __LINE__, dst_short_adr, stored_short_adr);
#endif
}
break;
case 0x03:
min_size += 10; // pan id + dest mac addr
if(len < 5) {
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
return false;
}
dst_pan_id = rf_read_16_bit(&rf_rx_buf[3]);
if(dst_pan_id == 0xFFFF) {
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
ret = true;
break;
}
if(dst_pan_id == stored_pan_id) {
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
ret = true;
break;
}
if(len < 13) {
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
return false;
}
ret = rf_check_mac_address(&rf_rx_buf[5]);
break;
default:
/* not supported */
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
return false;
}
if(ret && (*ack_requested)) {
rf_rx_sequence = rf_rx_buf[2];
#ifndef SHORT_ACK_FRAMES
if(!panid_compr) { // Src PAN Id is present
min_size += 2; // src pan id
}
switch(src_addr_mode) {
case 0x00:
(*ack_requested) = 0; // cannot send acknowledgment
break;
case 0x02:
min_size += 2; // short src adr
if(len < min_size) {
(*ack_requested) = 0; // cannot send acknowledgment
} else {
rf_src_adr_len = 2;
rf_src_adr[0] = rf_rx_buf[min_size-2];
rf_src_adr[1] = rf_rx_buf[min_size-1];
#ifdef HEAVY_TRACING
tr_debug("%s (%d): %x:%x", __func__, __LINE__, rf_src_adr[0], rf_src_adr[1]);
#endif
}
break;
case 0x03:
min_size += 8; // src mac adr
if(len < min_size) {
(*ack_requested) = 0; // cannot send acknowledgment
} else {
rf_src_adr_len = 8;
memcpy(&rf_src_adr[0], &rf_rx_buf[min_size-8], rf_src_adr_len);
#ifdef HEAVY_TRACING
tr_debug("%s (%d): %x:%x", __func__, __LINE__, rf_src_adr[0], rf_src_adr[1]);
#endif
}
break;
default:
/* not supported */
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
return false;
}
#endif // !SHORT_ACK_FRAMES
}
#ifdef HEAVY_TRACING
tr_info("%s (%d), ret=%d, ack=%d", __func__, __LINE__, ret, (*ack_requested));
#endif
return ret;
}
/* Note: we are in IRQ context */
static inline void rf_send_ack() {
rf_ack_sender.signal_set(RF_SIG_ACK_NEEDED);
}
/* Note: we are in IRQ context */
static inline void rf_handle_rx_end(void)
{
uint8_t rf_lqi;
int8_t rf_rssi;
uint16_t rf_buffer_len;
uint8_t ack_requested = 0;
/* Get received data */
rf_buffer_len = rf_device->read(rf_rx_buf, MAX_PACKET_LEN);
if(!rf_buffer_len)
return;
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
/* Check if packet should be accepted */
if(!rf_check_destination(rf_buffer_len, &ack_requested)) {
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
return;
}
/* If waiting for ACK, check here if the packet is an ACK to a message previously sent */
uint16_t fcf = rf_read_16_bit(rf_rx_buf);
if(((fcf & MAC_FCF_FRAME_TYPE_MASK) >> MAC_FCF_FRAME_TYPE_SHIFT) == FC_ACK_FRAME) {
/*Send sequence number in ACK handler*/
#ifdef HEAVY_TRACING
tr_debug("%s (%d), len=%u", __func__, __LINE__, (unsigned int)rf_buffer_len);
#endif
rf_handle_ack(rf_rx_buf[2]);
return;
}
/* Kick off ACK sending */
if(ack_requested) {
#ifdef HEAVY_TRACING
tr_debug("%s (%d), len=%u", __func__, __LINE__, (unsigned int)rf_buffer_len);
#endif
rf_send_ack();
}
/* Get link information */
rf_rssi = (int8_t)rf_device->get_last_rssi_dbm();
rf_lqi = (uint8_t)rf_device->get_last_lqi();
rf_lqi *= 17; // scale to 8-bit value
/* Note: Checksum of the packet must be checked and removed before entering here */
/* TODO - betzw: what to do? */
// rf_buffer_len -= 2;
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
/* Send received data and link information to the network stack */
if( device_driver.phy_rx_cb ){
device_driver.phy_rx_cb(rf_rx_buf, rf_buffer_len, rf_lqi, rf_rssi, rf_radio_driver_id);
}
}
/* Note: we are in IRQ context */
static inline void rf_handle_tx_end(void)
{
phy_link_tx_status_e phy_status = PHY_LINK_TX_SUCCESS;
/* Check if this is an ACK sending which is still pending */
if(rf_ack_sent) {
rf_ack_sent = false;
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
return; // no need to inform stack
}
/*Call PHY TX Done API*/
if(device_driver.phy_tx_done_cb){
device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, phy_status, 0, 0);
}
}
/* Note: we are in IRQ context */
static inline void rf_handle_tx_err(void) {
phy_link_tx_status_e phy_status = PHY_LINK_TX_FAIL;
/*Call PHY TX Done API*/
if(device_driver.phy_tx_done_cb){
device_driver.phy_tx_done_cb(rf_radio_driver_id, mac_tx_handle, phy_status, 0, 0);
}
}
/* Note: we are in IRQ context */
static void rf_callback_func(int event) {
switch(event) {
case SimpleSpirit1::RX_DONE:
rf_handle_rx_end();
break;
case SimpleSpirit1::TX_DONE:
rf_handle_tx_end();
break;
case SimpleSpirit1::TX_ERR:
#ifdef HEAVY_TRACING
tr_debug("%s (%d): TX_ERR!!!", __func__, __LINE__);
#endif
rf_handle_tx_err();
break;
}
}
#ifdef SHORT_ACK_FRAMES
static void rf_ack_loop(void) {
static uint16_t buffer[2] = {
(FC_ACK_FRAME << MAC_FCF_FRAME_TYPE_SHIFT),
0x0
};
tr_debug("%s (%d)", __func__, __LINE__);
do {
/* Wait for signal */
rf_ack_sender.signal_wait(RF_SIG_ACK_NEEDED);
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
/* Get Lock */
rf_if_lock();
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
/* Prepare payload */
uint8_t *ptr = (uint8_t*)&buffer[1];
ptr[0] = rf_rx_sequence; // Sequence number
/* Wait for device not receiving */
while(rf_device->is_receiving()) {
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
wait_us(10);
}
#ifdef HEAVY_TRACING
tr_debug("%s (%d), hdr=%x, nr=%x", __func__, __LINE__, buffer[0], ptr[0]);
#endif
/* Set information that we have sent an ACK */
rf_ack_sent = true;
/*Send the packet*/
rf_device->send((uint8_t*)buffer, 3);
tr_debug("%s (%d), hdr=%x, nr=%x", __func__, __LINE__, buffer[0], ptr[0]);
/* Release Lock */
rf_if_unlock();
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
} while(true);
}
#else // !SHORT_ACK_FRAMES
static void rf_ack_loop(void) {
static uint16_t buffer[6];
uint8_t *dest;
uint8_t msg_len;
tr_debug("%s (%d)", __func__, __LINE__);
do {
/* Wait for signal */
rf_ack_sender.signal_wait(RF_SIG_ACK_NEEDED);
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
/* Get Lock */
rf_if_lock();
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
/* Prepare header */
uint8_t *ptr = (uint8_t*)&buffer[1];
if(rf_src_adr_len == 2) {
buffer[0] = (FC_ACK_FRAME << MAC_FCF_FRAME_TYPE_SHIFT) | (0x02 << MAC_FCF_DST_ADDR_SHIFT); // dest PAN id present
dest = &ptr[3];
msg_len = 7;
} else {
buffer[0] =
(FC_ACK_FRAME << MAC_FCF_FRAME_TYPE_SHIFT) |
(0x03 << MAC_FCF_DST_ADDR_SHIFT) |
(0x03 << MAC_FCF_SRC_ADDR_SHIFT) |
(0x01 << MAC_FCF_INTRA_PANID_SHIFT); // no PAN IDs
dest = &ptr[1];
msg_len = 11;
}
/* Prepare payload */
ptr[0] = rf_rx_sequence; // Sequence number
memcpy(dest, &rf_src_adr[0], rf_src_adr_len);
/* Wait for device not receiving */
while(rf_device->is_receiving()) {
#ifdef HEAVY_TRACING
tr_debug("%s (%d)", __func__, __LINE__);
#endif
wait_us(10);
}
#ifdef HEAVY_TRACING
tr_debug("%s (%d), hdr=%x, nr=%x, pan0=%x, pan1=%x, adr0=%x, adr1=%x", __func__, __LINE__,
buffer[0], ptr[0], ptr[1], ptr[2], ptr[3], ptr[4]);
#endif
/* Set information that we have sent an ACK */
rf_ack_sent = true;
/*Send the packet*/
rf_device->send((uint8_t*)buffer, msg_len);
/* Release Lock */
rf_if_unlock();
tr_debug("%s (%d)", __func__, __LINE__);
} while(true);
}
#endif // !SHORT_ACK_FRAMES
static void rf_init(void) {
rf_device = &SimpleSpirit1::CreateInstance(D11, D12, D13, D9, D10, D2);
rf_device->attach_irq_callback(rf_callback_func);
rf_ack_sender.start(rf_ack_loop);
}
extern "C" int8_t rf_device_register(void)
{
/* Do some initialization */
rf_init();
/* Set pointer to MAC address */
device_driver.PHY_MAC = mac_address;
/* Set driver Name */
device_driver.driver_description = (char*)"Spirit1 Sub-GHz RF";
/*Type of RF PHY is SubGHz*/
device_driver.link_type = PHY_LINK_15_4_SUBGHZ_TYPE;
/*Maximum size of payload is 255*/
device_driver.phy_MTU = MAX_PACKET_LEN;
/*No header in PHY*/
device_driver.phy_header_length = 0;
/*No tail in PHY*/
device_driver.phy_tail_length = 0;
/*Set up driver functions*/
device_driver.address_write = &rf_address_write;
device_driver.extension = &rf_extension;
device_driver.state_control = &rf_interface_state_control;
device_driver.tx = &rf_trigger_send;
/*Set supported channel pages*/
device_driver.phy_channel_pages = phy_channel_pages;
//Nullify rx/tx callbacks
device_driver.phy_rx_cb = NULL;
device_driver.phy_tx_done_cb = NULL;
device_driver.arm_net_virtual_rx_cb = NULL;
device_driver.arm_net_virtual_tx_cb = NULL;
/*Register device driver*/
rf_radio_driver_id = arm_net_phy_register(&device_driver);
tr_debug("%s (%d)", __func__, __LINE__);
return rf_radio_driver_id;
}
/*
* \brief Function reads the MAC address array.
*
* \param ptr Pointer to read array
*
* \return none
*/
extern "C" void rf_read_mac_address(uint8_t *ptr)
{
tr_debug("%s (%d)", __func__, __LINE__);
memcpy(ptr, mac_address, 8);
}
/*
* \brief Function returns the generated 8-bit random value for seeding Pseudo-random generator. This value was generated by reading noise from RF channel in RF initialisation.
*
* \param none
*
* \return random RSSI value
*/
extern "C" int8_t rf_read_random(void)
{
float tmp;
rf_device->channel_clear();
tmp = rf_device->get_last_rssi_dbm();
tmp *= -10;
tr_debug("%s (%d): ret=%d", __func__, __LINE__, (uint8_t)tmp);
return (uint8_t)tmp;
}
/*
* \brief Read connected radio part.
*
* This function only return valid information when rf_init() is called
*
* \return
*/
extern "C" rf_trx_part_e rf_radio_type_read(void)
{
tr_debug("%s (%d)", __func__, __LINE__);
return ATMEL_UNKNOW_DEV;
}
X-NUCLEO-IDS01A4 Sub-1GHz RF Expansion Board