
SunTracker_BLE
Dependencies: BLE_API X_NUCLEO_6180XA1 X_NUCLEO_IDB0XA1 X_NUCLEO_IHM01A1 X_NUCLEO_IKS01A1 mbed
Fork of SunTracker_BLE by
Overview
The SunTracker is a demo application running on ST Nucleo-F401RE stacking a set of ST X-NUCLEO expansion boards.
Main features provided are:
- A solar panel follows the light source, orienting the panel in order to achieve the best panel efficiency.
- Orientation is controlled thanks to a couple of VL6180X FlightSense light sensors mounted on a X-NUCLEO-6180XA1 expansion board and driven by X-NUCLEO-IHM01A1 controlled stepper motor acting as actuator to orientate the panel.
- The system features a progressive control on the stepper motor in order to modulate the panel rotation speed according to the light angle.
- The application is also able to control the panel productivity reading the panel voltage through an ADC and proving feedback on the local display.
- A manual orientation is possible by using the accelerometer on a X-NUCLEO-IKS01A1 expansion board that, according on board tilt, controls the speed and the rotate direction.
- A remote control is available using a X-NUCLEO-IDB04A1 or a X-NUCLEO-IDB05A1 Bluetooth Low Energy expansion board. Remote control software is here.
Working Status
- SunTracker has 3 working status visible on FlightSense display and switchable by pressing the User Button:
Status 0 (Idle)
- Motor: Free Turning
- Display: Waiting for User Button
Status 1
- Motor: Driven by Light
- Display: Direction and Light Intensity = Direction and Motor Speed
Status 2
- Motor: Driven by Light
- Display: Solar Panel Efficiency
Status 3
- Motor: Driven by Accelerometer
- Display: Direction and Accelerometer Intensity
Server Startup
- When you plug the power supply, the word ‘PUSH’ is shown on display.
- You can manually rotate the structure to assign the ‘Zero Point’. Then press the User Button to launch the application.
- The display will show this status, which means that the structureis oriented to maximize the efficiency of the solar panel.
- If there is a light displacement, the structure will rotate, left or right,to follow the light source and on display is shown the direction and the speed.
- You can press the User Button to show the panel efficiencywith 4 digits that represent the range from 0v (0000) to 3,3v (3300).
- Further pressing the User Button you will manual rotate the panel by tilt the Server or Client accelerometer depending by BLE connection.
Client Startup
- The Client application can remotely control the User Button and the Accelerometer functions.
- Power on the Client AFTER the Server, it will automatically search for the SunTracker and will establish a BLE connection.
- The Green Led on Nucleo Client board will be powered on.
Rotation Features
- It has been implemented a block of rotation to avoid cables twist.
- The blocking point can be set in the firmware by changing a constant.
- You can manually rotate the structure to assign the ‘Zero Point’ before press the User Button to launch the application.
- The system features a progressive control on the stepper motor in order to modulate the rotation speed according to the light or accelerometer angle.
List of Components
SERVER SunTracker_BLE
- Nucleo-F401RE platform using a STM32F401RET6 microcontroller.
- X-NUCLEO-IHM01A1 - Stepper motor driver board based on the EasySPIN L6474.
- X-NUCLEO-6180XA1 - 3-in-1 proximity and ambient light sensor board based on ST FlightSense technology.
- VL6180X-SATEL - Satellite boards compatible with X-NUCLEO-6180XA1 board.
- X-NUCLEO-IKS01A1 - Motion MEMS and environmental sensor board.
- X-NUCLEO-IDB04A1 or X-NUCLEO-IDB05A1 - Bluetooth Low Energy Bluetooth low energy evaluation board.
- Stepper Motor 400’’ (Part Number 5350401) - To orientate the Mechanical Structure.
- Solar Panel 0.446w (Part Number 0194127) - To capture sunlight and generate electrical current.
- Power Supply 12v (Part Number 7262993) - To provide power supply at the Stepper Motor.
- Flat Cable 6 ways (Part Number 1807010) - To plug VL6180X-SATEL with X-NUCLEO-6180XA1 (60cm length each x2).
- Cable Connector (Part Number 6737694) - To plug the Flat Cable (x4).
- Power Connector (Part Number 0487842) - To provide Power Supply to X-NUCLEO-IHM01A1.
CLIENT SunTracker_BLE_Remote
- Nucleo-F401RE platform using a STM32F401RET6 microcontroller.
- X-NUCLEO-IKS01A1 - Motion MEMS and environmental sensor board.
- X-NUCLEO-IDB04A1 or X-NUCLEO-IDB05A1- Bluetooth Low Energy Bluetooth low energy evaluation board.
MECHANICAL STRUCTURE
Find here the STL files to print with a 3D printer.
FLAT CABLE ASSEMBLY
HARDWARE SETUP
Nucleo ADC + Solar Panel
Connect Solar Panel cables to Nucleo Morpho PC_3 (white) and Nucleo Morpho GND (black). Connect a capacitor 10uF between PC_3 and GND to stabilize its voltage value shown on display.
EasySpin (L6474) + BLE
Hardware conflict between EasySpin DIR1 and BLE Reset, both on same Arduino Pin PA_8. Disconnect PA_8 between EasySpin and Nucleo by fold EasySpin Pin. PB_2 has been configured as EasySpin DIR1 in the firmware .Connect Nucleo Morpho PB_2 to FlightSense Arduino PA_8 by a wire.
FlightSense Satellites
In case of instability with I2C due to long flat cables, solder 4 SMD capacitors 47pF on FlightSense board in parallel between R15, R16, R17, R18 and plug 2 capacitors 15pF between FlightSense Arduino PB_8 and PB_9 to GND pin to cut-off noises over 720 KHz.
Arduino & Morpho Pinout
Diff: main.cpp
- Revision:
- 6:4cbf7303b496
- Parent:
- 5:76fb6b783487
- Child:
- 7:54984d031243
--- a/main.cpp Wed Feb 03 11:22:17 2016 +0000 +++ b/main.cpp Mon Feb 08 11:12:07 2016 +0000 @@ -3,7 +3,7 @@ * @file main.cpp * @author Fabio Brembilla * @version V2.0.0 - * @date January 22th, 2016 + * @date February, 2016 * @brief SunTracker + RemoteControl Vertical Application * This application use IHM01A1, 6180XA1, IKS01A1, IDB0XA1 expansion boards ****************************************************************************** @@ -38,27 +38,24 @@ /* Includes ------------------------------------------------------------------*/ -/* mbed specific header files. */ +// Mbed specific header files #include "mbed.h" -/* Helper header files. */ +// Helper header files #include "DevSPI.h" #include "DevI2C.h" -/* Component specific header files. */ +// Component specific header files #include "l6474_class.h" #include "x_nucleo_6180xa1.h" #include "x_nucleo_iks01a1.h" -/* C header files. */ +// C header files #include <string.h> #include <stdlib.h> #include <stdio.h> #include <assert.h> -/* Calibration files. */ -#include "MotionFX_Manager.h" // Need for osxMFX_calibFactor - /* BlueTooth -----------------------------------------------------------------*/ #include "debug.h" // Need for PRINTF @@ -82,10 +79,11 @@ #include "CustomControlService.h" #include "CustomSensorsService.h" -static BLE * p_BLEdev = NULL; +static BLE *p_BLEdev = NULL; -#define BLE_DEV_NAME "SunTrack" +#define BLE_DEV_NAME "SunTracker" #define BLE_DEV_MAC 0xAA,0xBB,0xCC,0xDD,0xEE,0xFF +#define BLE_ADVERTISING_INTERVAL 1000 /* Definitions ---------------------------------------------------------------*/ @@ -115,26 +113,30 @@ /* ---------------------------------------------------------------------------*/ -/* Motor Control Component. */ -L6474 *motor; +// Motor Control Component +static L6474 *motor; -/* Initializing SPI bus. */ +// Initializing SPI bus DevSPI dev_spi(D11, D12, D13); -/* Initializing I2C bus. */ +// Initializing I2C bus DevI2C dev_i2c(D14, D15); -/* Instance board 6180XA1. */ -static X_NUCLEO_6180XA1 *board=X_NUCLEO_6180XA1::Instance(&dev_i2c, NC, NC, NC, NC); +// Instance board 6180XA1 +//static X_NUCLEO_6180XA1 *board=X_NUCLEO_6180XA1::Instance(&dev_i2c, NC, NC, NC, NC); +//MeasureData_t data_sensor_top, data_sensor_bottom, data_sensor_left, data_sensor_right; +static X_NUCLEO_6180XA1 *board; MeasureData_t data_sensor_top, data_sensor_bottom, data_sensor_left, data_sensor_right; - -/* Instance mems IKS01A1. */ -static X_NUCLEO_IKS01A1 *mems=X_NUCLEO_IKS01A1::Instance(&dev_i2c); -MotionSensor *accelerometer = mems->GetAccelerometer(); + +// Instance mems IKS01A1 +//static X_NUCLEO_IKS01A1 *mems=X_NUCLEO_IKS01A1::Instance(&dev_i2c); +//MotionSensor *accelerometer = mems->GetAccelerometer(); +static X_NUCLEO_IKS01A1 *mems; +MotionSensor *accelerometer; void DISP_ExecLoopBody(void) {}; -AnalogIn analog_read_A1(A1); +//AnalogIn analog_read(A1); // A1 Conflict with BLE SPI_CS --> Changed in A???? InterruptIn mybutton(USER_BUTTON); @@ -152,6 +154,8 @@ if (start==0) { start=1; } + + printf("PUSH Display %d Start %d\r\n", Display, start); } @@ -159,26 +163,43 @@ bool Initialization(void) { + + // Initializing MEMS Component + mems=X_NUCLEO_IKS01A1::Instance(&dev_i2c); + accelerometer = mems->GetAccelerometer(); + +//---- - /* Initializing Babybear Component. */ + // Initializing Babybear Component + board=X_NUCLEO_6180XA1::Instance(&dev_i2c, NC, NC, NC, NC); + +/* FABIO status=board->InitBoard(); - if(status) - VL6180x_ErrLog("Failed to init the board!\n\r"); + if(status) VL6180x_ErrLog("Failed to init the board!\n\r"); +*/ // Put GPIO not used as Interrupt in Hi-Z status_t=board->sensor_top->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF); //status_b=board->sensor_botton->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF); No Present status_l=board->sensor_left->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF); - status_r=board->sensor_right->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF); + status_r=board->sensor_right->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF); + + // Set Babybears + status_l=board->sensor_left->AlsSetAnalogueGain(3); + status_r=board->sensor_right->AlsSetAnalogueGain(3); + status_l=board->sensor_left->StartMeasurement(als_continuous_polling, NULL, NULL, NULL); + status_r=board->sensor_right->StartMeasurement(als_continuous_polling, NULL, NULL, NULL); - /* Initializing Motor Control Component. */ +//---- + + // Initializing Motor Component motor = new L6474(D2, D8, D7, D9, D10, dev_spi); if (motor->Init(NULL) != COMPONENT_OK) return false; motor->SetStepMode(STEP_MODE_1_8); // Default is STEP_MODE_1_16 - /* Set defaults Motor Speed. */ + // Set defaults Motor Speed motor->SetAcceleration(SET_ACC); motor->SetDeceleration(SET_DEC); motor->SetMaxSpeed(SET_MAX); // Variable by Light/Mems Sensors @@ -240,74 +261,49 @@ motor->SetMaxSpeed(diff); if (diff>TOLLERANCE) { - if (diff <=RANGE_1) { - if (left) { - strcpy(DisplayStr,"E___"); - } - if (right) { - strcpy(DisplayStr,"___3"); - } - } else if (diff >RANGE_1 & diff <=RANGE_2) { - if (left) { - strcpy(DisplayStr,"E==="); - } - if (right) { - strcpy(DisplayStr,"===3"); - } - } else if (diff >RANGE_2) { - if (left) { - strcpy(DisplayStr,"E~~~"); - } - if (right) { - strcpy(DisplayStr,"~~~3"); - } + if (diff <=RANGE_1) + { + if (left) { strcpy(DisplayStr,"E___"); } + if (right) { strcpy(DisplayStr,"___3"); } + } + else if (diff >RANGE_1 & diff <=RANGE_2) + { + if (left) { strcpy(DisplayStr,"E==="); } + if (right) { strcpy(DisplayStr,"===3"); } + } + else if (diff >RANGE_2) + { + if (left) { strcpy(DisplayStr,"E~~~"); } + if (right) { strcpy(DisplayStr,"~~~3"); } } // In Case of Change Direction - if (left & dir==2) { - changedir=1; - } - if (right & dir==1) { - changedir=1; - } + if (left & dir==2) { changedir=1; } + if (right & dir==1) { changedir=1; } // Run only if Stop or Change Direction if (diff>TOLLERANCE & (dir==0 | changedir==1)) { - if (left) { - motor->Run(StepperMotor::FWD); - dir=1; - changedir=0; - } - if (right) { - motor->Run(StepperMotor::BWD); - dir=2; - changedir=0; - } + if (left) { motor->Run(StepperMotor::FWD); dir=1; changedir=0; } + if (right) { motor->Run(StepperMotor::BWD); dir=2; changedir=0; } } } // Get Motor Position and Control Rotation Block pos = motor->GetPosition(); if (pos>STOP | pos<-STOP) { - if (pos>0) { - motor->GoTo(STOP); - } - if (pos<0) { - motor->GoTo(-STOP); - } + if (pos>0) { motor->GoTo(STOP); } + if (pos<0) { motor->GoTo(-STOP); } + printf("GOTO\n\r"); // Without this command, the motor remain in stop } // Stop Motor - if (diff<=TOLLERANCE) { + if (diff<=TOLLERANCE) { // It continues to send the command to stop the motor. Think to do it just one time motor->HardStop(); - if (Display==0) { - strcpy(DisplayStr,"----"); - } - if (Display==2) { - strcpy(DisplayStr,"E 3"); - } + if (Display==0) { strcpy(DisplayStr,"----"); } + if (Display==2) { strcpy(DisplayStr,"E 3"); } dir=0; changedir=0; + //printf("STOP\n\r"); } } @@ -317,8 +313,9 @@ void Measure_SolarPanel(void) { - // AnalogIn A1: 0V return 0.0 , 3.3V return 1.0 - float measure = analog_read_A1.read() * 3300; + // AnalogIn: 0V return 0.0 , 3.3V return 1.0 +// float measure = analog_read.read() * 3300; + float measure = 0; //printf("Measure = %.0f mV\r\n", measure); //board->display->DisplayDigit("A", 0); @@ -327,6 +324,7 @@ } board->display->DisplayString(DisplayStr, 4); + printf("%s\n\r", DisplayStr); } @@ -369,12 +367,14 @@ p_BLEdev = new BLE; if (!p_BLEdev) { printf("\r\nBLE Device creation failed\r\n"); } - const Gap::Address_t BLE_address_BE = {BLE_DEV_MAC}; - p_BLEdev->gap().setAddress(BLEProtocol::AddressType::PUBLIC, BLE_address_BE); -printf("Line: %d \r\n", __LINE__); - p_BLEdev->init(); -printf("Line: %d \r\n", __LINE__); + p_BLEdev->gap().setAddress(BLEProtocol::AddressType::PUBLIC, BLE_address_BE); + + printf("BLE Init (Line %d)\r\n", __LINE__); + + p_BLEdev->init(); + + printf("BLE Init OK (Line %d)\r\n", __LINE__); // Set BLE CallBack Functions p_BLEdev->gattServer().onUpdatesEnabled(onUpdatesEnabledCallback); @@ -387,6 +387,21 @@ //p_BLEdev->gattServer().onDataSent(onDataSentCallback); //p_BLEdev->gap().onTimeout(onTimeoutCallback); + // Setup BLE Advertising + const static char DEVICE_NAME[] = BLE_DEV_NAME; + p_BLEdev->gap().accumulateAdvertisingPayload(GapAdvertisingData::BREDR_NOT_SUPPORTED | GapAdvertisingData::LE_GENERAL_DISCOVERABLE); + #ifdef USE_SENSOR_FUSION_LIB + uint8_t dat[] = {0x01,0x80,0x00,0xFC,0x01,0x80}; + #else + uint8_t dat[] = {0x01,0x80,0x00,0xFC,0x00,0x00}; + #endif + p_BLEdev->gap().accumulateScanResponse(GapAdvertisingData::MANUFACTURER_SPECIFIC_DATA,dat,6); + p_BLEdev->gap().accumulateAdvertisingPayload(GapAdvertisingData::UNKNOWN); + p_BLEdev->gap().accumulateAdvertisingPayload(GapAdvertisingData::COMPLETE_LOCAL_NAME, (uint8_t *)DEVICE_NAME, sizeof(DEVICE_NAME)); + p_BLEdev->gap().setAdvertisingType(GapAdvertisingParams::ADV_CONNECTABLE_UNDIRECTED); + p_BLEdev->gap().setAdvertisingInterval(BLE_ADVERTISING_INTERVAL); + p_BLEdev->gap().startAdvertising(); + } /* Main ----------------------------------------------------------------------*/ @@ -394,28 +409,33 @@ int main() { + // Printing to the console + printf("SunTracker by Fabio Brembilla\r\n\n"); + Initialization(); - //BLE_Initialization(); - + printf("Initialization OK (Line %d)\r\n", __LINE__); + + BLE_Initialization(); + + printf("BLE_Initialization OK (Line %d)\r\n", __LINE__); + mybutton.fall(&User_Button_Pressed); - - /* Printing to the console. */ - printf("SunTracker by Fabio Brembilla\r\n\n"); + + printf("Main Initializations OK (Line %d)\r\n", __LINE__); + printf("Wait Push Button\r\n"); - /* Set Babybears. */ - status_l=board->sensor_left->AlsSetAnalogueGain(3); - status_r=board->sensor_right->AlsSetAnalogueGain(3); - status_l=board->sensor_left->StartMeasurement(als_continuous_polling, NULL, NULL, NULL); - status_r=board->sensor_right->StartMeasurement(als_continuous_polling, NULL, NULL, NULL); - - /* Loop until push User Button to Set 0 Point. */ + // Loop until push User Button to Set 0 Point strcpy(DisplayStr,"pusH"); while(start<1) { board->display->DisplayString(DisplayStr, 4); + printf("%s\n\r", DisplayStr); + //wait(0.1); // Need one command otherwise remain always in loop } - /* Main Loop. */ + printf("Start Main Loop\r\n"); + + // Main Loop while(true) { if (Display==0 | Display==1) { Measure_Babybear(); @@ -426,9 +446,11 @@ Control_Motor(); Measure_SolarPanel(); + + p_BLEdev->waitForEvent(); } - status_l=board->sensor_left->StopMeasurement(als_continuous_polling); - status_r=board->sensor_right->StopMeasurement(als_continuous_polling); + //status_l=board->sensor_left->StopMeasurement(als_continuous_polling); + //status_r=board->sensor_right->StopMeasurement(als_continuous_polling); }