SunTracker_BLE

Dependencies:   BLE_API X_NUCLEO_6180XA1 X_NUCLEO_IDB0XA1 X_NUCLEO_IHM01A1 X_NUCLEO_IKS01A1 mbed

Fork of SunTracker_BLE by ST Expansion SW Team

Overview

The SunTracker is a demo application running on ST Nucleo-F401RE stacking a set of ST X-NUCLEO expansion boards.
Main features provided are:

  • A solar panel follows the light source, orienting the panel in order to achieve the best panel efficiency.
  • Orientation is controlled thanks to a couple of VL6180X FlightSense light sensors mounted on a X-NUCLEO-6180XA1 expansion board and driven by X-NUCLEO-IHM01A1 controlled stepper motor acting as actuator to orientate the panel.
  • The system features a progressive control on the stepper motor in order to modulate the panel rotation speed according to the light angle.
  • The application is also able to control the panel productivity reading the panel voltage through an ADC and proving feedback on the local display.
  • A manual orientation is possible by using the accelerometer on a X-NUCLEO-IKS01A1 expansion board that, according on board tilt, controls the speed and the rotate direction.
  • A remote control is available using a X-NUCLEO-IDB04A1 or a X-NUCLEO-IDB05A1 Bluetooth Low Energy expansion board. Remote control software is here.

/media/uploads/fabiombed/suntracker_server-client.png

Working Status

  • SunTracker has 3 working status visible on FlightSense display and switchable by pressing the User Button:

Status 0 (Idle)

  • Motor: Free Turning
  • Display: Waiting for User Button

Status 1

  • Motor: Driven by Light
  • Display: Direction and Light Intensity = Direction and Motor Speed

Status 2

  • Motor: Driven by Light
  • Display: Solar Panel Efficiency

Status 3

  • Motor: Driven by Accelerometer
  • Display: Direction and Accelerometer Intensity

Server Startup

  • When you plug the power supply, the word ‘PUSH’ is shown on display.
  • You can manually rotate the structure to assign the ‘Zero Point’. Then press the User Button to launch the application.
  • The display will show this status, which means that the structure is oriented to maximize the efficiency of the solar panel.
  • If there is a light displacement, the structure will rotate, left or right, to follow the light source and on display is shown the direction and the speed.
  • You can press the User Button to show the panel efficiency with 4 digits that represent the range from 0v (0000) to 3,3v (3300).
  • Further pressing the User Button you will manual rotate the panel by tilt the Server or Client accelerometer depending by BLE connection.

Client Startup

  • The Client application can remotely control the User Button and the Accelerometer functions.
  • Power on the Client AFTER the Server, it will automatically search for the SunTracker and will establish a BLE connection.
  • The Green Led on Nucleo Client board will be powered on.

Rotation Features

  • It has been implemented a block of rotation to avoid cables twist.
  • The blocking point can be set in the firmware by changing a constant.
  • You can manually rotate the structure to assign the ‘Zero Point’ before press the User Button to launch the application.
  • The system features a progressive control on the stepper motor in order to modulate the rotation speed according to the light or accelerometer angle.

List of Components

SERVER SunTracker_BLE

  • Stepper Motor 400’’ (Part Number 5350401) - To orientate the Mechanical Structure.
  • Solar Panel 0.446w (Part Number 0194127) - To capture sunlight and generate electrical current.
  • Power Supply 12v (Part Number 7262993) - To provide power supply at the Stepper Motor.
  • Flat Cable 6 ways (Part Number 1807010) - To plug VL6180X-SATEL with X-NUCLEO-6180XA1 (60cm length each x2).
  • Cable Connector (Part Number 6737694) - To plug the Flat Cable (x4).
  • Power Connector (Part Number 0487842) - To provide Power Supply to X-NUCLEO-IHM01A1.

CLIENT SunTracker_BLE_Remote

MECHANICAL STRUCTURE

Find here the STL files to print with a 3D printer.

/media/uploads/fabiombed/assembly.png

/media/uploads/fabiombed/mechanical_structure_and_motor_legs.png

FLAT CABLE ASSEMBLY

/media/uploads/fabiombed/flat_cable.png

HARDWARE SETUP

Nucleo ADC + Solar Panel

Connect Solar Panel cables to Nucleo Morpho PC_3 (white) and Nucleo Morpho GND (black). Connect a capacitor 10uF between PC_3 and GND to stabilize its voltage value shown on display.

EasySpin (L6474) + BLE

Hardware conflict between EasySpin DIR1 and BLE Reset, both on same Arduino Pin PA_8. Disconnect PA_8 between EasySpin and Nucleo by fold EasySpin Pin. PB_2 has been configured as EasySpin DIR1 in the firmware . Connect Nucleo Morpho PB_2 to FlightSense Arduino PA_8 by a wire.

FlightSense Satellites

In case of instability with I2C due to long flat cables, solder 4 SMD capacitors 47pF on FlightSense board in parallel between R15, R16, R17, R18 and plug 2 capacitors 15pF between FlightSense Arduino PB_8 and PB_9 to GND pin to cut-off noises over 720 KHz.

Arduino & Morpho Pinout

/media/uploads/fabiombed/arduino_pinout.png /media/uploads/fabiombed/morpho_pinout.png

Committer:
fabiombed
Date:
Fri Jan 22 13:48:41 2016 +0000
Revision:
2:013921c26f43
Parent:
1:8f312c1686b6
Child:
4:1d3d071a4c2c
minor change

Who changed what in which revision?

UserRevisionLine numberNew contents of line
fabiombed 0:becf0d313663 1 /**
fabiombed 0:becf0d313663 2 ******************************************************************************
fabiombed 0:becf0d313663 3 * @file main.cpp
fabiombed 1:8f312c1686b6 4 * @author Fabio Brembilla
fabiombed 0:becf0d313663 5 * @version V1.0.0
fabiombed 1:8f312c1686b6 6 * @date December 1st, 2015
fabiombed 1:8f312c1686b6 7 * @brief SunTracker + RemoteControl Vertical Application
fabiombed 1:8f312c1686b6 8 * This application use IHM01A1, 6180XA1, IKS01A1, IDB0XA1 expansion boards
fabiombed 0:becf0d313663 9 ******************************************************************************
fabiombed 0:becf0d313663 10 * @attention
fabiombed 2:013921c26f43 11 *
fabiombed 0:becf0d313663 12 * <h2><center>&copy; COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
fabiombed 0:becf0d313663 13 *
fabiombed 0:becf0d313663 14 * Redistribution and use in source and binary forms, with or without modification,
fabiombed 0:becf0d313663 15 * are permitted provided that the following conditions are met:
fabiombed 0:becf0d313663 16 * 1. Redistributions of source code must retain the above copyright notice,
fabiombed 0:becf0d313663 17 * this list of conditions and the following disclaimer.
fabiombed 0:becf0d313663 18 * 2. Redistributions in binary form must reproduce the above copyright notice,
fabiombed 0:becf0d313663 19 * this list of conditions and the following disclaimer in the documentation
fabiombed 0:becf0d313663 20 * and/or other materials provided with the distribution.
fabiombed 0:becf0d313663 21 * 3. Neither the name of STMicroelectronics nor the names of its contributors
fabiombed 0:becf0d313663 22 * may be used to endorse or promote products derived from this software
fabiombed 0:becf0d313663 23 * without specific prior written permission.
fabiombed 0:becf0d313663 24 *
fabiombed 0:becf0d313663 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
fabiombed 0:becf0d313663 26 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
fabiombed 0:becf0d313663 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
fabiombed 0:becf0d313663 28 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
fabiombed 0:becf0d313663 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
fabiombed 0:becf0d313663 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
fabiombed 0:becf0d313663 31 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
fabiombed 0:becf0d313663 32 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
fabiombed 0:becf0d313663 33 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
fabiombed 0:becf0d313663 34 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
fabiombed 0:becf0d313663 35 *
fabiombed 0:becf0d313663 36 ******************************************************************************
fabiombed 0:becf0d313663 37 */
fabiombed 1:8f312c1686b6 38
fabiombed 0:becf0d313663 39 /* Includes ------------------------------------------------------------------*/
fabiombed 1:8f312c1686b6 40
fabiombed 0:becf0d313663 41 /* mbed specific header files. */
fabiombed 0:becf0d313663 42 #include "mbed.h"
fabiombed 1:8f312c1686b6 43
fabiombed 0:becf0d313663 44 /* Helper header files. */
fabiombed 0:becf0d313663 45 #include "DevSPI.h"
fabiombed 1:8f312c1686b6 46 #include "DevI2C.h"
fabiombed 0:becf0d313663 47
fabiombed 1:8f312c1686b6 48 /* Component specific header files. */
fabiombed 1:8f312c1686b6 49 #include "l6474_class.h"
fabiombed 1:8f312c1686b6 50 #include "x_nucleo_6180xa1.h"
fabiombed 0:becf0d313663 51 #include "x_nucleo_iks01a1.h"
fabiombed 0:becf0d313663 52
fabiombed 1:8f312c1686b6 53 /* C header files. */
fabiombed 1:8f312c1686b6 54 #include <string.h>
fabiombed 1:8f312c1686b6 55 #include <stdlib.h>
fabiombed 1:8f312c1686b6 56 #include <stdio.h>
fabiombed 1:8f312c1686b6 57 #include <assert.h>
fabiombed 0:becf0d313663 58
fabiombed 0:becf0d313663 59 /* Definitions ---------------------------------------------------------------*/
fabiombed 0:becf0d313663 60
fabiombed 1:8f312c1686b6 61 #define SET_ACC 400 // Set Motor Acceleration
fabiombed 1:8f312c1686b6 62 #define SET_DEC 400 // Set Motor Deceleration
fabiombed 1:8f312c1686b6 63 #define SET_MAX 200 // Set Motor MaxSpeed
fabiombed 1:8f312c1686b6 64 #define SET_MIN 100 // Set Motor MinSpeed
fabiombed 1:8f312c1686b6 65 #define STOP 1000 // Set Motor Stop Position
fabiombed 1:8f312c1686b6 66 #define TOLLERANCE 100 // Tollerance between Left and Right before Start Movement
fabiombed 1:8f312c1686b6 67 #define RANGE_1 200 // Range 1 for Motor Speed
fabiombed 1:8f312c1686b6 68 #define RANGE_2 500 // Range 2 for Motor Speed
fabiombed 0:becf0d313663 69
fabiombed 0:becf0d313663 70 /* Variables -----------------------------------------------------------------*/
fabiombed 0:becf0d313663 71
fabiombed 1:8f312c1686b6 72 int16_t dir=0; // Motor Rotation Direction: 0 = Stop, 1 = Anticlockwise, 2 = Clockwise
fabiombed 1:8f312c1686b6 73 int16_t changedir=0; // Change Direction: 0 = No, 1 = Yes
fabiombed 1:8f312c1686b6 74 int16_t babybear=0; // Difference (in Lux) between Left and Right
fabiombed 1:8f312c1686b6 75 int acc_data[3]; // Difference of Accelerometer
fabiombed 1:8f312c1686b6 76 int16_t diff=0; // Abs of Babybear or Accelerometer difference
fabiombed 1:8f312c1686b6 77 int16_t left=0; // Left Command for Rotate Direction
fabiombed 1:8f312c1686b6 78 int16_t right=0; // Right Command for Rotate Direction
fabiombed 1:8f312c1686b6 79 int16_t start=0; // Waiting User Button Push
fabiombed 1:8f312c1686b6 80 int32_t pos=0; // Motor Position
fabiombed 1:8f312c1686b6 81 char DisplayStr[5]; // Status Display
fabiombed 1:8f312c1686b6 82 int16_t Display=0; // Shown on Display: 0 = Motor Speed, 1 = Solar Panel Value, 2 = Manual Control
fabiombed 1:8f312c1686b6 83 int16_t status, status_t, status_b, status_l, status_r; // Babybear Status
fabiombed 1:8f312c1686b6 84
fabiombed 1:8f312c1686b6 85 /* ---------------------------------------------------------------------------*/
fabiombed 0:becf0d313663 86
fabiombed 0:becf0d313663 87 /* Motor Control Component. */
fabiombed 0:becf0d313663 88 L6474 *motor;
fabiombed 0:becf0d313663 89
fabiombed 1:8f312c1686b6 90 /* Initializing SPI bus. */
fabiombed 1:8f312c1686b6 91 DevSPI dev_spi(D11, D12, D13);
fabiombed 0:becf0d313663 92
fabiombed 1:8f312c1686b6 93 /* Initializing I2C bus. */
fabiombed 1:8f312c1686b6 94 DevI2C dev_i2c(D14, D15);
fabiombed 1:8f312c1686b6 95
fabiombed 1:8f312c1686b6 96 /* Instance board 6180XA1. */
fabiombed 1:8f312c1686b6 97 static X_NUCLEO_6180XA1 *board=X_NUCLEO_6180XA1::Instance(&dev_i2c, NC, NC, NC, NC);
fabiombed 1:8f312c1686b6 98 MeasureData_t data_sensor_top, data_sensor_bottom, data_sensor_left, data_sensor_right;
fabiombed 0:becf0d313663 99
fabiombed 1:8f312c1686b6 100 /* Instance mems IKS01A1. */
fabiombed 1:8f312c1686b6 101 static X_NUCLEO_IKS01A1 *mems=X_NUCLEO_IKS01A1::Instance(&dev_i2c);
fabiombed 1:8f312c1686b6 102 MotionSensor *accelerometer = mems->GetAccelerometer();
fabiombed 1:8f312c1686b6 103
fabiombed 1:8f312c1686b6 104 void DISP_ExecLoopBody(void){};
fabiombed 0:becf0d313663 105
fabiombed 1:8f312c1686b6 106 AnalogIn analog_read_A1(A1);
fabiombed 1:8f312c1686b6 107
fabiombed 1:8f312c1686b6 108 InterruptIn mybutton(USER_BUTTON);
fabiombed 1:8f312c1686b6 109
fabiombed 1:8f312c1686b6 110 /* User_Button_Pressed -------------------------------------------------------*/
fabiombed 0:becf0d313663 111
fabiombed 1:8f312c1686b6 112 void User_Button_Pressed()
fabiombed 1:8f312c1686b6 113 {
fabiombed 1:8f312c1686b6 114
fabiombed 1:8f312c1686b6 115 if (start>0) { Display++; }
fabiombed 1:8f312c1686b6 116 if (Display>2) { Display=0; }
fabiombed 1:8f312c1686b6 117 if (start==0) { start=1; }
fabiombed 1:8f312c1686b6 118
fabiombed 1:8f312c1686b6 119 }
fabiombed 1:8f312c1686b6 120
fabiombed 1:8f312c1686b6 121 /* Initialization ------------------------------------------------------------*/
fabiombed 0:becf0d313663 122
fabiombed 1:8f312c1686b6 123 bool Initialization(void)
fabiombed 1:8f312c1686b6 124 {
fabiombed 1:8f312c1686b6 125
fabiombed 1:8f312c1686b6 126 /* Initializing Babybear Component. */
fabiombed 1:8f312c1686b6 127 status=board->InitBoard();
fabiombed 1:8f312c1686b6 128 if(status)
fabiombed 1:8f312c1686b6 129 VL6180x_ErrLog("Failed to init the board!\n\r");
fabiombed 0:becf0d313663 130
fabiombed 1:8f312c1686b6 131 // Put GPIO not used as Interrupt in Hi-Z
fabiombed 1:8f312c1686b6 132 status_t=board->sensor_top->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF);
fabiombed 1:8f312c1686b6 133 //status_b=board->sensor_botton->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF); No Present
fabiombed 1:8f312c1686b6 134 status_l=board->sensor_left->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF);
fabiombed 1:8f312c1686b6 135 status_r=board->sensor_right->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF);
fabiombed 1:8f312c1686b6 136
fabiombed 0:becf0d313663 137 /* Initializing Motor Control Component. */
fabiombed 0:becf0d313663 138 motor = new L6474(D2, D8, D7, D9, D10, dev_spi);
fabiombed 0:becf0d313663 139 if (motor->Init(NULL) != COMPONENT_OK)
fabiombed 0:becf0d313663 140 return false;
fabiombed 1:8f312c1686b6 141
fabiombed 1:8f312c1686b6 142 motor->SetStepMode(STEP_MODE_1_8); // Default is STEP_MODE_1_16
fabiombed 1:8f312c1686b6 143
fabiombed 1:8f312c1686b6 144 /* Set defaults Motor Speed. */
fabiombed 1:8f312c1686b6 145 motor->SetAcceleration(SET_ACC);
fabiombed 1:8f312c1686b6 146 motor->SetDeceleration(SET_DEC);
fabiombed 1:8f312c1686b6 147 motor->SetMaxSpeed(SET_MAX); // Variable by Light/Mems Sensors
fabiombed 1:8f312c1686b6 148 motor->SetMinSpeed(SET_MIN);
fabiombed 1:8f312c1686b6 149
fabiombed 1:8f312c1686b6 150 return true;
fabiombed 1:8f312c1686b6 151
fabiombed 1:8f312c1686b6 152 }
fabiombed 0:becf0d313663 153
fabiombed 1:8f312c1686b6 154 /* Measure_Babybear ----------------------------------------------------------*/
fabiombed 1:8f312c1686b6 155
fabiombed 1:8f312c1686b6 156 void Measure_Babybear(void)
fabiombed 1:8f312c1686b6 157 {
fabiombed 1:8f312c1686b6 158
fabiombed 1:8f312c1686b6 159 status_l=board->sensor_left->GetMeasurement(als_continuous_polling, &data_sensor_left);
fabiombed 1:8f312c1686b6 160 status_r=board->sensor_right->GetMeasurement(als_continuous_polling, &data_sensor_right);
fabiombed 1:8f312c1686b6 161
fabiombed 1:8f312c1686b6 162 babybear = data_sensor_right.lux - data_sensor_left.lux;
fabiombed 1:8f312c1686b6 163
fabiombed 1:8f312c1686b6 164 diff = abs(babybear);
fabiombed 1:8f312c1686b6 165
fabiombed 1:8f312c1686b6 166 if (babybear>0) { left=0; right=1; }
fabiombed 1:8f312c1686b6 167 if (babybear<0) { left=1; right=0; }
fabiombed 1:8f312c1686b6 168
fabiombed 1:8f312c1686b6 169 }
fabiombed 1:8f312c1686b6 170
fabiombed 1:8f312c1686b6 171 /* Measure_Accelerometer -----------------------------------------------------*/
fabiombed 1:8f312c1686b6 172
fabiombed 1:8f312c1686b6 173 void Measure_Accelerometer(void)
fabiombed 1:8f312c1686b6 174 {
fabiombed 1:8f312c1686b6 175
fabiombed 1:8f312c1686b6 176 accelerometer->Get_X_Axes(acc_data);
fabiombed 1:8f312c1686b6 177
fabiombed 1:8f312c1686b6 178 diff = abs(acc_data[0]);
fabiombed 1:8f312c1686b6 179
fabiombed 1:8f312c1686b6 180 if (acc_data[0]>0) { left=0; right=1; }
fabiombed 1:8f312c1686b6 181 if (acc_data[0]<0) { left=1; right=0; }
fabiombed 1:8f312c1686b6 182
fabiombed 1:8f312c1686b6 183 }
fabiombed 0:becf0d313663 184
fabiombed 0:becf0d313663 185
fabiombed 1:8f312c1686b6 186 /* Control_Motor -------------------------------------------------------------*/
fabiombed 1:8f312c1686b6 187
fabiombed 1:8f312c1686b6 188 void Control_Motor(void)
fabiombed 1:8f312c1686b6 189 {
fabiombed 1:8f312c1686b6 190
fabiombed 1:8f312c1686b6 191 //printf("Diff: %d lux/mems\n\r", diff);
fabiombed 1:8f312c1686b6 192 motor->SetMaxSpeed(diff);
fabiombed 0:becf0d313663 193
fabiombed 1:8f312c1686b6 194 if (diff>TOLLERANCE)
fabiombed 1:8f312c1686b6 195 {
fabiombed 1:8f312c1686b6 196 if (diff <=RANGE_1) {
fabiombed 1:8f312c1686b6 197 if (left) { strcpy(DisplayStr,"E___"); }
fabiombed 1:8f312c1686b6 198 if (right) { strcpy(DisplayStr,"___3"); }
fabiombed 1:8f312c1686b6 199 }
fabiombed 1:8f312c1686b6 200 else if (diff >RANGE_1 & diff <=RANGE_2) {
fabiombed 1:8f312c1686b6 201 if (left) { strcpy(DisplayStr,"E==="); }
fabiombed 1:8f312c1686b6 202 if (right) { strcpy(DisplayStr,"===3"); }
fabiombed 1:8f312c1686b6 203 }
fabiombed 1:8f312c1686b6 204 else if (diff >RANGE_2) {
fabiombed 1:8f312c1686b6 205 if (left) { strcpy(DisplayStr,"E~~~"); }
fabiombed 1:8f312c1686b6 206 if (right) { strcpy(DisplayStr,"~~~3"); }
fabiombed 1:8f312c1686b6 207 }
fabiombed 1:8f312c1686b6 208
fabiombed 1:8f312c1686b6 209 // In Case of Change Direction
fabiombed 1:8f312c1686b6 210 if (left & dir==2) { changedir=1; }
fabiombed 1:8f312c1686b6 211 if (right & dir==1) { changedir=1; }
fabiombed 1:8f312c1686b6 212
fabiombed 1:8f312c1686b6 213 // Run only if Stop or Change Direction
fabiombed 1:8f312c1686b6 214 if (diff>TOLLERANCE & (dir==0 | changedir==1)) {
fabiombed 1:8f312c1686b6 215 if (left) { motor->Run(StepperMotor::FWD); dir=1; changedir=0; }
fabiombed 1:8f312c1686b6 216 if (right) { motor->Run(StepperMotor::BWD); dir=2; changedir=0; }
fabiombed 1:8f312c1686b6 217 }
fabiombed 1:8f312c1686b6 218 }
fabiombed 1:8f312c1686b6 219
fabiombed 1:8f312c1686b6 220 // Get Motor Position and Control Rotation Block
fabiombed 1:8f312c1686b6 221 pos = motor->GetPosition();
fabiombed 1:8f312c1686b6 222 if (pos>STOP | pos<-STOP) {
fabiombed 1:8f312c1686b6 223 if (pos>0) { motor->GoTo(STOP); }
fabiombed 1:8f312c1686b6 224 if (pos<0) { motor->GoTo(-STOP); }
fabiombed 1:8f312c1686b6 225 }
fabiombed 1:8f312c1686b6 226
fabiombed 1:8f312c1686b6 227 // Stop Motor
fabiombed 1:8f312c1686b6 228 if (diff<=TOLLERANCE) {
fabiombed 1:8f312c1686b6 229 motor->HardStop();
fabiombed 1:8f312c1686b6 230 if (Display==0) { strcpy(DisplayStr,"----"); }
fabiombed 1:8f312c1686b6 231 if (Display==2) { strcpy(DisplayStr,"E 3"); }
fabiombed 1:8f312c1686b6 232 dir=0;
fabiombed 1:8f312c1686b6 233 changedir=0;
fabiombed 1:8f312c1686b6 234 }
fabiombed 1:8f312c1686b6 235
fabiombed 1:8f312c1686b6 236 }
fabiombed 1:8f312c1686b6 237
fabiombed 1:8f312c1686b6 238 /* Measure_SolarPanel --------------------------------------------------------*/
fabiombed 1:8f312c1686b6 239
fabiombed 1:8f312c1686b6 240 void Measure_SolarPanel(void)
fabiombed 1:8f312c1686b6 241 {
fabiombed 1:8f312c1686b6 242
fabiombed 1:8f312c1686b6 243 // AnalogIn A1: 0V return 0.0 , 3.3V return 1.0
fabiombed 1:8f312c1686b6 244 float measure = analog_read_A1.read() * 3300;
fabiombed 1:8f312c1686b6 245 //printf("Measure = %.0f mV\r\n", measure);
fabiombed 1:8f312c1686b6 246 //board->display->DisplayDigit("A", 0);
fabiombed 1:8f312c1686b6 247
fabiombed 1:8f312c1686b6 248 if (Display==1) { sprintf(DisplayStr, "%.0f", measure); }
fabiombed 1:8f312c1686b6 249
fabiombed 1:8f312c1686b6 250 board->display->DisplayString(DisplayStr, 4);
fabiombed 1:8f312c1686b6 251
fabiombed 1:8f312c1686b6 252 }
fabiombed 1:8f312c1686b6 253
fabiombed 1:8f312c1686b6 254 /* Main ----------------------------------------------------------------------*/
fabiombed 1:8f312c1686b6 255
fabiombed 1:8f312c1686b6 256 int main()
fabiombed 1:8f312c1686b6 257 {
fabiombed 1:8f312c1686b6 258
fabiombed 1:8f312c1686b6 259 Initialization();
fabiombed 1:8f312c1686b6 260
fabiombed 1:8f312c1686b6 261 mybutton.fall(&User_Button_Pressed);
fabiombed 1:8f312c1686b6 262
fabiombed 0:becf0d313663 263 /* Printing to the console. */
fabiombed 1:8f312c1686b6 264 printf("SunTracker by Fabio Brembilla\r\n\n");
fabiombed 1:8f312c1686b6 265
fabiombed 1:8f312c1686b6 266 /* Set Babybears. */
fabiombed 1:8f312c1686b6 267 status_l=board->sensor_left->AlsSetAnalogueGain(3);
fabiombed 1:8f312c1686b6 268 status_r=board->sensor_right->AlsSetAnalogueGain(3);
fabiombed 1:8f312c1686b6 269 status_l=board->sensor_left->StartMeasurement(als_continuous_polling, NULL, NULL, NULL);
fabiombed 1:8f312c1686b6 270 status_r=board->sensor_right->StartMeasurement(als_continuous_polling, NULL, NULL, NULL);
fabiombed 1:8f312c1686b6 271
fabiombed 1:8f312c1686b6 272 /* Loop until push User Button to Set 0 Point. */
fabiombed 1:8f312c1686b6 273 strcpy(DisplayStr,"pusH");
fabiombed 1:8f312c1686b6 274 while(start<1)
fabiombed 1:8f312c1686b6 275 {
fabiombed 1:8f312c1686b6 276 board->display->DisplayString(DisplayStr, 4);
fabiombed 1:8f312c1686b6 277 }
fabiombed 1:8f312c1686b6 278
fabiombed 0:becf0d313663 279 /* Main Loop. */
fabiombed 0:becf0d313663 280 while(true)
fabiombed 0:becf0d313663 281 {
fabiombed 1:8f312c1686b6 282 if (Display==0 | Display==1) { Measure_Babybear(); }
fabiombed 1:8f312c1686b6 283 if (Display==2) { Measure_Accelerometer(); }
fabiombed 1:8f312c1686b6 284
fabiombed 1:8f312c1686b6 285 Control_Motor();
fabiombed 1:8f312c1686b6 286 Measure_SolarPanel();
fabiombed 0:becf0d313663 287 }
fabiombed 1:8f312c1686b6 288
fabiombed 1:8f312c1686b6 289 status_l=board->sensor_left->StopMeasurement(als_continuous_polling);
fabiombed 1:8f312c1686b6 290 status_r=board->sensor_right->StopMeasurement(als_continuous_polling);
fabiombed 1:8f312c1686b6 291
fabiombed 0:becf0d313663 292 }