SunTracker_BLE

Dependencies:   BLE_API X_NUCLEO_6180XA1 X_NUCLEO_IDB0XA1 X_NUCLEO_IHM01A1 X_NUCLEO_IKS01A1 mbed

Fork of SunTracker_BLE by ST Expansion SW Team

Overview

The SunTracker is a demo application running on ST Nucleo-F401RE stacking a set of ST X-NUCLEO expansion boards.
Main features provided are:

  • A solar panel follows the light source, orienting the panel in order to achieve the best panel efficiency.
  • Orientation is controlled thanks to a couple of VL6180X FlightSense light sensors mounted on a X-NUCLEO-6180XA1 expansion board and driven by X-NUCLEO-IHM01A1 controlled stepper motor acting as actuator to orientate the panel.
  • The system features a progressive control on the stepper motor in order to modulate the panel rotation speed according to the light angle.
  • The application is also able to control the panel productivity reading the panel voltage through an ADC and proving feedback on the local display.
  • A manual orientation is possible by using the accelerometer on a X-NUCLEO-IKS01A1 expansion board that, according on board tilt, controls the speed and the rotate direction.
  • A remote control is available using a X-NUCLEO-IDB04A1 or a X-NUCLEO-IDB05A1 Bluetooth Low Energy expansion board. Remote control software is here.

/media/uploads/fabiombed/suntracker_server-client.png

Working Status

  • SunTracker has 3 working status visible on FlightSense display and switchable by pressing the User Button:

Status 0 (Idle)

  • Motor: Free Turning
  • Display: Waiting for User Button

Status 1

  • Motor: Driven by Light
  • Display: Direction and Light Intensity = Direction and Motor Speed

Status 2

  • Motor: Driven by Light
  • Display: Solar Panel Efficiency

Status 3

  • Motor: Driven by Accelerometer
  • Display: Direction and Accelerometer Intensity

Server Startup

  • When you plug the power supply, the word ‘PUSH’ is shown on display.
  • You can manually rotate the structure to assign the ‘Zero Point’. Then press the User Button to launch the application.
  • The display will show this status, which means that the structure is oriented to maximize the efficiency of the solar panel.
  • If there is a light displacement, the structure will rotate, left or right, to follow the light source and on display is shown the direction and the speed.
  • You can press the User Button to show the panel efficiency with 4 digits that represent the range from 0v (0000) to 3,3v (3300).
  • Further pressing the User Button you will manual rotate the panel by tilt the Server or Client accelerometer depending by BLE connection.

Client Startup

  • The Client application can remotely control the User Button and the Accelerometer functions.
  • Power on the Client AFTER the Server, it will automatically search for the SunTracker and will establish a BLE connection.
  • The Green Led on Nucleo Client board will be powered on.

Rotation Features

  • It has been implemented a block of rotation to avoid cables twist.
  • The blocking point can be set in the firmware by changing a constant.
  • You can manually rotate the structure to assign the ‘Zero Point’ before press the User Button to launch the application.
  • The system features a progressive control on the stepper motor in order to modulate the rotation speed according to the light or accelerometer angle.

List of Components

SERVER SunTracker_BLE

  • Stepper Motor 400’’ (Part Number 5350401) - To orientate the Mechanical Structure.
  • Solar Panel 0.446w (Part Number 0194127) - To capture sunlight and generate electrical current.
  • Power Supply 12v (Part Number 7262993) - To provide power supply at the Stepper Motor.
  • Flat Cable 6 ways (Part Number 1807010) - To plug VL6180X-SATEL with X-NUCLEO-6180XA1 (60cm length each x2).
  • Cable Connector (Part Number 6737694) - To plug the Flat Cable (x4).
  • Power Connector (Part Number 0487842) - To provide Power Supply to X-NUCLEO-IHM01A1.

CLIENT SunTracker_BLE_Remote

MECHANICAL STRUCTURE

Find here the STL files to print with a 3D printer.

/media/uploads/fabiombed/assembly.png

/media/uploads/fabiombed/mechanical_structure_and_motor_legs.png

FLAT CABLE ASSEMBLY

/media/uploads/fabiombed/flat_cable.png

HARDWARE SETUP

Nucleo ADC + Solar Panel

Connect Solar Panel cables to Nucleo Morpho PC_3 (white) and Nucleo Morpho GND (black). Connect a capacitor 10uF between PC_3 and GND to stabilize its voltage value shown on display.

EasySpin (L6474) + BLE

Hardware conflict between EasySpin DIR1 and BLE Reset, both on same Arduino Pin PA_8. Disconnect PA_8 between EasySpin and Nucleo by fold EasySpin Pin. PB_2 has been configured as EasySpin DIR1 in the firmware . Connect Nucleo Morpho PB_2 to FlightSense Arduino PA_8 by a wire.

FlightSense Satellites

In case of instability with I2C due to long flat cables, solder 4 SMD capacitors 47pF on FlightSense board in parallel between R15, R16, R17, R18 and plug 2 capacitors 15pF between FlightSense Arduino PB_8 and PB_9 to GND pin to cut-off noises over 720 KHz.

Arduino & Morpho Pinout

/media/uploads/fabiombed/arduino_pinout.png /media/uploads/fabiombed/morpho_pinout.png

main.cpp

Committer:
fabiombed
Date:
2016-02-03
Revision:
5:76fb6b783487
Parent:
4:1d3d071a4c2c
Child:
6:4cbf7303b496

File content as of revision 5:76fb6b783487:

/**
 ******************************************************************************
 * @file    main.cpp
 * @author  Fabio Brembilla
 * @version V2.0.0
 * @date    January 22th, 2016
 * @brief   SunTracker + RemoteControl Vertical Application
 *          This application use IHM01A1, 6180XA1, IKS01A1, IDB0XA1 expansion boards
 ******************************************************************************
 * @attention
 *
 * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *   1. Redistributions of source code must retain the above copyright notice,
 *      this list of conditions and the following disclaimer.
 *   2. Redistributions in binary form must reproduce the above copyright notice,
 *      this list of conditions and the following disclaimer in the documentation
 *      and/or other materials provided with the distribution.
 *   3. Neither the name of STMicroelectronics nor the names of its contributors
 *      may be used to endorse or promote products derived from this software
 *      without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************
 */

/* Includes ------------------------------------------------------------------*/

/* mbed specific header files. */
#include "mbed.h"

/* Helper header files. */
#include "DevSPI.h"
#include "DevI2C.h"

/* Component specific header files. */
#include "l6474_class.h"
#include "x_nucleo_6180xa1.h"
#include "x_nucleo_iks01a1.h"

/* C header files. */
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>

/* Calibration files. */
#include "MotionFX_Manager.h" // Need for osxMFX_calibFactor

/* BlueTooth -----------------------------------------------------------------*/

#include "debug.h" // Need for PRINTF
#include "Utils.h" // Need for STORE_LE_16 and _32

typedef struct {
    int32_t AXIS_X;
    int32_t AXIS_Y;
    int32_t AXIS_Z;
} AxesRaw_TypeDef;

typedef enum ConnectionStatus_t {
    DISCONNECTED    =0,
    CONNECTED       =1
}cns_t;

const unsigned   LENGTH_OF_LONG_UUID = 16;
typedef uint16_t ShortUUIDBytes_t;
typedef uint8_t  LongUUIDBytes_t[LENGTH_OF_LONG_UUID];

#include "CustomControlService.h"
#include "CustomSensorsService.h"

static BLE * p_BLEdev = NULL;

#define BLE_DEV_NAME "SunTrack"
#define BLE_DEV_MAC 0xAA,0xBB,0xCC,0xDD,0xEE,0xFF

/* Definitions ---------------------------------------------------------------*/

#define SET_ACC 400     // Set Motor Acceleration
#define SET_DEC 400     // Set Motor Deceleration
#define SET_MAX 200     // Set Motor MaxSpeed
#define SET_MIN 100     // Set Motor MinSpeed
#define STOP 1000       // Set Motor Stop Position
#define TOLLERANCE 100  // Tollerance between Left and Right before Start Movement
#define RANGE_1 200     // Range 1 for Motor Speed
#define RANGE_2 500     // Range 2 for Motor Speed

/* Variables -----------------------------------------------------------------*/

int16_t dir=0;          // Motor Rotation Direction: 0 = Stop, 1 = Anticlockwise, 2 = Clockwise
int16_t changedir=0;    // Change Direction: 0 = No, 1 = Yes
int16_t babybear=0;     // Difference (in Lux) between Left and Right
int acc_data[3];        // Difference of Accelerometer
int16_t diff=0;         // Abs of Babybear or Accelerometer difference
int16_t left=0;         // Left Command for Rotate Direction
int16_t right=0;        // Right Command for Rotate Direction
int16_t start=0;        // Waiting User Button Push
int32_t pos=0;          // Motor Position
char DisplayStr[5];     // Status Display
int16_t Display=0;      // Shown on Display: 0 = Motor Speed, 1 = Solar Panel Value, 2 = Manual Control
int16_t status, status_t, status_b, status_l, status_r; // Babybear Status

/* ---------------------------------------------------------------------------*/

/* Motor Control Component. */
L6474 *motor;

/* Initializing SPI bus. */
DevSPI dev_spi(D11, D12, D13);

/* Initializing I2C bus. */
DevI2C dev_i2c(D14, D15);

/* Instance board 6180XA1. */
static X_NUCLEO_6180XA1 *board=X_NUCLEO_6180XA1::Instance(&dev_i2c, NC, NC, NC, NC);
MeasureData_t data_sensor_top, data_sensor_bottom, data_sensor_left, data_sensor_right;

/* Instance mems IKS01A1. */
static X_NUCLEO_IKS01A1 *mems=X_NUCLEO_IKS01A1::Instance(&dev_i2c);
MotionSensor *accelerometer = mems->GetAccelerometer();

void DISP_ExecLoopBody(void) {};

AnalogIn analog_read_A1(A1);

InterruptIn mybutton(USER_BUTTON);

/* User_Button_Pressed -------------------------------------------------------*/

void User_Button_Pressed()
{

    if (start>0) {
        Display++;
    }
    if (Display>2) {
        Display=0;
    }
    if (start==0) {
        start=1;
    }

}

/* Initialization ------------------------------------------------------------*/

bool Initialization(void)
{

    /* Initializing Babybear Component. */
    status=board->InitBoard();
    if(status)
        VL6180x_ErrLog("Failed to init the board!\n\r");

    // Put GPIO not used as Interrupt in Hi-Z
    status_t=board->sensor_top->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF);
    //status_b=board->sensor_botton->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF); No Present
    status_l=board->sensor_left->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF);
    status_r=board->sensor_right->SetGPIOxFunctionality(1, GPIOx_SELECT_OFF);

    /* Initializing Motor Control Component. */
    motor = new L6474(D2, D8, D7, D9, D10, dev_spi);
    if (motor->Init(NULL) != COMPONENT_OK)
        return false;

    motor->SetStepMode(STEP_MODE_1_8);  // Default is STEP_MODE_1_16

    /* Set defaults Motor Speed. */
    motor->SetAcceleration(SET_ACC);
    motor->SetDeceleration(SET_DEC);
    motor->SetMaxSpeed(SET_MAX);        // Variable by Light/Mems Sensors
    motor->SetMinSpeed(SET_MIN);

    return true;

}

/* Measure_Babybear ----------------------------------------------------------*/

void Measure_Babybear(void)
{

    status_l=board->sensor_left->GetMeasurement(als_continuous_polling, &data_sensor_left);
    status_r=board->sensor_right->GetMeasurement(als_continuous_polling, &data_sensor_right);

    babybear = data_sensor_right.lux - data_sensor_left.lux;

    diff = abs(babybear);

    if (babybear>0) {
        left=0;
        right=1;
    }
    if (babybear<0) {
        left=1;
        right=0;
    }

}

/* Measure_Accelerometer -----------------------------------------------------*/

void Measure_Accelerometer(void)
{

    accelerometer->Get_X_Axes(acc_data);

    diff = abs(acc_data[0]);

    if (acc_data[0]>0) {
        left=0;
        right=1;
    }
    if (acc_data[0]<0) {
        left=1;
        right=0;
    }

}

/* Control_Motor -------------------------------------------------------------*/

void Control_Motor(void)
{

    //printf("Diff: %d lux/mems\n\r", diff);
    motor->SetMaxSpeed(diff);

    if (diff>TOLLERANCE) {
        if (diff <=RANGE_1) {
            if (left)  {
                strcpy(DisplayStr,"E___");
            }
            if (right) {
                strcpy(DisplayStr,"___3");
            }
        } else if (diff >RANGE_1 & diff <=RANGE_2) {
            if (left)  {
                strcpy(DisplayStr,"E===");
            }
            if (right) {
                strcpy(DisplayStr,"===3");
            }
        } else if (diff >RANGE_2) {
            if (left)  {
                strcpy(DisplayStr,"E~~~");
            }
            if (right) {
                strcpy(DisplayStr,"~~~3");
            }
        }

        // In Case of Change Direction
        if (left & dir==2) {
            changedir=1;
        }
        if (right & dir==1) {
            changedir=1;
        }

        // Run only if Stop or Change Direction
        if (diff>TOLLERANCE & (dir==0 | changedir==1)) {
            if (left) {
                motor->Run(StepperMotor::FWD);
                dir=1;
                changedir=0;
            }
            if (right) {
                motor->Run(StepperMotor::BWD);
                dir=2;
                changedir=0;
            }
        }
    }

    // Get Motor Position and Control Rotation Block
    pos = motor->GetPosition();
    if (pos>STOP | pos<-STOP) {
        if (pos>0) {
            motor->GoTo(STOP);
        }
        if (pos<0) {
            motor->GoTo(-STOP);
        }
    }

    // Stop Motor
    if (diff<=TOLLERANCE) {
        motor->HardStop();
        if (Display==0) {
            strcpy(DisplayStr,"----");
        }
        if (Display==2) {
            strcpy(DisplayStr,"E  3");
        }
        dir=0;
        changedir=0;
    }

}

/* Measure_SolarPanel --------------------------------------------------------*/

void Measure_SolarPanel(void)
{

    // AnalogIn A1: 0V return 0.0 , 3.3V return 1.0
    float measure = analog_read_A1.read() * 3300;
    //printf("Measure = %.0f mV\r\n", measure);
    //board->display->DisplayDigit("A", 0);

    if (Display==1) {
        sprintf(DisplayStr, "%.0f", measure);
    }

    board->display->DisplayString(DisplayStr, 4);

}

/* Bluetooth CallBack ---------------------------------------------------------*/

static void onUpdatesEnabledCallback(GattAttribute::Handle_t handle)
{
    
}

static void onUpdatesDisabledCallback(Gap::Handle_t handle)
{
    
}

static void onDataReadCallback(const GattReadCallbackParams *eventDataP)
{
    
}

static void myonDataWriteCallback(const GattWriteCallbackParams *eventDataP)
{
    
}

static void onConnectionCallback(const Gap::ConnectionCallbackParams_t * connectionParams)
{
    
}

static void onDisconnectionCallback(const Gap::DisconnectionCallbackParams_t * disConnectionReason)
{
    
}

/* Bluetooth Initialization ---------------------------------------------------*/

void BLE_Initialization(void)
{

    p_BLEdev = new BLE;
    if (!p_BLEdev) { printf("\r\nBLE Device creation failed\r\n"); }
  
    const Gap::Address_t BLE_address_BE = {BLE_DEV_MAC};        
    p_BLEdev->gap().setAddress(BLEProtocol::AddressType::PUBLIC, BLE_address_BE);
printf("Line: %d \r\n", __LINE__);       
    p_BLEdev->init();         
printf("Line: %d \r\n", __LINE__);    

    // Set BLE CallBack Functions
    p_BLEdev->gattServer().onUpdatesEnabled(onUpdatesEnabledCallback);
    p_BLEdev->gattServer().onUpdatesDisabled(onUpdatesDisabledCallback);
    p_BLEdev->gattServer().onDataRead(onDataReadCallback);
    p_BLEdev->gattServer().onDataWritten(myonDataWriteCallback);
    p_BLEdev->gap().onConnection(onConnectionCallback);
    p_BLEdev->gap().onDisconnection(onDisconnectionCallback);
    //p_BLEdev->gattServer().onConfirmationReceived(onConfirmationReceivedCallback);    
    //p_BLEdev->gattServer().onDataSent(onDataSentCallback);    
    //p_BLEdev->gap().onTimeout(onTimeoutCallback);

}

/* Main ----------------------------------------------------------------------*/

int main()
{

    Initialization();

    //BLE_Initialization();

    mybutton.fall(&User_Button_Pressed);

    /* Printing to the console. */
    printf("SunTracker by Fabio Brembilla\r\n\n");

    /* Set Babybears. */
    status_l=board->sensor_left->AlsSetAnalogueGain(3);
    status_r=board->sensor_right->AlsSetAnalogueGain(3);
    status_l=board->sensor_left->StartMeasurement(als_continuous_polling, NULL, NULL, NULL);
    status_r=board->sensor_right->StartMeasurement(als_continuous_polling, NULL, NULL, NULL);

    /* Loop until push User Button to Set 0 Point. */
    strcpy(DisplayStr,"pusH");
    while(start<1) {
        board->display->DisplayString(DisplayStr, 4);
    }

    /* Main Loop. */
    while(true) {
        if (Display==0 | Display==1)    {
            Measure_Babybear();
        }
        if (Display==2)                 {
            Measure_Accelerometer();
        }

        Control_Motor();
        Measure_SolarPanel();
    }

    status_l=board->sensor_left->StopMeasurement(als_continuous_polling);
    status_r=board->sensor_right->StopMeasurement(als_continuous_polling);

}