SunTracker_BLE

Dependencies:   BLE_API X_NUCLEO_6180XA1 X_NUCLEO_IDB0XA1 X_NUCLEO_IHM01A1 X_NUCLEO_IKS01A1 mbed

Fork of SunTracker_BLE by ST Expansion SW Team

Overview

The SunTracker is a demo application running on ST Nucleo-F401RE stacking a set of ST X-NUCLEO expansion boards.
Main features provided are:

  • A solar panel follows the light source, orienting the panel in order to achieve the best panel efficiency.
  • Orientation is controlled thanks to a couple of VL6180X FlightSense light sensors mounted on a X-NUCLEO-6180XA1 expansion board and driven by X-NUCLEO-IHM01A1 controlled stepper motor acting as actuator to orientate the panel.
  • The system features a progressive control on the stepper motor in order to modulate the panel rotation speed according to the light angle.
  • The application is also able to control the panel productivity reading the panel voltage through an ADC and proving feedback on the local display.
  • A manual orientation is possible by using the accelerometer on a X-NUCLEO-IKS01A1 expansion board that, according on board tilt, controls the speed and the rotate direction.
  • A remote control is available using a X-NUCLEO-IDB04A1 or a X-NUCLEO-IDB05A1 Bluetooth Low Energy expansion board. Remote control software is here.

/media/uploads/fabiombed/suntracker_server-client.png

Working Status

  • SunTracker has 3 working status visible on FlightSense display and switchable by pressing the User Button:

Status 0 (Idle)

  • Motor: Free Turning
  • Display: Waiting for User Button

Status 1

  • Motor: Driven by Light
  • Display: Direction and Light Intensity = Direction and Motor Speed

Status 2

  • Motor: Driven by Light
  • Display: Solar Panel Efficiency

Status 3

  • Motor: Driven by Accelerometer
  • Display: Direction and Accelerometer Intensity

Server Startup

  • When you plug the power supply, the word ‘PUSH’ is shown on display.
  • You can manually rotate the structure to assign the ‘Zero Point’. Then press the User Button to launch the application.
  • The display will show this status, which means that the structure is oriented to maximize the efficiency of the solar panel.
  • If there is a light displacement, the structure will rotate, left or right, to follow the light source and on display is shown the direction and the speed.
  • You can press the User Button to show the panel efficiency with 4 digits that represent the range from 0v (0000) to 3,3v (3300).
  • Further pressing the User Button you will manual rotate the panel by tilt the Server or Client accelerometer depending by BLE connection.

Client Startup

  • The Client application can remotely control the User Button and the Accelerometer functions.
  • Power on the Client AFTER the Server, it will automatically search for the SunTracker and will establish a BLE connection.
  • The Green Led on Nucleo Client board will be powered on.

Rotation Features

  • It has been implemented a block of rotation to avoid cables twist.
  • The blocking point can be set in the firmware by changing a constant.
  • You can manually rotate the structure to assign the ‘Zero Point’ before press the User Button to launch the application.
  • The system features a progressive control on the stepper motor in order to modulate the rotation speed according to the light or accelerometer angle.

List of Components

SERVER SunTracker_BLE

  • Stepper Motor 400’’ (Part Number 5350401) - To orientate the Mechanical Structure.
  • Solar Panel 0.446w (Part Number 0194127) - To capture sunlight and generate electrical current.
  • Power Supply 12v (Part Number 7262993) - To provide power supply at the Stepper Motor.
  • Flat Cable 6 ways (Part Number 1807010) - To plug VL6180X-SATEL with X-NUCLEO-6180XA1 (60cm length each x2).
  • Cable Connector (Part Number 6737694) - To plug the Flat Cable (x4).
  • Power Connector (Part Number 0487842) - To provide Power Supply to X-NUCLEO-IHM01A1.

CLIENT SunTracker_BLE_Remote

MECHANICAL STRUCTURE

Find here the STL files to print with a 3D printer.

/media/uploads/fabiombed/assembly.png

/media/uploads/fabiombed/mechanical_structure_and_motor_legs.png

FLAT CABLE ASSEMBLY

/media/uploads/fabiombed/flat_cable.png

HARDWARE SETUP

Nucleo ADC + Solar Panel

Connect Solar Panel cables to Nucleo Morpho PC_3 (white) and Nucleo Morpho GND (black). Connect a capacitor 10uF between PC_3 and GND to stabilize its voltage value shown on display.

EasySpin (L6474) + BLE

Hardware conflict between EasySpin DIR1 and BLE Reset, both on same Arduino Pin PA_8. Disconnect PA_8 between EasySpin and Nucleo by fold EasySpin Pin. PB_2 has been configured as EasySpin DIR1 in the firmware . Connect Nucleo Morpho PB_2 to FlightSense Arduino PA_8 by a wire.

FlightSense Satellites

In case of instability with I2C due to long flat cables, solder 4 SMD capacitors 47pF on FlightSense board in parallel between R15, R16, R17, R18 and plug 2 capacitors 15pF between FlightSense Arduino PB_8 and PB_9 to GND pin to cut-off noises over 720 KHz.

Arduino & Morpho Pinout

/media/uploads/fabiombed/arduino_pinout.png /media/uploads/fabiombed/morpho_pinout.png

Committer:
fabiombed
Date:
Fri Feb 12 10:52:50 2016 +0000
Revision:
8:144855fe02bd
Parent:
7:54984d031243
Child:
14:644f9e7278e9
some fix

Who changed what in which revision?

UserRevisionLine numberNew contents of line
fabiombed 4:1d3d071a4c2c 1 /******************************************************************************
fabiombed 5:76fb6b783487 2 * @file CustomSensorsService.h
fabiombed 5:76fb6b783487 3 * @author Fabio Brembilla
fabiombed 5:76fb6b783487 4 * @version V1.0.0
fabiombed 6:4cbf7303b496 5 * @date January, 2016
fabiombed 5:76fb6b783487 6 * @brief SunTracker Custom Service for BlueTooth (IDB0XA1 expansion board)
fabiombed 5:76fb6b783487 7 *****************************************************************************
fabiombed 5:76fb6b783487 8 * @attention
fabiombed 5:76fb6b783487 9 *
fabiombed 5:76fb6b783487 10 * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
fabiombed 5:76fb6b783487 11 *
fabiombed 5:76fb6b783487 12 * Redistribution and use in source and binary forms, with or without modification,
fabiombed 5:76fb6b783487 13 * are permitted provided that the following conditions are met:
fabiombed 5:76fb6b783487 14 * 1. Redistributions of source code must retain the above copyright notice,
fabiombed 5:76fb6b783487 15 * this list of conditions and the following disclaimer.
fabiombed 5:76fb6b783487 16 * 2. Redistributions in binary form must reproduce the above copyright notice,
fabiombed 5:76fb6b783487 17 * this list of conditions and the following disclaimer in the documentation
fabiombed 5:76fb6b783487 18 * and/or other materials provided with the distribution.
fabiombed 5:76fb6b783487 19 * 3. Neither the name of STMicroelectronics nor the names of its contributors
fabiombed 5:76fb6b783487 20 * may be used to endorse or promote products derived from this software
fabiombed 5:76fb6b783487 21 * without specific prior written permission.
fabiombed 5:76fb6b783487 22 *
fabiombed 5:76fb6b783487 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
fabiombed 5:76fb6b783487 24 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
fabiombed 5:76fb6b783487 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
fabiombed 5:76fb6b783487 26 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
fabiombed 5:76fb6b783487 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
fabiombed 5:76fb6b783487 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
fabiombed 5:76fb6b783487 29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
fabiombed 5:76fb6b783487 30 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
fabiombed 5:76fb6b783487 31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
fabiombed 5:76fb6b783487 32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
fabiombed 5:76fb6b783487 33 *
fabiombed 5:76fb6b783487 34 ******************************************************************************
fabiombed 5:76fb6b783487 35 */
fabiombed 4:1d3d071a4c2c 36
fabiombed 4:1d3d071a4c2c 37 #ifndef __CUSTOM_BLE_SENSORS_SERVICE_H__
fabiombed 4:1d3d071a4c2c 38 #define __CUSTOM_BLE_SENSORS_SERVICE_H__
fabiombed 4:1d3d071a4c2c 39 #include "BLE.h"
fabiombed 5:76fb6b783487 40 #include "UUID.h"
fabiombed 4:1d3d071a4c2c 41
fabiombed 5:76fb6b783487 42 /* BLE Services: Primary + 2 Secondary (Char Desk) */
fabiombed 5:76fb6b783487 43 const LongUUIDBytes_t SENS_SERVICE_UUID_128 = {0x00,0x00,0x00,0x00,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B}; //Primary
fabiombed 5:76fb6b783487 44 const LongUUIDBytes_t SENS_POSITION_CHAR_UUID_128 = {0x00,0x00,0x00,0x01,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B}; //Motor Position
fabiombed 5:76fb6b783487 45 const LongUUIDBytes_t SENS_SUNPANEL_CHAR_UUID_128 = {0x00,0x00,0x00,0x02,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B,0x0B}; //SunPanel Voltage
fabiombed 4:1d3d071a4c2c 46
fabiombed 5:76fb6b783487 47 #define POSITION_DATA_LEN 2+2
fabiombed 5:76fb6b783487 48 #define SUNPANEL_DATA_LEN 2+2
fabiombed 4:1d3d071a4c2c 49
fabiombed 4:1d3d071a4c2c 50 /* Custom Sensors Service */
fabiombed 4:1d3d071a4c2c 51 class CustomSensorService {
fabiombed 4:1d3d071a4c2c 52 public:
fabiombed 4:1d3d071a4c2c 53 CustomSensorService(BLEDevice &_ble) :
fabiombed 4:1d3d071a4c2c 54 ble(_ble),
fabiombed 5:76fb6b783487 55 positionCharacteristic(SENS_POSITION_CHAR_UUID_128, envPosition, POSITION_DATA_LEN, POSITION_DATA_LEN,
fabiombed 5:76fb6b783487 56 GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_READ | GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_WRITE | GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_NOTIFY),
fabiombed 5:76fb6b783487 57 sunpanelCharacteristic(SENS_SUNPANEL_CHAR_UUID_128, envSunpanel, SUNPANEL_DATA_LEN, SUNPANEL_DATA_LEN,
fabiombed 7:54984d031243 58 GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_READ | GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_NOTIFY)
fabiombed 5:76fb6b783487 59 {
fabiombed 5:76fb6b783487 60 static bool serviceAdded = false; // To be sure to define just one time
fabiombed 4:1d3d071a4c2c 61 if (serviceAdded) {
fabiombed 4:1d3d071a4c2c 62 return;
fabiombed 4:1d3d071a4c2c 63 }
fabiombed 4:1d3d071a4c2c 64
fabiombed 5:76fb6b783487 65 GattCharacteristic *charTable[] = {&positionCharacteristic, &sunpanelCharacteristic};
fabiombed 4:1d3d071a4c2c 66
fabiombed 4:1d3d071a4c2c 67 GattService envService(SENS_SERVICE_UUID_128, charTable, sizeof(charTable) / sizeof(GattCharacteristic *));
fabiombed 4:1d3d071a4c2c 68
fabiombed 4:1d3d071a4c2c 69 ble.gattServer().addService(envService);
fabiombed 4:1d3d071a4c2c 70
fabiombed 5:76fb6b783487 71 isEnabledPositionNotify = false;
fabiombed 5:76fb6b783487 72 isEnabledSunpanelNotify = false;
fabiombed 4:1d3d071a4c2c 73
fabiombed 5:76fb6b783487 74 memset (envPosition, 0, POSITION_DATA_LEN);
fabiombed 5:76fb6b783487 75 memset (envSunpanel, 0, SUNPANEL_DATA_LEN);
fabiombed 4:1d3d071a4c2c 76
fabiombed 4:1d3d071a4c2c 77 isBTLEConnected = DISCONNECTED;
fabiombed 4:1d3d071a4c2c 78 serviceAdded = true;
fabiombed 4:1d3d071a4c2c 79 }
fabiombed 4:1d3d071a4c2c 80
fabiombed 5:76fb6b783487 81 // Tests Method
fabiombed 7:54984d031243 82
fabiombed 7:54984d031243 83 void sendEnvPosition (int16_t Pos, uint16_t TimeStamp) {
fabiombed 7:54984d031243 84 STORE_LE_16(envPosition,TimeStamp);
fabiombed 7:54984d031243 85 STORE_LE_16(envPosition+2,Pos);
fabiombed 7:54984d031243 86 PRINTF("sendEnvPosition!! handle: %d\n\r", positionCharacteristic.getValueAttribute().getHandle());
fabiombed 7:54984d031243 87 memcpy (pastenvPosition, envPosition, POSITION_DATA_LEN);
fabiombed 7:54984d031243 88 ble.gattServer().write(positionCharacteristic.getValueAttribute().getHandle(), envPosition, POSITION_DATA_LEN, 0);
fabiombed 7:54984d031243 89 }
fabiombed 7:54984d031243 90
fabiombed 5:76fb6b783487 91 /*
fabiombed 5:76fb6b783487 92
fabiombed 4:1d3d071a4c2c 93 void sendEnvTemperature (int16_t Temp, uint16_t TimeStamp) {
fabiombed 4:1d3d071a4c2c 94 STORE_LE_16(envTemperature,TimeStamp);
fabiombed 4:1d3d071a4c2c 95 STORE_LE_16(envTemperature+2,Temp);
fabiombed 4:1d3d071a4c2c 96 PRINTF("sendEnvTemperature!! handle: %d\n\r", envTemperatureCharacteristic.getValueAttribute().getHandle());
fabiombed 4:1d3d071a4c2c 97 memcpy (pastenvTemperature, envTemperature, TEMP_DATA_LEN);
fabiombed 4:1d3d071a4c2c 98 ble.gattServer().write(envTemperatureCharacteristic.getValueAttribute().getHandle(), envTemperature, TEMP_DATA_LEN, 0);
fabiombed 4:1d3d071a4c2c 99 }
fabiombed 4:1d3d071a4c2c 100
fabiombed 4:1d3d071a4c2c 101 void updateEnvTemperature (int16_t Temp, uint16_t TimeStamp) {
fabiombed 4:1d3d071a4c2c 102 if (memcmp (&pastenvTemperature[2], &Temp, 2) != 0) {
fabiombed 4:1d3d071a4c2c 103 sendEnvTemperature (Temp, TimeStamp);
fabiombed 4:1d3d071a4c2c 104 }
fabiombed 4:1d3d071a4c2c 105 }
fabiombed 4:1d3d071a4c2c 106
fabiombed 4:1d3d071a4c2c 107 void sendEnvHumidity(uint16_t Hum, uint16_t TimeStamp) {
fabiombed 4:1d3d071a4c2c 108 STORE_LE_16(envHumidity,TimeStamp);
fabiombed 4:1d3d071a4c2c 109 STORE_LE_16(envHumidity+2,Hum);
fabiombed 4:1d3d071a4c2c 110 memcpy (pastenvHumidity, envHumidity, HUM_DATA_LEN);
fabiombed 4:1d3d071a4c2c 111 ble.gattServer().write(envHumidityCharacteristic.getValueAttribute().getHandle(), envHumidity, HUM_DATA_LEN, 0);
fabiombed 4:1d3d071a4c2c 112
fabiombed 4:1d3d071a4c2c 113 }
fabiombed 4:1d3d071a4c2c 114
fabiombed 4:1d3d071a4c2c 115 void updateEnvHumidity(uint16_t Hum, uint16_t TimeStamp) {
fabiombed 4:1d3d071a4c2c 116 if (memcmp (&pastenvHumidity[2], &Hum, 2) != 0) {
fabiombed 4:1d3d071a4c2c 117 sendEnvHumidity(Hum, TimeStamp);
fabiombed 4:1d3d071a4c2c 118 }
fabiombed 4:1d3d071a4c2c 119 }
fabiombed 4:1d3d071a4c2c 120
fabiombed 4:1d3d071a4c2c 121 void sendEnvPressure(uint32_t Press, uint16_t TimeStamp) {
fabiombed 4:1d3d071a4c2c 122 STORE_LE_16(envPressure,TimeStamp);
fabiombed 4:1d3d071a4c2c 123 STORE_LE_32(envPressure+2,Press);
fabiombed 4:1d3d071a4c2c 124 memcpy (pastenvPressure, envPressure, PRES_DATA_LEN);
fabiombed 4:1d3d071a4c2c 125 ble.gattServer().write(envPressureCharacteristic.getValueAttribute().getHandle(), envPressure, PRES_DATA_LEN, 0);
fabiombed 4:1d3d071a4c2c 126 }
fabiombed 4:1d3d071a4c2c 127
fabiombed 4:1d3d071a4c2c 128 void updateEnvPressure(uint32_t Press, uint16_t TimeStamp) {
fabiombed 4:1d3d071a4c2c 129 if (memcmp (&pastenvPressure[2], &Press, 2) != 0) {
fabiombed 4:1d3d071a4c2c 130 sendEnvPressure(Press, TimeStamp);
fabiombed 4:1d3d071a4c2c 131 }
fabiombed 4:1d3d071a4c2c 132 }
fabiombed 4:1d3d071a4c2c 133
fabiombed 4:1d3d071a4c2c 134 void sendEnvMagnetometer(AxesRaw_TypeDef *Magn, uint16_t TimeStamp, osxMFX_calibFactor magOffset) {
fabiombed 4:1d3d071a4c2c 135 STORE_LE_16(envMagn,TimeStamp);
fabiombed 4:1d3d071a4c2c 136 STORE_LE_16(envMagn+2,(Magn->AXIS_X - magOffset.magOffX));
fabiombed 4:1d3d071a4c2c 137 STORE_LE_16(envMagn+4,(Magn->AXIS_Y - magOffset.magOffY));
fabiombed 4:1d3d071a4c2c 138 STORE_LE_16(envMagn+6,(Magn->AXIS_Z - magOffset.magOffZ));
fabiombed 4:1d3d071a4c2c 139 ble.gattServer().write(envMagnetometerCharacteristic.getValueAttribute().getHandle(), envMagn, MAG_DATA_LEN, 0);
fabiombed 4:1d3d071a4c2c 140 }
fabiombed 4:1d3d071a4c2c 141
fabiombed 4:1d3d071a4c2c 142 void updateEnvMagnetometer(AxesRaw_TypeDef *Magn, uint16_t TimeStamp, osxMFX_calibFactor magOffset) {
fabiombed 4:1d3d071a4c2c 143 if (isMagNotificationEn()) sendEnvMagnetometer(Magn, TimeStamp, magOffset);
fabiombed 4:1d3d071a4c2c 144 }
fabiombed 4:1d3d071a4c2c 145
fabiombed 4:1d3d071a4c2c 146 void sendEnvAccelerometer (AxesRaw_TypeDef *Acc, uint16_t TimeStamp) {
fabiombed 4:1d3d071a4c2c 147 STORE_LE_16(envAcce,TimeStamp);
fabiombed 4:1d3d071a4c2c 148 STORE_LE_16(envAcce+2,Acc->AXIS_X);
fabiombed 4:1d3d071a4c2c 149 STORE_LE_16(envAcce+4,Acc->AXIS_Y);
fabiombed 4:1d3d071a4c2c 150 STORE_LE_16(envAcce+6,Acc->AXIS_Z);
fabiombed 4:1d3d071a4c2c 151 ble.gattServer().write(envAccelerometerCharacteristic.getValueAttribute().getHandle(), envAcce, ACC_DATA_LEN, 0);
fabiombed 4:1d3d071a4c2c 152 }
fabiombed 4:1d3d071a4c2c 153
fabiombed 4:1d3d071a4c2c 154 void updateEnvAccelerometer (AxesRaw_TypeDef *Acc, uint16_t TimeStamp) {
fabiombed 4:1d3d071a4c2c 155 if (isAccNotificationEn()) sendEnvAccelerometer (Acc, TimeStamp);
fabiombed 4:1d3d071a4c2c 156 }
fabiombed 4:1d3d071a4c2c 157
fabiombed 4:1d3d071a4c2c 158 void sendEnvGyroscope (AxesRaw_TypeDef *Gyro, uint16_t TimeStamp) {
fabiombed 4:1d3d071a4c2c 159 STORE_LE_16(envGyro,TimeStamp);
fabiombed 4:1d3d071a4c2c 160 STORE_LE_16(envGyro+2,Gyro->AXIS_X);
fabiombed 4:1d3d071a4c2c 161 STORE_LE_16(envGyro+4,Gyro->AXIS_Y);
fabiombed 4:1d3d071a4c2c 162 STORE_LE_16(envGyro+6,Gyro->AXIS_Z);
fabiombed 4:1d3d071a4c2c 163 ble.gattServer().write(envGyroCharacteristic.getValueAttribute().getHandle(), envGyro, GYRO_DATA_LEN, 0);
fabiombed 4:1d3d071a4c2c 164 }
fabiombed 4:1d3d071a4c2c 165
fabiombed 4:1d3d071a4c2c 166 void updateEnvGyroscope (AxesRaw_TypeDef *Gyro, uint16_t TimeStamp) {
fabiombed 4:1d3d071a4c2c 167 if (isGyroNotificationEn()) sendEnvGyroscope (Gyro, TimeStamp);
fabiombed 4:1d3d071a4c2c 168 }
fabiombed 4:1d3d071a4c2c 169
fabiombed 4:1d3d071a4c2c 170 void sendEnvAccGyroMag (AxesRaw_TypeDef *Acc, AxesRaw_TypeDef *Gyro, AxesRaw_TypeDef *Magn, uint16_t TimeStamp, osxMFX_calibFactor magOffset) {
fabiombed 4:1d3d071a4c2c 171 STORE_LE_16(envAccGyroMag,TimeStamp);
fabiombed 4:1d3d071a4c2c 172 STORE_LE_16(envAccGyroMag+2,Acc->AXIS_X);
fabiombed 4:1d3d071a4c2c 173 STORE_LE_16(envAccGyroMag+4,Acc->AXIS_Y);
fabiombed 4:1d3d071a4c2c 174 STORE_LE_16(envAccGyroMag+6,Acc->AXIS_Z);
fabiombed 4:1d3d071a4c2c 175
fabiombed 4:1d3d071a4c2c 176 STORE_LE_16(envAccGyroMag+8,Gyro->AXIS_X);
fabiombed 4:1d3d071a4c2c 177 STORE_LE_16(envAccGyroMag+10,Gyro->AXIS_Y);
fabiombed 4:1d3d071a4c2c 178 STORE_LE_16(envAccGyroMag+12,Gyro->AXIS_Z);
fabiombed 4:1d3d071a4c2c 179
fabiombed 4:1d3d071a4c2c 180 STORE_LE_16(envAccGyroMag+14,(Magn->AXIS_X - magOffset.magOffX));
fabiombed 4:1d3d071a4c2c 181 STORE_LE_16(envAccGyroMag+16,(Magn->AXIS_Y - magOffset.magOffY));
fabiombed 4:1d3d071a4c2c 182 STORE_LE_16(envAccGyroMag+18,(Magn->AXIS_Z - magOffset.magOffZ));
fabiombed 4:1d3d071a4c2c 183 ble.gattServer().write(envAccGyroMagCharacteristic.getValueAttribute().getHandle(), envAccGyroMag, ACCGYROMAG_DATA_LEN, 0);
fabiombed 4:1d3d071a4c2c 184 }
fabiombed 4:1d3d071a4c2c 185
fabiombed 4:1d3d071a4c2c 186 void updateEnvAccGyroMag (AxesRaw_TypeDef *Acc, AxesRaw_TypeDef *Gyro, AxesRaw_TypeDef *Magn, uint16_t TimeStamp, osxMFX_calibFactor magOffset) {
fabiombed 4:1d3d071a4c2c 187 if (isAccGyroMagNotificationEn())sendEnvAccGyroMag (Acc, Gyro, Magn, TimeStamp, magOffset);
fabiombed 5:76fb6b783487 188 }
fabiombed 5:76fb6b783487 189
fabiombed 5:76fb6b783487 190 */
fabiombed 8:144855fe02bd 191
fabiombed 4:1d3d071a4c2c 192 void enNotify (Gap::Handle_t handle) {
fabiombed 5:76fb6b783487 193 if (isPositionHandle(handle)) { isEnabledPositionNotify = true; memset(envPosition,0,POSITION_DATA_LEN); return; }
fabiombed 5:76fb6b783487 194 if (isSunpanelHandle(handle)) { isEnabledSunpanelNotify = true; memset(envSunpanel,0,SUNPANEL_DATA_LEN); return; }
fabiombed 4:1d3d071a4c2c 195 }
fabiombed 4:1d3d071a4c2c 196
fabiombed 4:1d3d071a4c2c 197 void disNotify (Gap::Handle_t handle) {
fabiombed 5:76fb6b783487 198 if (isPositionHandle(handle)) { isEnabledPositionNotify = false; memset(envPosition,0,POSITION_DATA_LEN); return; }
fabiombed 5:76fb6b783487 199 if (isSunpanelHandle(handle)) { isEnabledSunpanelNotify = false; memset(envSunpanel,0,SUNPANEL_DATA_LEN); return; }
fabiombed 4:1d3d071a4c2c 200 }
fabiombed 4:1d3d071a4c2c 201
fabiombed 5:76fb6b783487 202 bool isPositionNotificationEn (void) {
fabiombed 5:76fb6b783487 203 return isEnabledPositionNotify;
fabiombed 4:1d3d071a4c2c 204 }
fabiombed 4:1d3d071a4c2c 205
fabiombed 5:76fb6b783487 206 bool isSunpanelNotificationEn (void) {
fabiombed 5:76fb6b783487 207 return isEnabledSunpanelNotify;
fabiombed 5:76fb6b783487 208 }
fabiombed 5:76fb6b783487 209
fabiombed 5:76fb6b783487 210 bool isPositionHandle (Gap::Handle_t handle) {
fabiombed 5:76fb6b783487 211 if (handle == positionCharacteristic.getValueAttribute().getHandle()) return true;
fabiombed 4:1d3d071a4c2c 212 return false;
fabiombed 4:1d3d071a4c2c 213 }
fabiombed 4:1d3d071a4c2c 214
fabiombed 5:76fb6b783487 215 bool isSunpanelHandle (Gap::Handle_t handle) {
fabiombed 5:76fb6b783487 216 if (handle == sunpanelCharacteristic.getValueAttribute().getHandle()) return true;
fabiombed 4:1d3d071a4c2c 217 return false;
fabiombed 4:1d3d071a4c2c 218 }
fabiombed 4:1d3d071a4c2c 219
fabiombed 4:1d3d071a4c2c 220 void updateConnectionStatus(ConnectionStatus_t status) {
fabiombed 5:76fb6b783487 221 isEnabledPositionNotify = false;
fabiombed 5:76fb6b783487 222 isEnabledSunpanelNotify = false;
fabiombed 4:1d3d071a4c2c 223
fabiombed 5:76fb6b783487 224 memset (envPosition, 0, POSITION_DATA_LEN);
fabiombed 5:76fb6b783487 225 memset (envSunpanel, 0, SUNPANEL_DATA_LEN);
fabiombed 4:1d3d071a4c2c 226 isBTLEConnected = status;
fabiombed 4:1d3d071a4c2c 227 }
fabiombed 4:1d3d071a4c2c 228
fabiombed 5:76fb6b783487 229 // Variables Initialization
fabiombed 4:1d3d071a4c2c 230 private:
fabiombed 4:1d3d071a4c2c 231
fabiombed 4:1d3d071a4c2c 232 BLEDevice &ble;
fabiombed 5:76fb6b783487 233 uint8_t envPosition [POSITION_DATA_LEN];
fabiombed 5:76fb6b783487 234 uint8_t envSunpanel [SUNPANEL_DATA_LEN];
fabiombed 7:54984d031243 235 uint8_t pastenvPosition [POSITION_DATA_LEN];
fabiombed 7:54984d031243 236 uint8_t pastenvSunpanel [SUNPANEL_DATA_LEN];
fabiombed 7:54984d031243 237
fabiombed 5:76fb6b783487 238 GattCharacteristic positionCharacteristic;
fabiombed 5:76fb6b783487 239 GattCharacteristic sunpanelCharacteristic;
fabiombed 5:76fb6b783487 240
fabiombed 4:1d3d071a4c2c 241 ConnectionStatus_t isBTLEConnected;
fabiombed 4:1d3d071a4c2c 242
fabiombed 5:76fb6b783487 243 bool isEnabledPositionNotify;
fabiombed 5:76fb6b783487 244 bool isEnabledSunpanelNotify;
fabiombed 4:1d3d071a4c2c 245
fabiombed 4:1d3d071a4c2c 246 };
fabiombed 4:1d3d071a4c2c 247
fabiombed 4:1d3d071a4c2c 248 #endif /* #ifndef __CUSTOM_BLE_SENSORS_SERVICE_H__*/