mbed OS 5 example application using X-NUCLEO-NFC02A1
Dependencies: NDefLib X_NUCLEO_NFC02A1
Fork of HelloWorld_NFC02A1 by
X_NUCLEO_NFC02A1/m24lr/m24lr.cpp
- Committer:
- rosarium
- Date:
- 2016-07-27
- Revision:
- 0:892175366555
- Child:
- 1:11ae12d41082
File content as of revision 0:892175366555:
#include "m24lr.h"
uint8_t M24LR::NfctagInitialized = 0;
/**
* @brief This function activate Energy Harvesting mode
*/
void M24LR::Enable_EnergyHarvesting( void )
{
/* Initialise M24LR Board */
/* Enable Energy Harvesting */
i2c_SetEH( );
/* Store configuration in non Volatile Memory */
i2c_Enable_EH_mode();
i2c_WriteEH_Cfg( M24LR_EH_Cfg_6MA );
}
/**
* @brief Set M24LR nfctag Initialization
* @param None
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::Initialization( void )
{
uint8_t nfctag_id = 0;
if( NfctagInitialized == 0 )
{
/* M24LR Init */
if( i2c_Init() != NFCTAG_OK )
{
return NFCTAG_ERROR;
}
/* Check M24LR driver ID */
i2c_ReadID(&nfctag_id);
if( (nfctag_id == I_AM_M24LR04) || (nfctag_id == I_AM_M24LR16) || (nfctag_id == I_AM_M24LR64) )
{
NfctagInitialized = 1;
// Nfctag_Drv = &M24lr_i2c_Drv;
// Nfctag_Drv->pData = &M24lr_i2c_ExtDrv;
}
else
{
NfctagInitialized = 0;
// Nfctag_Drv = NULL;
// NfctagInitialized = 0;
return NFCTAG_ERROR;
}
}
return NFCTAG_OK;
}
/**
* @brief Set M24LR Initialization
* @param None
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_Init( void )
{
/* Configure the low level interface */
return(NFCTAG_OK);
// return mM24LR_IO.Init( );
}
/**
* @brief Read M24LR ID
* @param pICRef : pointer to store ID
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_ReadID( uint8_t * const pData )
{
uint8_t *pBuffer = (uint8_t *)pData;
NFCTAG_StatusTypeDef status;
/* Read ICRef on device */
//return M24LR_i2c_ReadRegister( pICRef, M24LR_ICREF_REG, 1 );
/* Before calling this function M24LR must be ready, here is a check to detect an issue */
status = i2c_ReadRegister(pBuffer, M24LR_ICREF_REG, 1);
if (status == 0)
return NFCTAG_OK;
return NFCTAG_TIMEOUT;
}
/**
* @brief Check M24LR availability
* @param Trials : number of max tentative tried
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_IsDeviceReady( const uint32_t Trials )
{
/* Test i2c with M24LR */
// return mM24LR_IO.IsDeviceReady( M24LR_ADDR_DATA_I2C, Trials );
uint8_t status = 1;
char buffer;
while (status != 0) {
/* for device is ready address in M24Lr is M24LR_ADDR_DATA_I2C */
status = dev_I2C.read(i2c_address_data, &buffer, 1, false);
}
if ( status == 0 )
return NFCTAG_OK;
else
return NFCTAG_TIMEOUT;
}
/**
* @brief Configure M24LR GPO
* @param ITConf : 0x01 = RFBUSY, 0x02 = RFWIP
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_ConfigureGPO( const uint16_t ITConf )
{
NFCTAG_StatusTypeDef status = NFCTAG_ERROR;
/* Configure GPO function on M24LR */
if( (ITConf & M24LR_IT_BUSY_MASK) == M24LR_IT_BUSY_MASK )
{
status = i2c_SetRFBUSY( );
}
else if( (ITConf & M24LR_IT_WIP_MASK) == M24LR_IT_WIP_MASK )
{
status = i2c_SetRFWIP( );
}
return status;
}
/**
* @brief Configure GPO as RF WriteInProgress
* @param None
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_SetRFWIP( void )
{
uint8_t reg_value;
NFCTAG_StatusTypeDef status;
status = i2c_ReadRegister(®_value, M24LR_CFG_REG, 1);
if( status != NFCTAG_OK )
{
return status;
}
/* Update register value for WIP configuration */
reg_value |= M24LR_CFG_WIPBUSY_MASK;
/* Write CFG register */
return i2c_WriteRegister( ®_value, M24LR_CFG_REG, 1 );
}
/**
* @brief Get Configuration of M24LR GPO
* @param GPOStatus : 0x01 = RFBUSY, 0x02 = RFWIP
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_GetGPOStatus( uint16_t * const pGPOStatus )
{
uint8_t reg_value;
NFCTAG_StatusTypeDef status;
/* Read actual value of CFG register */
status = i2c_ReadRegister( ®_value, M24LR_CFG_REG, 1 );
if( status != NFCTAG_OK )
{
return status;
}
/* Extract RF WIP/BUSY information */
if( (reg_value & M24LR_CFG_WIPBUSY_MASK) == M24LR_CFG_WIPBUSY_MASK )
{
*pGPOStatus = M24LR_IT_WIP_MASK;
}
else
{
*pGPOStatus = M24LR_IT_BUSY_MASK;
}
return NFCTAG_OK;
}
/**
* @brief Read N bytes starting from specified I2C address
* @param pData : pointer of the data to store
* @param TarAddr : I2C data memory address to read
* @param NbByte : number of bytes to read
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_ReadData( uint8_t * const pData, const uint16_t TarAddr, const uint16_t NbByte )
{
int status;
/* Before calling this function M24LR must be ready, here is a check to detect an issue */
if( i2c_IsDeviceReady( 1 ) != NFCTAG_OK )
{
return NFCTAG_TIMEOUT;
}
/* Rosarium : To check M24LR_ADDR_DATA_I2C is this case */
/* return M24lr_IO_MemRead( pData, M24LR_ADDR_DATA_I2C, TarAddr, NbByte ); */
status = dev_I2C.i2c_read(pData, i2c_address_data, TarAddr, NbByte);
if ( status == 0 )
return NFCTAG_OK;
else
return NFCTAG_TIMEOUT;
}
/**
* @brief Write N data bytes starting from specified I2C Address
* @brief if I2C_Write_Lock bit = 0 or I2C_Password present => ack (modification OK)
* @brief if I2C_Write_Lock bit = 1 and no I2C_Password present => No ack (no modification)
* @param pData : pointer of the data to write
* @param TarAddr : I2C data memory address to write
* @param NbByte : number of bytes to write
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_WriteData( const uint8_t * const pData, const uint16_t TarAddr, const uint16_t NbByte )
{
int status;
uint8_t align_mem_offset;
uint16_t bytes_to_write = NbByte;
uint16_t mem_addr = TarAddr;
uint8_t *pdata_index = (uint8_t *)pData;
/* Before calling this function M24LR must be ready, here is a check to detect an issue */
if( i2c_IsDeviceReady( 1 ) != NFCTAG_OK )
{
return NFCTAG_TIMEOUT;
}
/* M24LR can write a maximum of 4 bytes in EEPROM per i2c communication */
do
{
/* To write data in M24LR, data must be aligned on the same row in memory */
/* align_mem_offset is used to copy only Bytes that are on the same row in memory */
if( bytes_to_write > M24LR_PAGEWRITE_NBBYTE )
{
/* DataSize higher than max page write, copy data by page */
align_mem_offset = M24LR_PAGEWRITE_NBBYTE - (mem_addr % M24LR_PAGEWRITE_NBBYTE);
}
else
{
/* DataSize lower or equal to max page write, copy only last bytes */
align_mem_offset = bytes_to_write;
}
/* Write align_mem_offset bytes in memory */
/* Rosarium to Check as the address here is 0xA6 rather than 0xAE */
/* Rosarium dev_I2C.i2c_write(pdata_index, M24LR_ADDR_DATA_I2C, mem_addr, align_mem_offset); */
status = dev_I2C.i2c_write(pdata_index, i2c_address_data, mem_addr, align_mem_offset);
/* update index, dest address, size for next write */
pdata_index += align_mem_offset;
mem_addr += align_mem_offset;
bytes_to_write -= align_mem_offset;
/* Poll until EEPROM is available */
while( i2c_IsDeviceReady( 1 ) != NFCTAG_OK ) {};
}
while( ( bytes_to_write > 0 ) && ( status == NFCTAG_OK ) );
if ( status == 0 )
return NFCTAG_OK;
else
return NFCTAG_ERROR;
}
/**
* @brief Read N register bytes starting from specified I2C address
* @param pData : pointer of the data to store
* @param TarAddr : I2C memory address to read
* @param NbByte : number of bytes to read
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_ReadRegister( uint8_t * const pData, const uint16_t TarAddr, const uint16_t NbByte )
{
/* Before calling read function M24LR must be ready, here is a check to detect an issue */
int status;
/* Before calling any read function M24LR must be ready, here is a check to detect an issue */
if( i2c_IsDeviceReady( 1 ) != NFCTAG_OK )
{
return NFCTAG_TIMEOUT;
}
/* Read actual value of register */
status = dev_I2C.i2c_read(pData, i2c_address_syst, TarAddr, NbByte);
if ( status == 0 )
return NFCTAG_OK;
else
return NFCTAG_TIMEOUT;
}
/**
* @brief Write N bytes to specific register
* @param pData : pointer of the data to write
* @param TarAddr : I2C register address to write
* @param NbByte : number of bytes to write
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_WriteRegister( const uint8_t * const pData, const uint16_t TarAddr, const uint16_t NbByte )
{
int status;
uint8_t align_mem_offset;
uint16_t bytes_to_write = NbByte;
uint16_t mem_addr = TarAddr;
uint8_t *pdata_index = (uint8_t *)pData;
/* Before calling this function M24LR must be ready, here is a check to detect an issue */
if( i2c_IsDeviceReady( 1 ) != NFCTAG_OK )
{
return NFCTAG_TIMEOUT;
}
/* M24LR can write a maximum of 4 bytes in EEPROM per i2c communication */
do
{
/* To write data in M24LR, data must be aligned on the same row in memory */
/* align_mem_offset is used to copy only Bytes that are on the same row in memory */
if( bytes_to_write > M24LR_PAGEWRITE_NBBYTE )
{
/* DataSize higher than max page write, copy data by page */
align_mem_offset = M24LR_PAGEWRITE_NBBYTE - (mem_addr % M24LR_PAGEWRITE_NBBYTE);
}
else
{
/* DataSize lower or equal to max page write, copy only last bytes */
align_mem_offset = bytes_to_write;
}
/* Write align_mem_offset bytes in register */
// status = M24lr_IO_MemWrite( pdata_index, M24LR_ADDR_SYST_I2C, mem_addr, align_mem_offset );
status = dev_I2C.i2c_write(pdata_index, i2c_address_syst, mem_addr, align_mem_offset);
/* update index, dest address, size for next write */
pdata_index += align_mem_offset;
mem_addr += align_mem_offset;
bytes_to_write -= align_mem_offset;
/* Poll until EEPROM is available */
while( i2c_IsDeviceReady( 1 ) != NFCTAG_OK ) {};
}
while( ( bytes_to_write > 0 ) && ( status == NFCTAG_OK ) );
if ( status == 0 )
return NFCTAG_OK;
else
return NFCTAG_ERROR;
}
/**
* @brief Read M24LR UID
* @param UID : M24LR_UID pointer of the UID to store
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_ReadUID( M24LR_UID * const pUid )
{
uint8_t areg_value[8];
uint8_t i;
NFCTAG_StatusTypeDef status;
/* Read actual value of UID registers */
status = i2c_ReadRegister( areg_value, M24LR_UID_REG, 8 );
if( status != NFCTAG_OK )
{
return status;
}
/* Store information in 2 WORD */
pUid->MSB_UID = 0;
for( i = 0; i < 4; i++ )
{
pUid->MSB_UID = (pUid->MSB_UID << 8) | areg_value[7 - i];
}
pUid->LSB_UID = 0;
for( i = 0; i < 4; i++ )
{
pUid->LSB_UID = (pUid->LSB_UID << 8) | areg_value[3 - i];
}
return NFCTAG_OK;
}
/**
* @brief Read DSFID
* @param pData : pointer of the DSFID to store
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_ReadDSFID( uint8_t * const pDsfid )
{
/* Read actual value of DSFID register */
return i2c_ReadRegister( pDsfid, M24LR_DSFID_REG, 1 );
}
/**
* @brief Read AFI
* @param pData : pointer of the AFI to store
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_ReadAFI( uint8_t * const pAfi )
{
/* Read actual value of AFI register */
return i2c_ReadRegister( pAfi, M24LR_AFI_REG, 1 );
}
/**
* @brief Read status of I2C Lock Sectors
* @param Lock_sector : M24LR_Lock_Sectors pointer of the I2c lock sector status to store
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_ReadI2CLockSector( M24LR_Lock_Sectors * const pLock_sector )
{
uint8_t areg_value[8];
NFCTAG_StatusTypeDef status;
/* Read actual value of I2c Write Lock registers */
status = i2c_ReadRegister( areg_value, M24LR_LOCK_REG, 8 );
if( status != NFCTAG_OK )
{
return status;
}
/* Dispatch information to corresponding struct member */
pLock_sector->sectors_63_56 = areg_value[7];
pLock_sector->sectors_55_48 = areg_value[6];
pLock_sector->sectors_47_40 = areg_value[5];
pLock_sector->sectors_39_32 = areg_value[4];
pLock_sector->sectors_31_24 = areg_value[3];
pLock_sector->sectors_23_16 = areg_value[2];
pLock_sector->sectors_15_8 = areg_value[1];
pLock_sector->sectors_7_0 = areg_value[0];
return NFCTAG_OK;
}
/**
* @brief Lock I2C write on an EEPROM Sectors
* @brief Need a presentation of I2C Password to be effective
* @param Sector : EEPROM Sector number to lock (between 0 to 63)
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_I2CLockSector( const uint8_t Sector )
{
NFCTAG_StatusTypeDef status;
uint8_t reg_value = 0;
uint16_t sector_write_lock_addr;
/* Compute register address */
sector_write_lock_addr = M24LR_LOCK_REG | (Sector >> 3);
/* Read actual WriteLockStatus */
status = i2c_ReadRegister( ®_value, sector_write_lock_addr, 1 );
if( status != NFCTAG_OK )
{
return status;
}
/* Compute and update new WriteLockStatus */
reg_value |= 1 << ( Sector % 8 );
/* Write WriteLock register */
return i2c_WriteRegister( ®_value, sector_write_lock_addr, 1 );
}
/**
* @brief UnLock I2C write on a EEPROM Sector
* @brief Need an presentation of I2C Password to be effective
* @param pSector : EEPROM Sector number to unlock (between 0 to 63)
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_I2CUnlockSector( const uint8_t Sector )
{
NFCTAG_StatusTypeDef status;
uint8_t reg_value = 0;
uint16_t sector_write_lock_addr;
/* Compute register address */
sector_write_lock_addr = M24LR_LOCK_REG | (Sector >> 3);
/* Read actual WriteLockStatus */
status = i2c_ReadRegister( ®_value, sector_write_lock_addr, 1 );
if( status != NFCTAG_OK )
{
return status;
}
/* Compute and update new WriteLockStatus */
reg_value &= ~( 1 << ( Sector % 8 ) );
/* Write WriteLock register */
return i2c_WriteRegister( ®_value, sector_write_lock_addr, 1 );
}
/**
* @brief Present I2C password, authorize I2C write
* @param PassWord : Password value on 32bits
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_PresentI2CPassword( const uint32_t PassWord )
{
uint8_t ai2c_message[9] = {0};
uint8_t i;
/* Build I2C Message with Password + Validation code 0x09 + Password */
ai2c_message[4] = 0x09;
i = 0;
while( i < 4 )
{
ai2c_message[i] = ( PassWord >> (i * 8) ) & 0xFF;
ai2c_message[i + 5] = ( PassWord >> (i * 8) ) & 0xFF;
i++;
};
/* Present password to M24LR */
return i2c_WriteRegister( ai2c_message, M24LR_I2C_PWD_REG, 9 );
}
/**
* @brief Write new I2C password
* @brief Need to present good I2CPassword before using this function
* @param PassWord : new I2C PassWord value on 32bits
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_WriteI2CPassword( const uint32_t PassWord )
{
uint8_t ai2c_message[9] = {0};
uint8_t i;
/* Build I2C Message with Password + Validation code 0x07 + Password */
ai2c_message[4] = 0x07;
i = 0;
while( i < 4 )
{
ai2c_message[i] = ( PassWord >> (i * 8) ) & 0xFF;
ai2c_message[i + 5] = ( PassWord >> (i * 8) ) & 0xFF;
i++;
};
/* Write Password to register */
return i2c_WriteRegister( ai2c_message, M24LR_I2C_PWD_REG, 9 );
}
/**
* @brief Read SectorSecurityStatus (defining RF access allowed)
* @param SectorNb : Sector number to get RF security status
* @param pData : M24LR_SECTOR_SEC pointer of the data to store
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_ReadSSSx( const uint8_t SectorNb, M24LR_SECTOR_SEC * const pData )
{
uint8_t reg_value;
NFCTAG_StatusTypeDef status;
uint16_t sector_security_addr;
/* Compute Sector Security register address */
sector_security_addr = M24LR_SSS_REG | SectorNb;
/* Read actual value of SectorSecurityStatus register */
status = i2c_ReadRegister( ®_value, sector_security_addr, 1 );
if( status != NFCTAG_OK )
{
return status;
}
/* Extract Sector Security Status configuration */
pData->SectorLock = reg_value & M24LR_SSS_LOCK_MASK;
pData->RW_Protection = (reg_value & M24LR_SSS_RW_MASK) >> 1;
pData->PassCtrl = (reg_value & M24LR_SSS_PASSCTRL_MASK) >> 3;
return NFCTAG_OK;
}
/**
* @brief Write SectorSecurityStatus (defining RF access allowed)
* @brief Need an presentation of I2C Password to be effective
* @param SectorNb : Sector number to set RF security
* @param pData : M24LR_SECTOR_SEC pointer of the data to write
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_WriteSSSx( const uint8_t SectorNb, const M24LR_SECTOR_SEC * const pData )
{
uint8_t reg_value;
uint16_t sector_security_addr;
/* Compute Sector Security register address */
sector_security_addr = M24LR_SSS_REG | SectorNb;
/* Update Sector Security Status */
reg_value = (pData->PassCtrl << 3) & M24LR_SSS_PASSCTRL_MASK;
reg_value |= ((pData->RW_Protection << 1) & M24LR_SSS_RW_MASK);
reg_value |= (pData->SectorLock & M24LR_SSS_LOCK_MASK);
/* Write SectorSecurityStatus register */
return i2c_WriteRegister( ®_value, sector_security_addr, 1 );
}
/**
* @brief Read Memory Size info
* @param SizeInfo : M24LR_Mem_Size pointer of the data to store
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_ReadMemSize( M24LR_Mem_Size * const pSizeInfo )
{
uint8_t areg_value[3];
NFCTAG_StatusTypeDef status;
/* Read actual value of Mem_Size register */
status = i2c_ReadRegister( areg_value, M24LR_MEMSIZE_REG, 3 );
if( status != NFCTAG_OK )
{
return status;
}
/* Extract Mem information */
pSizeInfo->BlockSize = areg_value[2];
pSizeInfo->Mem_Size = areg_value[1];
pSizeInfo->Mem_Size = (pSizeInfo->Mem_Size << 8) | areg_value[0];
return NFCTAG_OK;
}
/**
* @brief Get GPO Configuration status
* @param Rf_Wip_Busy : M24LR_GPO_STATUS pointer of the data to store
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_GetRF_WIP_BUSY( M24LR_GPO_STATUS * const pRf_Wip_Busy )
{
uint8_t reg_value;
NFCTAG_StatusTypeDef status;
/* Read actual value of CFG register */
status = i2c_ReadRegister( ®_value, M24LR_CFG_REG, 1 );
if( status != NFCTAG_OK )
{
return status;
}
/* Extract RF WIP/BUSY information */
if( (reg_value & M24LR_CFG_WIPBUSY_MASK) == M24LR_CFG_WIPBUSY_MASK )
{
*pRf_Wip_Busy = M24LR_GPO_WIP;
}
else
{
*pRf_Wip_Busy = M24LR_GPO_BUSY;
}
return NFCTAG_OK;
}
/**
* @brief Configure GPO as RF Busy
* @param None
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_SetRFBUSY( void )
{
uint8_t reg_value;
int status;
/* Read actual value of CFG register */
status = dev_I2C.i2c_read( ®_value, i2c_address_syst, (uint16_t)M24LR_CFG_REG, 1 );
if( status != 0 )
{
return NFCTAG_TIMEOUT;
}
/* Update register value for BUSY configuration */
reg_value &= !M24LR_CFG_WIPBUSY_MASK;
/* Write CFG register */
status = i2c_WriteRegister( ®_value, M24LR_CFG_REG, 1 );
if ( status == 0 )
return NFCTAG_OK;
else
return NFCTAG_TIMEOUT;
}
/**
* @brief Get Energy harvesting mode status
* @param EH_mode : M24LR_EH_MODE_STATUS pointer of the data to store
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_Read_EH_mode( M24LR_EH_MODE_STATUS * const pEH_mode )
{
uint8_t reg_value;
NFCTAG_StatusTypeDef status;
/* Read actual value of CFG register */
status = i2c_ReadRegister( ®_value, M24LR_CFG_REG, 1 );
if( status != NFCTAG_OK )
{
return status;
}
/* Extract EH_mode configuration */
if( (reg_value & M24LR_CFG_EHMODE_MASK) == M24LR_CFG_EHMODE_MASK )
{
*pEH_mode = M24LR_EH_MODE_DISABLE;
}
else
{
*pEH_mode = M24LR_EH_MODE_ENABLE;
}
return NFCTAG_OK;
}
/**
* @brief Enable Energy harvesting mode
* @param None
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_Enable_EH_mode( void )
{
uint8_t reg_value;
NFCTAG_StatusTypeDef status;
/* Read actual value of CFG register */
status = i2c_ReadRegister( ®_value, M24LR_CFG_REG, 1 );
if( status != NFCTAG_OK )
{
return status;
}
/* Update EH_mode */
reg_value &= ~M24LR_CFG_EHMODE_MASK;
/* Write CFG register */
return i2c_WriteRegister( ®_value, M24LR_CFG_REG, 1 );
}
/**
* @brief Disable Energy harvesting mode
* @param None
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_Disable_EH_mode( void )
{
uint8_t reg_value;
NFCTAG_StatusTypeDef status;
/* Read actual value of CFG register */
status = i2c_ReadRegister( ®_value, M24LR_CFG_REG, 1 );
if( status != NFCTAG_OK )
{
return status;
}
/* Update EH_mode */
reg_value |= M24LR_CFG_EHMODE_MASK;
/* Write CFG register */
return i2c_WriteRegister( ®_value, M24LR_CFG_REG, 1 );
}
/**
* @brief Read Vout sink current configuration status for Energy Harvesting
* @param EH_Cfg : M24LR_EH_CFG_VOUT pointer of the data to store
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_ReadEH_Cfg( M24LR_EH_CFG_VOUT * const pEH_Cfg )
{
uint8_t reg_value;
NFCTAG_StatusTypeDef status;
/* Read actual value of CFG register */
status = i2c_ReadRegister( ®_value, M24LR_CFG_REG, 1 );
if( status != NFCTAG_OK )
{
return status;
}
/* Extract Vout configuration for EH information */
reg_value &= (M24LR_CFG_EHCFG1_MASK | M24LR_CFG_EHCFG0_MASK);
switch( reg_value )
{
case 0:
*pEH_Cfg = M24LR_EH_Cfg_6MA;
break;
case 1:
*pEH_Cfg = M24LR_EH_Cfg_3MA;
break;
case 2:
*pEH_Cfg = M24LR_EH_Cfg_1MA;
break;
case 3:
*pEH_Cfg = M24LR_EH_Cfg_300UA;
break;
default:
*pEH_Cfg = M24LR_EH_Cfg_6MA;
}
return NFCTAG_OK;
}
/**
* @brief Write Vout sink current configuration status for Energy Harvesting
* @param EH_Cfg : M24LR_EH_CFG_VOUT value to configure Vout
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_WriteEH_Cfg( const M24LR_EH_CFG_VOUT EH_Cfg )
{
uint8_t reg_value;
NFCTAG_StatusTypeDef status;
/* Read actual value of CFG register */
status = i2c_ReadRegister( ®_value, M24LR_CFG_REG, 1 );
if( status != NFCTAG_OK )
{
return status;
}
/* Update Vout configuration */
reg_value &= ~(M24LR_CFG_EHCFG1_MASK | M24LR_CFG_EHCFG0_MASK);
reg_value |= EH_Cfg;
/* Write CFG register */
return i2c_WriteRegister( ®_value, M24LR_CFG_REG, 1 );
}
/**
* @brief Get Energy Harvesting status
* @param EH_Val : M24LR_EH_STATUS pointer of the data to store
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_GetEH( M24LR_EH_STATUS * const pEH_Val )
{
uint8_t reg_value;
NFCTAG_StatusTypeDef status;
/* Read actual value of CTRL register */
status = i2c_ReadRegister( ®_value, M24LR_CTRL_REG, 1 );
if( status != NFCTAG_OK )
{
return status;
}
/* Extract EH information */
if( (reg_value & M24LR_CTRL_EHEN_MASK) == M24LR_CTRL_EHEN_MASK )
{
*pEH_Val = M24LR_EH_ENABLE;
}
else
{
*pEH_Val = M24LR_EH_DISABLE;
}
return NFCTAG_OK;
}
/**
* @brief Enable Energy Harvesting
* @param None
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_SetEH( void )
{
uint8_t reg_value;
NFCTAG_StatusTypeDef status;
/* Read actual value of CTRL register */
status = i2c_ReadRegister( ®_value, M24LR_CTRL_REG, 1 );
if( status != NFCTAG_OK )
{
return status;
}
/* Update EH configuration */
reg_value |= M24LR_CTRL_EHEN_MASK;
/* Write CTRL Register */
return i2c_WriteRegister( ®_value, M24LR_CTRL_REG, 1 );
}
/**
* @brief Disable Energy Harvesting
* @param None
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_ResetEH( void )
{
uint8_t reg_value;
NFCTAG_StatusTypeDef status;
/* Read actual value of CTRL register */
status = i2c_ReadRegister( ®_value, M24LR_CTRL_REG, 1 );
if( status != NFCTAG_OK )
{
return status;
}
/* Update EH configuration */
reg_value &= ~M24LR_CTRL_EHEN_MASK;
/* Write CTRL register */
return i2c_WriteRegister( ®_value, M24LR_CTRL_REG, 1 );
}
/**
* @brief Check if RF Field is present in front of M24LR
* @param pRF_Field : M24LR_FIELD_STATUS pointer of the data to store
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_GetRFField( M24LR_FIELD_STATUS * const pRF_Field )
{
NFCTAG_StatusTypeDef status;
uint8_t reg_value = 0;
/* Read actual value of CTRL register */
status = i2c_ReadRegister( ®_value, M24LR_CTRL_REG, 1 );
/* Extract RF Field information */
if( status == NFCTAG_OK )
{
if( (reg_value & M24LR_CTRL_FIELD_MASK) == M24LR_CTRL_FIELD_MASK )
{
*pRF_Field = M24LR_FIELD_ON;
}
else
{
*pRF_Field = M24LR_FIELD_OFF;
}
return NFCTAG_OK;
}
return status;
}
/**
* @brief Check if Write Timing is good
* @param pT_Prog : M24LR_T_PROG_STATUS pointer of the data to store
* @retval NFCTAG enum status
*/
NFCTAG_StatusTypeDef M24LR::i2c_GetTProg( M24LR_T_PROG_STATUS * const pT_Prog )
{
NFCTAG_StatusTypeDef status;
uint8_t reg_value = 0;
/* Read actual value of CTRL register */
status = i2c_ReadRegister( ®_value, M24LR_CTRL_REG, 1 );
/* Extract T-Prog information */
if( status == NFCTAG_OK )
{
if( (reg_value & M24LR_CTRL_TPROG_MASK) == M24LR_CTRL_TPROG_MASK )
{
*pT_Prog = M24LR_T_PROG_OK;
}
else
{
*pT_Prog = M24LR_T_PROG_NO;
}
return NFCTAG_OK;
}
else
return status;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/******************* (C) COPYRIGHT 2016 STMicroelectronics *****END OF FILE****/
