Simple test application for the STMicroelectronics X-NUCLEO-IHM01A1 Stepper Motor Control Expansion Board.

Dependencies:   X_NUCLEO_IHM01A1 mbed

Fork of HelloWorld_IHM01A1_2Motors by ST Expansion SW Team

Motor Control with the X-NUCLEO-IHM01A1 Expansion Board

This application provides a simple example of usage of the X-NUCLEO-IHM01A1 Stepper Motor Control Expansion Board.
It shows how to use two stepper motors connected to two stacked boards in daisy chain configuration, moving the rotors to specific positions, with given speed values, directions of rotation, etc.

main.cpp

Committer:
Davidroid
Date:
2015-11-13
Revision:
2:e12e4df7a486
Parent:
1:fbf28f3367aa
Child:
3:02d9ec4f88b2

File content as of revision 2:e12e4df7a486:

/**
 ******************************************************************************
 * @file    main.cpp
 * @author  Davide Aliprandi / AST
 * @version V1.0.0
 * @date    October 14th, 2015
 * @brief   mbed test application for the STMicrolectronics X-NUCLEO-IHM01A1
 *          Motor Control Expansion Board: control of 1 motor.
 *          This application makes use of a C++ component architecture obtained
 *          from the C component architecture through the Stm32CubeTOO tool.
 ******************************************************************************
 * @attention
 *
 * <h2><center>&copy; COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *   1. Redistributions of source code must retain the above copyright notice,
 *      this list of conditions and the following disclaimer.
 *   2. Redistributions in binary form must reproduce the above copyright notice,
 *      this list of conditions and the following disclaimer in the documentation
 *      and/or other materials provided with the distribution.
 *   3. Neither the name of STMicroelectronics nor the names of its contributors
 *      may be used to endorse or promote products derived from this software
 *      without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************
 */


/* Includes ------------------------------------------------------------------*/

/* mbed specific header files. */
#include "mbed.h"

/* Helper header files. */
#include "DevSPI.h"

/* Component specific header files. */
#include "l6474_class.h"


/* Definitions ---------------------------------------------------------------*/

/* Number of steps corresponding to one round angle of the motor. */
#define ROUND_ANGLE_STEPS 1600


/* Variables -----------------------------------------------------------------*/

/* Motor Control Component. */
L6474 *motor;


/* Main ----------------------------------------------------------------------*/

int main()
{
    /* Initializing SPI bus. */
    DevSPI dev_spi(D11, D12, D13);

    /* Initializing Motor Control Component. */
    motor = new L6474(D8, D7, D9, D10, dev_spi);
    if (motor->Init(NULL) != COMPONENT_OK)
        return false;

    /* Printing to the console. */
    printf("Motor Control Application Example for 1 Motor\r\n\n");

    /* Main Loop. */
    while(true)
    {
        /*----- Moving forward of N steps. -----*/

        /* Printing to the console. */
        printf("--> Moving forward %d steps.\r\n", ROUND_ANGLE_STEPS);

        /* Moving N steps in the forward direction. */
        motor->Move(StepperMotor::CW, ROUND_ANGLE_STEPS);
        
        /* Waiting while the motor is active. */
        motor->WaitWhileActive();

        /* Getting current position. */
        int position = motor->GetPosition();
        
        /* Printing to the console. */
        printf("    Position: %d.\r\n", position);

        /* Waiting 2 seconds. */
        wait_ms(2000);

        
        /*----- Moving backward N steps. -----*/
        
        /* Printing to the console. */
        printf("--> Moving backward %d steps.\r\n", ROUND_ANGLE_STEPS);
        
        /* Moving N steps in the backward direction. */
        motor->Move(StepperMotor::CCW, ROUND_ANGLE_STEPS);
        
        /* Waiting while the motor is active. */
        motor->WaitWhileActive();

        /* Getting current position. */
        position = motor->GetPosition();
        
        /* Printing to the console. */
        printf("    Position: %d.\r\n", position);

        /* Setting the current position to be the home position. */
        motor->SetHome();

        /* Waiting 2 seconds. */
        wait_ms(2000);


        /*----- Going to a specified position. -----*/

        /* Printing to the console. */
        printf("--> Going to position %d.\r\n", ROUND_ANGLE_STEPS >> 1);
        
        /* Requesting to go to a specified position. */
        motor->GoTo(ROUND_ANGLE_STEPS >> 1);
        
        /* Waiting while the motor is active. */
        motor->WaitWhileActive();

        /* Getting current position. */
        position = motor->GetPosition();
        
        /* Printing to the console. */
        printf("    Position: %d.\r\n", position);
        
        /* Waiting 2 seconds. */
        wait_ms(2000);

        
        /*----- Going Home. -----*/

        /* Printing to the console. */
        printf("--> Going Home.\r\n");
        
        /* Requesting to go to home. */
        motor->GoHome();
        
        /* Waiting while the motor is active. */
        motor->WaitWhileActive();

        /* Getting current position. */
        position = motor->GetPosition();

        /* Printing to the console. */
        printf("    Position: %d.\r\n", position);

        /* Waiting 2 seconds. */
        wait_ms(2000);


        /*----- Moving backward. -----*/

        /* Printing to the console. */
        printf("--> Moving backward.\r\n");

        /* Requesting to run backward. */
        motor->Run(StepperMotor::CCW);

        /* Waiting until delay has expired. */
        wait_ms(6000);

        /* Getting current speed. */
        int speed = motor->GetSpeed();

        /* Printing to the console. */
        printf("    Speed: %d.\r\n", speed);


        /*----- Increasing the speed while running. -----*/

        /* Printing to the console. */
        printf("--> Increasing the speed while running.\r\n");

        /* Increasing speed to 2400 step/s. */
        motor->SetMaxSpeed(2400);

        /* Waiting until delay has expired. */
        wait_ms(6000);

        /* Getting current speed. */
        speed = motor->GetSpeed();

        /* Printing to the console. */
        printf("    Speed: %d.\r\n", speed);


        /*----- Decreasing the speed while running. -----*/

        /* Printing to the console. */
        printf("--> Decreasing the speed while running.\r\n");

        /* Decreasing speed to 1200 step/s. */
        motor->SetMaxSpeed(1200);

        /* Waiting until delay has expired. */
        wait_ms(8000);

        /* Getting current speed. */
        speed = motor->GetSpeed();

        /* Printing to the console. */
        printf("    Speed: %d.\r\n", speed);


        /*----- Moving forward. -----*/

        /* Printing to the console. */
        printf("--> Moving forward.\r\n");

        /* Requesting to run in forward direction. */
        motor->Run(StepperMotor::CW);

        /* Waiting until delay has expired. */
        wait_ms(4000);
        

        /*----- Requiring hard-stop while running. -----*/

        /* Printing to the console. */
        printf("--> Requiring hard-stop while running.\r\n");

        /* Requesting to immediatly stop. */
        motor->HardStop();

        /* Waiting while the motor is active. */
        motor->WaitWhileActive();

        /* Waiting 2 seconds. */
        wait_ms(2000);


        /*----- Infinite Loop. -----*/

        /* Printing to the console. */
        printf("--> Infinite Loop...\r\n");

        /* Setting the current position to be the home position. */
        motor->SetHome();

        /* Infinite Loop. */
        while(1)
        {
            /* Requesting to go to a specified position. */
            motor->GoTo(- ROUND_ANGLE_STEPS >> 2);

            /* Waiting while the motor is active. */
            motor->WaitWhileActive();

            /* Requesting to go to a specified position. */
            motor->GoTo(ROUND_ANGLE_STEPS >> 2);

            /* Waiting while the motor is active. */
            motor->WaitWhileActive();
        }
    }
}