Example code of sakura.io Evaluation board.
Dependencies: AQM0802A BME280 MPU9250_SPI SakuraIO gps mbed
SakuraIo Evaluation Board Standard
Overview
This program is example code of sakura.io Evaluation board.
Functions
- Periodic measure from onboard sensors(period is 200ms)
- Motion sensor(gyro, accelometer, magnetometer)
- Environment sensor(temperatur, humidity, airpressur)
- GPS(longitude, latitude, timestamp)
- Periodic send the measuring datas to sakura.io platform(period is 300sec)
- Output the measured datas output to USB-Serial port
- baudrate is 9600bps
- Can select on / off of periodic running with switch `SW5`
Description
See the Getting Started page.
Diff: main.cpp
- Revision:
- 5:e92264bc120e
- Child:
- 8:b7ad0fe7ce64
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/main.cpp Mon Jul 30 13:20:37 2018 +0900
@@ -0,0 +1,229 @@
+#include <mbed.h>
+#include <AQM0802A.h>
+#include <BME280.h>
+#include <MPU9250.h>
+#include <SakuraIO.h>
+#include "SakuraPinNames.h"
+#include "sensors.h"
+#include "gps.h"
+
+// Serial over CMSIS_DAP
+Serial pc(DAP_UART_TX, DAP_UART_RX, 9600);
+
+// GPS
+Serial gps(GPS_TX, GPS_RX, 9600);
+DigitalOut gps_en(GPS_EN);
+
+// LED
+DigitalOut led_1(LED1);
+DigitalOut led_2(LED2);
+DigitalOut led_3(LED3);
+DigitalOut led_4(LED4);
+
+// LCD backlight
+DigitalOut lcd_led(LED_LCD);
+
+// Switch
+DigitalIn sw_1(SW1);
+DigitalIn sw_2(SW2);
+DigitalIn sw_3(SW3);
+DigitalIn sw_4(SW4);
+DigitalIn sw_5(SW5);
+DigitalIn sw_6(SW6);
+
+// Internal I2C
+I2C internal_i2c(I2C_INTERNAL_SDA, I2C_INTERNAL_SCL);
+AQM0802A lcd(internal_i2c);
+BME280 bme280(internal_i2c);
+
+// SPI
+SPI internal_mpu9250_spi(SPI_MPU_MOSI, SPI_MPU_MISO, SPI_MPU_SCK);
+mpu9250_spi mpu9250(internal_mpu9250_spi, SPI_MPU_CS);
+
+// sakura.io
+SakuraIO_I2C sakuraio(I2C_SDA, I2C_SCL);
+
+SensorData sensor_data;
+
+// GPS UART buffer
+char uart_buffer[128] = {0};
+int uart_buffer_index = 0;
+
+// NMEA Decoder
+GPSDecoder gps_decoder;
+
+void gps_uart_buffering_handler();
+
+const int SEND_INTERVAL_TICKS_PAR_COUNT = 1500;
+
+void setup()
+{
+ lcd_led = 1;
+ pc.printf("Hello World !\r\n");
+ lcd.cls();
+ lcd.printf("Hello");
+
+ // Initialize sensors
+ bme280.initialize();
+ pc.printf("BME280 ok.\r\n");
+ mpu9250.init(1, BITS_DLPF_CFG_188HZ);
+ pc.printf("MPU9250 ok. WHOAMI=%02x\r\n", mpu9250.whoami());
+ if (mpu9250.whoami() != 0x71) {
+ pc.printf("[ERROR] MPU9250 init fail.\r\n");
+ }
+
+ mpu9250.set_gyro_scale(BITS_FS_2000DPS); //Set full scale range for gyros
+ mpu9250.set_acc_scale(BITS_FS_16G); //Set full scale range for accs
+ mpu9250.calib_acc();
+ mpu9250.AK8963_calib_Magnetometer();
+
+ // active high
+ gps_en = 1;
+ gps.attach(&gps_uart_buffering_handler, Serial::RxIrq);
+
+ led_1 = 1;
+ led_2 = 0;
+
+ pc.printf("Send par %d seconds.\r\n", (SEND_INTERVAL_TICKS_PAR_COUNT * 200) / 1000);
+}
+
+void read_sensor_data()
+{
+ sensor_data.bme280.temperature = bme280.getTemperature();
+ sensor_data.bme280.pressure = bme280.getPressure();
+ sensor_data.bme280.humidity = bme280.getHumidity();
+
+ mpu9250.read_all();
+ sensor_data.mpu9250.temperature = mpu9250.Temperature;
+ for (int cnt_send = 0; cnt_send < 3; cnt_send++) {
+ sensor_data.mpu9250.accelerometer[cnt_send] = mpu9250.accelerometer_data[cnt_send];
+ sensor_data.mpu9250.gyroscope[cnt_send] = mpu9250.gyroscope_data[cnt_send];
+ sensor_data.mpu9250.magnetometer[cnt_send] = mpu9250.Magnetometer[cnt_send];
+ }
+}
+
+void enqueue_sensor_data(int counter)
+{
+ sakuraio.enqueueTx(0, (int32_t)counter);
+ sakuraio.enqueueTx(1, sensor_data.bme280.temperature);
+ sakuraio.enqueueTx(2, sensor_data.bme280.pressure);
+ sakuraio.enqueueTx(3, sensor_data.bme280.humidity);
+ sakuraio.enqueueTx(4, sensor_data.mpu9250.accelerometer[0]);
+ sakuraio.enqueueTx(5, sensor_data.mpu9250.accelerometer[1]);
+ sakuraio.enqueueTx(6, sensor_data.mpu9250.accelerometer[2]);
+ sakuraio.enqueueTx(7, sensor_data.mpu9250.gyroscope[0]);
+ sakuraio.enqueueTx(8, sensor_data.mpu9250.gyroscope[1]);
+ sakuraio.enqueueTx(9, sensor_data.mpu9250.gyroscope[2]);
+ sakuraio.enqueueTx(10, sensor_data.mpu9250.magnetometer[0]);
+ sakuraio.enqueueTx(11, sensor_data.mpu9250.magnetometer[1]);
+ sakuraio.enqueueTx(12, sensor_data.mpu9250.magnetometer[2]);
+ sakuraio.enqueueTx(13, gps_decoder.get_longitude());
+ sakuraio.enqueueTx(14, gps_decoder.get_latitude());
+ sakuraio.enqueueTx(15, gps_decoder.get_unixtime());
+}
+
+void gps_uart_buffering_handler()
+{
+ while (gps.readable() == 1) {
+ char c = gps.getc();
+ if (c == '\r') {
+ continue;
+ }
+ uart_buffer[uart_buffer_index] = c;
+ uart_buffer_index++;
+ if (c == '\n') {
+ uart_buffer[uart_buffer_index - 1] = '\0';
+ gps_decoder.set_nmea_message(uart_buffer);
+ gps_decoder.decode();
+ uart_buffer_index = 0;
+ }
+ }
+}
+
+
+void loop()
+{
+ static int cnt_send = 1;
+ static int tick_by_200ms = 0;
+ static int stat_sw5 = -1;
+
+ if((sakuraio.getConnectionStatus() & 0x80) == 0x00) {
+ //Offline
+ lcd.cls();
+ lcd.printf("Offline");
+ pc.printf("Network is offline.\r\n(After 1 sec to running retry.)\r\n");
+ wait(1);
+ return;
+ }
+
+ if (stat_sw5 != sw_5) {
+ stat_sw5 = sw_5;
+ led_3 = stat_sw5; //State: `Send Enable'
+ if (stat_sw5 == 0) {
+ lcd.cls();
+ lcd.printf("Send:OFF");
+ } else {
+ cnt_send = 1;
+ tick_by_200ms = 0;
+ lcd.cls();
+ lcd.printf("Send:ON");
+ }
+ }
+
+ if (stat_sw5 == 1) {
+ if ((tick_by_200ms % SEND_INTERVAL_TICKS_PAR_COUNT) == 0) { //Send data intarval is 5 minutes.
+ pc.printf("\r\n\r\n--------------------\r\n");
+ read_sensor_data();
+ pc.printf("BME280\r\n");
+ pc.printf("\tTemp: %.2fC\r\n", sensor_data.bme280.temperature);
+ pc.printf("\tPres: %.2fhPa\r\n", sensor_data.bme280.pressure);
+ pc.printf("\tHum: %.2f%%\r\n", sensor_data.bme280.humidity);
+ pc.printf("MPU9250\r\n");
+ pc.printf("\tTemp: %.2fC\r\n", sensor_data.mpu9250.temperature);
+ for (int j = 0; j < 3; j++) {
+ pc.printf("\tacc[%d]: %.2f\r\n", j, sensor_data.mpu9250.accelerometer[j]);
+ pc.printf("\tgyro[%d]: %.2f\r\n", j, sensor_data.mpu9250.gyroscope[j]);
+ pc.printf("\tmag[%d]: %.2f\r\n", j, sensor_data.mpu9250.magnetometer[j]);
+ }
+ pc.printf("GPS\r\n");
+ pc.printf("\tlat: %f%c\r\n",
+ gps_decoder.get_latitude(),
+ gps_decoder.get_latitude() >= 0 ? 'N' : 'S');
+ pc.printf("\tlon: %f%c\r\n",
+ gps_decoder.get_longitude(),
+ gps_decoder.get_longitude() >= 0 ? 'E' : 'W');
+ pc.printf("\tspeed: %fkm/h\r\n", gps_decoder.get_speed());
+ pc.printf("\tmove_direction: %f\r\n", gps_decoder.get_move_direction());
+ pc.printf("\tdate: %d/%02d/%02d %02d:%02d:%02d (UTC)\r\n",
+ gps_decoder.get_year(), gps_decoder.get_month(), gps_decoder.get_day(),
+ gps_decoder.get_hour(), gps_decoder.get_min(), gps_decoder.get_sec());
+ pc.printf("\tUNIX time: %d\r\n", gps_decoder.get_unixtime());
+ if ((sakuraio.getConnectionStatus() & 0x80) == 0x80) {
+ led_2 = 1;
+ pc.printf("Send:%d\r\n", cnt_send);
+ lcd.setCursor(0, 1);
+ lcd.printf("%d", cnt_send);
+ enqueue_sensor_data(cnt_send);
+ sakuraio.send();
+ cnt_send++;
+ led_2 = 0;
+ pc.printf("After %d sec to send.\r\n", (int)(SEND_INTERVAL_TICKS_PAR_COUNT * 0.2));
+ } else {
+ return;
+ }
+ }
+ }
+ led_1 = !led_1;
+ led_4 = !sw_4;
+ tick_by_200ms++;
+ wait(0.2);
+}
+
+
+int main()
+{
+ setup();
+ while(1) {
+ loop();
+ }
+}
SAKURA Internet