openCV library for Renesas RZ/A

Dependents:   RZ_A2M_Mbed_samples

Revision:
0:0e0631af0305
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/include/opencv2/flann/kdtree_single_index.h	Fri Jan 29 04:53:38 2021 +0000
@@ -0,0 +1,634 @@
+/***********************************************************************
+ * Software License Agreement (BSD License)
+ *
+ * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
+ * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
+ *
+ * THE BSD LICENSE
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in the
+ *    documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *************************************************************************/
+
+#ifndef OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
+#define OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
+
+#include <algorithm>
+#include <map>
+#include <cassert>
+#include <cstring>
+
+#include "general.h"
+#include "nn_index.h"
+#include "matrix.h"
+#include "result_set.h"
+#include "heap.h"
+#include "allocator.h"
+#include "random.h"
+#include "saving.h"
+
+namespace cvflann
+{
+
+struct KDTreeSingleIndexParams : public IndexParams
+{
+    KDTreeSingleIndexParams(int leaf_max_size = 10, bool reorder = true, int dim = -1)
+    {
+        (*this)["algorithm"] = FLANN_INDEX_KDTREE_SINGLE;
+        (*this)["leaf_max_size"] = leaf_max_size;
+        (*this)["reorder"] = reorder;
+        (*this)["dim"] = dim;
+    }
+};
+
+
+/**
+ * Randomized kd-tree index
+ *
+ * Contains the k-d trees and other information for indexing a set of points
+ * for nearest-neighbor matching.
+ */
+template <typename Distance>
+class KDTreeSingleIndex : public NNIndex<Distance>
+{
+public:
+    typedef typename Distance::ElementType ElementType;
+    typedef typename Distance::ResultType DistanceType;
+
+
+    /**
+     * KDTree constructor
+     *
+     * Params:
+     *          inputData = dataset with the input features
+     *          params = parameters passed to the kdtree algorithm
+     */
+    KDTreeSingleIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeSingleIndexParams(),
+                      Distance d = Distance() ) :
+        dataset_(inputData), index_params_(params), distance_(d)
+    {
+        size_ = dataset_.rows;
+        dim_ = dataset_.cols;
+        int dim_param = get_param(params,"dim",-1);
+        if (dim_param>0) dim_ = dim_param;
+        leaf_max_size_ = get_param(params,"leaf_max_size",10);
+        reorder_ = get_param(params,"reorder",true);
+
+        // Create a permutable array of indices to the input vectors.
+        vind_.resize(size_);
+        for (size_t i = 0; i < size_; i++) {
+            vind_[i] = (int)i;
+        }
+    }
+
+    KDTreeSingleIndex(const KDTreeSingleIndex&);
+    KDTreeSingleIndex& operator=(const KDTreeSingleIndex&);
+
+    /**
+     * Standard destructor
+     */
+    ~KDTreeSingleIndex()
+    {
+        if (reorder_) delete[] data_.data;
+    }
+
+    /**
+     * Builds the index
+     */
+    void buildIndex()
+    {
+        computeBoundingBox(root_bbox_);
+        root_node_ = divideTree(0, (int)size_, root_bbox_ );   // construct the tree
+
+        if (reorder_) {
+            delete[] data_.data;
+            data_ = cvflann::Matrix<ElementType>(new ElementType[size_*dim_], size_, dim_);
+            for (size_t i=0; i<size_; ++i) {
+                for (size_t j=0; j<dim_; ++j) {
+                    data_[i][j] = dataset_[vind_[i]][j];
+                }
+            }
+        }
+        else {
+            data_ = dataset_;
+        }
+    }
+
+    flann_algorithm_t getType() const
+    {
+        return FLANN_INDEX_KDTREE_SINGLE;
+    }
+
+
+    void saveIndex(FILE* stream)
+    {
+        save_value(stream, size_);
+        save_value(stream, dim_);
+        save_value(stream, root_bbox_);
+        save_value(stream, reorder_);
+        save_value(stream, leaf_max_size_);
+        save_value(stream, vind_);
+        if (reorder_) {
+            save_value(stream, data_);
+        }
+        save_tree(stream, root_node_);
+    }
+
+
+    void loadIndex(FILE* stream)
+    {
+        load_value(stream, size_);
+        load_value(stream, dim_);
+        load_value(stream, root_bbox_);
+        load_value(stream, reorder_);
+        load_value(stream, leaf_max_size_);
+        load_value(stream, vind_);
+        if (reorder_) {
+            load_value(stream, data_);
+        }
+        else {
+            data_ = dataset_;
+        }
+        load_tree(stream, root_node_);
+
+
+        index_params_["algorithm"] = getType();
+        index_params_["leaf_max_size"] = leaf_max_size_;
+        index_params_["reorder"] = reorder_;
+    }
+
+    /**
+     *  Returns size of index.
+     */
+    size_t size() const
+    {
+        return size_;
+    }
+
+    /**
+     * Returns the length of an index feature.
+     */
+    size_t veclen() const
+    {
+        return dim_;
+    }
+
+    /**
+     * Computes the inde memory usage
+     * Returns: memory used by the index
+     */
+    int usedMemory() const
+    {
+        return (int)(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int));  // pool memory and vind array memory
+    }
+
+
+    /**
+     * \brief Perform k-nearest neighbor search
+     * \param[in] queries The query points for which to find the nearest neighbors
+     * \param[out] indices The indices of the nearest neighbors found
+     * \param[out] dists Distances to the nearest neighbors found
+     * \param[in] knn Number of nearest neighbors to return
+     * \param[in] params Search parameters
+     */
+    void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
+    {
+        assert(queries.cols == veclen());
+        assert(indices.rows >= queries.rows);
+        assert(dists.rows >= queries.rows);
+        assert(int(indices.cols) >= knn);
+        assert(int(dists.cols) >= knn);
+
+        KNNSimpleResultSet<DistanceType> resultSet(knn);
+        for (size_t i = 0; i < queries.rows; i++) {
+            resultSet.init(indices[i], dists[i]);
+            findNeighbors(resultSet, queries[i], params);
+        }
+    }
+
+    IndexParams getParameters() const
+    {
+        return index_params_;
+    }
+
+    /**
+     * Find set of nearest neighbors to vec. Their indices are stored inside
+     * the result object.
+     *
+     * Params:
+     *     result = the result object in which the indices of the nearest-neighbors are stored
+     *     vec = the vector for which to search the nearest neighbors
+     *     maxCheck = the maximum number of restarts (in a best-bin-first manner)
+     */
+    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
+    {
+        float epsError = 1+get_param(searchParams,"eps",0.0f);
+
+        std::vector<DistanceType> dists(dim_,0);
+        DistanceType distsq = computeInitialDistances(vec, dists);
+        searchLevel(result, vec, root_node_, distsq, dists, epsError);
+    }
+
+private:
+
+
+    /*--------------------- Internal Data Structures --------------------------*/
+    struct Node
+    {
+        /**
+         * Indices of points in leaf node
+         */
+        int left, right;
+        /**
+         * Dimension used for subdivision.
+         */
+        int divfeat;
+        /**
+         * The values used for subdivision.
+         */
+        DistanceType divlow, divhigh;
+        /**
+         * The child nodes.
+         */
+        Node* child1, * child2;
+    };
+    typedef Node* NodePtr;
+
+
+    struct Interval
+    {
+        DistanceType low, high;
+    };
+
+    typedef std::vector<Interval> BoundingBox;
+
+    typedef BranchStruct<NodePtr, DistanceType> BranchSt;
+    typedef BranchSt* Branch;
+
+
+
+
+    void save_tree(FILE* stream, NodePtr tree)
+    {
+        save_value(stream, *tree);
+        if (tree->child1!=NULL) {
+            save_tree(stream, tree->child1);
+        }
+        if (tree->child2!=NULL) {
+            save_tree(stream, tree->child2);
+        }
+    }
+
+
+    void load_tree(FILE* stream, NodePtr& tree)
+    {
+        tree = pool_.allocate<Node>();
+        load_value(stream, *tree);
+        if (tree->child1!=NULL) {
+            load_tree(stream, tree->child1);
+        }
+        if (tree->child2!=NULL) {
+            load_tree(stream, tree->child2);
+        }
+    }
+
+
+    void computeBoundingBox(BoundingBox& bbox)
+    {
+        bbox.resize(dim_);
+        for (size_t i=0; i<dim_; ++i) {
+            bbox[i].low = (DistanceType)dataset_[0][i];
+            bbox[i].high = (DistanceType)dataset_[0][i];
+        }
+        for (size_t k=1; k<dataset_.rows; ++k) {
+            for (size_t i=0; i<dim_; ++i) {
+                if (dataset_[k][i]<bbox[i].low) bbox[i].low = (DistanceType)dataset_[k][i];
+                if (dataset_[k][i]>bbox[i].high) bbox[i].high = (DistanceType)dataset_[k][i];
+            }
+        }
+    }
+
+
+    /**
+     * Create a tree node that subdivides the list of vecs from vind[first]
+     * to vind[last].  The routine is called recursively on each sublist.
+     * Place a pointer to this new tree node in the location pTree.
+     *
+     * Params: pTree = the new node to create
+     *                  first = index of the first vector
+     *                  last = index of the last vector
+     */
+    NodePtr divideTree(int left, int right, BoundingBox& bbox)
+    {
+        NodePtr node = pool_.allocate<Node>(); // allocate memory
+
+        /* If too few exemplars remain, then make this a leaf node. */
+        if ( (right-left) <= leaf_max_size_) {
+            node->child1 = node->child2 = NULL;    /* Mark as leaf node. */
+            node->left = left;
+            node->right = right;
+
+            // compute bounding-box of leaf points
+            for (size_t i=0; i<dim_; ++i) {
+                bbox[i].low = (DistanceType)dataset_[vind_[left]][i];
+                bbox[i].high = (DistanceType)dataset_[vind_[left]][i];
+            }
+            for (int k=left+1; k<right; ++k) {
+                for (size_t i=0; i<dim_; ++i) {
+                    if (bbox[i].low>dataset_[vind_[k]][i]) bbox[i].low=(DistanceType)dataset_[vind_[k]][i];
+                    if (bbox[i].high<dataset_[vind_[k]][i]) bbox[i].high=(DistanceType)dataset_[vind_[k]][i];
+                }
+            }
+        }
+        else {
+            int idx;
+            int cutfeat;
+            DistanceType cutval;
+            middleSplit_(&vind_[0]+left, right-left, idx, cutfeat, cutval, bbox);
+
+            node->divfeat = cutfeat;
+
+            BoundingBox left_bbox(bbox);
+            left_bbox[cutfeat].high = cutval;
+            node->child1 = divideTree(left, left+idx, left_bbox);
+
+            BoundingBox right_bbox(bbox);
+            right_bbox[cutfeat].low = cutval;
+            node->child2 = divideTree(left+idx, right, right_bbox);
+
+            node->divlow = left_bbox[cutfeat].high;
+            node->divhigh = right_bbox[cutfeat].low;
+
+            for (size_t i=0; i<dim_; ++i) {
+                bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low);
+                bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high);
+            }
+        }
+
+        return node;
+    }
+
+    void computeMinMax(int* ind, int count, int dim, ElementType& min_elem, ElementType& max_elem)
+    {
+        min_elem = dataset_[ind[0]][dim];
+        max_elem = dataset_[ind[0]][dim];
+        for (int i=1; i<count; ++i) {
+            ElementType val = dataset_[ind[i]][dim];
+            if (val<min_elem) min_elem = val;
+            if (val>max_elem) max_elem = val;
+        }
+    }
+
+    void middleSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
+    {
+        // find the largest span from the approximate bounding box
+        ElementType max_span = bbox[0].high-bbox[0].low;
+        cutfeat = 0;
+        cutval = (bbox[0].high+bbox[0].low)/2;
+        for (size_t i=1; i<dim_; ++i) {
+            ElementType span = bbox[i].high-bbox[i].low;
+            if (span>max_span) {
+                max_span = span;
+                cutfeat = i;
+                cutval = (bbox[i].high+bbox[i].low)/2;
+            }
+        }
+
+        // compute exact span on the found dimension
+        ElementType min_elem, max_elem;
+        computeMinMax(ind, count, cutfeat, min_elem, max_elem);
+        cutval = (min_elem+max_elem)/2;
+        max_span = max_elem - min_elem;
+
+        // check if a dimension of a largest span exists
+        size_t k = cutfeat;
+        for (size_t i=0; i<dim_; ++i) {
+            if (i==k) continue;
+            ElementType span = bbox[i].high-bbox[i].low;
+            if (span>max_span) {
+                computeMinMax(ind, count, i, min_elem, max_elem);
+                span = max_elem - min_elem;
+                if (span>max_span) {
+                    max_span = span;
+                    cutfeat = i;
+                    cutval = (min_elem+max_elem)/2;
+                }
+            }
+        }
+        int lim1, lim2;
+        planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
+
+        if (lim1>count/2) index = lim1;
+        else if (lim2<count/2) index = lim2;
+        else index = count/2;
+    }
+
+
+    void middleSplit_(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
+    {
+        const float EPS=0.00001f;
+        DistanceType max_span = bbox[0].high-bbox[0].low;
+        for (size_t i=1; i<dim_; ++i) {
+            DistanceType span = bbox[i].high-bbox[i].low;
+            if (span>max_span) {
+                max_span = span;
+            }
+        }
+        DistanceType max_spread = -1;
+        cutfeat = 0;
+        for (size_t i=0; i<dim_; ++i) {
+            DistanceType span = bbox[i].high-bbox[i].low;
+            if (span>(DistanceType)((1-EPS)*max_span)) {
+                ElementType min_elem, max_elem;
+                computeMinMax(ind, count, cutfeat, min_elem, max_elem);
+                DistanceType spread = (DistanceType)(max_elem-min_elem);
+                if (spread>max_spread) {
+                    cutfeat = (int)i;
+                    max_spread = spread;
+                }
+            }
+        }
+        // split in the middle
+        DistanceType split_val = (bbox[cutfeat].low+bbox[cutfeat].high)/2;
+        ElementType min_elem, max_elem;
+        computeMinMax(ind, count, cutfeat, min_elem, max_elem);
+
+        if (split_val<min_elem) cutval = (DistanceType)min_elem;
+        else if (split_val>max_elem) cutval = (DistanceType)max_elem;
+        else cutval = split_val;
+
+        int lim1, lim2;
+        planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
+
+        if (lim1>count/2) index = lim1;
+        else if (lim2<count/2) index = lim2;
+        else index = count/2;
+    }
+
+
+    /**
+     *  Subdivide the list of points by a plane perpendicular on axe corresponding
+     *  to the 'cutfeat' dimension at 'cutval' position.
+     *
+     *  On return:
+     *  dataset[ind[0..lim1-1]][cutfeat]<cutval
+     *  dataset[ind[lim1..lim2-1]][cutfeat]==cutval
+     *  dataset[ind[lim2..count]][cutfeat]>cutval
+     */
+    void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
+    {
+        /* Move vector indices for left subtree to front of list. */
+        int left = 0;
+        int right = count-1;
+        for (;; ) {
+            while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
+            while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
+            if (left>right) break;
+            std::swap(ind[left], ind[right]); ++left; --right;
+        }
+        /* If either list is empty, it means that all remaining features
+         * are identical. Split in the middle to maintain a balanced tree.
+         */
+        lim1 = left;
+        right = count-1;
+        for (;; ) {
+            while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
+            while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
+            if (left>right) break;
+            std::swap(ind[left], ind[right]); ++left; --right;
+        }
+        lim2 = left;
+    }
+
+    DistanceType computeInitialDistances(const ElementType* vec, std::vector<DistanceType>& dists)
+    {
+        DistanceType distsq = 0.0;
+
+        for (size_t i = 0; i < dim_; ++i) {
+            if (vec[i] < root_bbox_[i].low) {
+                dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].low, (int)i);
+                distsq += dists[i];
+            }
+            if (vec[i] > root_bbox_[i].high) {
+                dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].high, (int)i);
+                distsq += dists[i];
+            }
+        }
+
+        return distsq;
+    }
+
+    /**
+     * Performs an exact search in the tree starting from a node.
+     */
+    void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq,
+                     std::vector<DistanceType>& dists, const float epsError)
+    {
+        /* If this is a leaf node, then do check and return. */
+        if ((node->child1 == NULL)&&(node->child2 == NULL)) {
+            DistanceType worst_dist = result_set.worstDist();
+            for (int i=node->left; i<node->right; ++i) {
+                int index = reorder_ ? i : vind_[i];
+                DistanceType dist = distance_(vec, data_[index], dim_, worst_dist);
+                if (dist<worst_dist) {
+                    result_set.addPoint(dist,vind_[i]);
+                }
+            }
+            return;
+        }
+
+        /* Which child branch should be taken first? */
+        int idx = node->divfeat;
+        ElementType val = vec[idx];
+        DistanceType diff1 = val - node->divlow;
+        DistanceType diff2 = val - node->divhigh;
+
+        NodePtr bestChild;
+        NodePtr otherChild;
+        DistanceType cut_dist;
+        if ((diff1+diff2)<0) {
+            bestChild = node->child1;
+            otherChild = node->child2;
+            cut_dist = distance_.accum_dist(val, node->divhigh, idx);
+        }
+        else {
+            bestChild = node->child2;
+            otherChild = node->child1;
+            cut_dist = distance_.accum_dist( val, node->divlow, idx);
+        }
+
+        /* Call recursively to search next level down. */
+        searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError);
+
+        DistanceType dst = dists[idx];
+        mindistsq = mindistsq + cut_dist - dst;
+        dists[idx] = cut_dist;
+        if (mindistsq*epsError<=result_set.worstDist()) {
+            searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError);
+        }
+        dists[idx] = dst;
+    }
+
+private:
+
+    /**
+     * The dataset used by this index
+     */
+    const Matrix<ElementType> dataset_;
+
+    IndexParams index_params_;
+
+    int leaf_max_size_;
+    bool reorder_;
+
+
+    /**
+     *  Array of indices to vectors in the dataset.
+     */
+    std::vector<int> vind_;
+
+    Matrix<ElementType> data_;
+
+    size_t size_;
+    size_t dim_;
+
+    /**
+     * Array of k-d trees used to find neighbours.
+     */
+    NodePtr root_node_;
+
+    BoundingBox root_bbox_;
+
+    /**
+     * Pooled memory allocator.
+     *
+     * Using a pooled memory allocator is more efficient
+     * than allocating memory directly when there is a large
+     * number small of memory allocations.
+     */
+    PooledAllocator pool_;
+
+    Distance distance_;
+};   // class KDTree
+
+}
+
+#endif //OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_