openCV library for Renesas RZ/A
Dependents: RZ_A2M_Mbed_samples
include/opencv2/objdetect.hpp@0:0e0631af0305, 2021-01-29 (annotated)
- Committer:
- RyoheiHagimoto
- Date:
- Fri Jan 29 04:53:38 2021 +0000
- Revision:
- 0:0e0631af0305
copied from https://github.com/d-kato/opencv-lib.
Who changed what in which revision?
| User | Revision | Line number | New contents of line |
|---|---|---|---|
| RyoheiHagimoto | 0:0e0631af0305 | 1 | /*M/////////////////////////////////////////////////////////////////////////////////////// |
| RyoheiHagimoto | 0:0e0631af0305 | 2 | // |
| RyoheiHagimoto | 0:0e0631af0305 | 3 | // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
| RyoheiHagimoto | 0:0e0631af0305 | 4 | // |
| RyoheiHagimoto | 0:0e0631af0305 | 5 | // By downloading, copying, installing or using the software you agree to this license. |
| RyoheiHagimoto | 0:0e0631af0305 | 6 | // If you do not agree to this license, do not download, install, |
| RyoheiHagimoto | 0:0e0631af0305 | 7 | // copy or use the software. |
| RyoheiHagimoto | 0:0e0631af0305 | 8 | // |
| RyoheiHagimoto | 0:0e0631af0305 | 9 | // |
| RyoheiHagimoto | 0:0e0631af0305 | 10 | // License Agreement |
| RyoheiHagimoto | 0:0e0631af0305 | 11 | // For Open Source Computer Vision Library |
| RyoheiHagimoto | 0:0e0631af0305 | 12 | // |
| RyoheiHagimoto | 0:0e0631af0305 | 13 | // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
| RyoheiHagimoto | 0:0e0631af0305 | 14 | // Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
| RyoheiHagimoto | 0:0e0631af0305 | 15 | // Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
| RyoheiHagimoto | 0:0e0631af0305 | 16 | // Third party copyrights are property of their respective owners. |
| RyoheiHagimoto | 0:0e0631af0305 | 17 | // |
| RyoheiHagimoto | 0:0e0631af0305 | 18 | // Redistribution and use in source and binary forms, with or without modification, |
| RyoheiHagimoto | 0:0e0631af0305 | 19 | // are permitted provided that the following conditions are met: |
| RyoheiHagimoto | 0:0e0631af0305 | 20 | // |
| RyoheiHagimoto | 0:0e0631af0305 | 21 | // * Redistribution's of source code must retain the above copyright notice, |
| RyoheiHagimoto | 0:0e0631af0305 | 22 | // this list of conditions and the following disclaimer. |
| RyoheiHagimoto | 0:0e0631af0305 | 23 | // |
| RyoheiHagimoto | 0:0e0631af0305 | 24 | // * Redistribution's in binary form must reproduce the above copyright notice, |
| RyoheiHagimoto | 0:0e0631af0305 | 25 | // this list of conditions and the following disclaimer in the documentation |
| RyoheiHagimoto | 0:0e0631af0305 | 26 | // and/or other materials provided with the distribution. |
| RyoheiHagimoto | 0:0e0631af0305 | 27 | // |
| RyoheiHagimoto | 0:0e0631af0305 | 28 | // * The name of the copyright holders may not be used to endorse or promote products |
| RyoheiHagimoto | 0:0e0631af0305 | 29 | // derived from this software without specific prior written permission. |
| RyoheiHagimoto | 0:0e0631af0305 | 30 | // |
| RyoheiHagimoto | 0:0e0631af0305 | 31 | // This software is provided by the copyright holders and contributors "as is" and |
| RyoheiHagimoto | 0:0e0631af0305 | 32 | // any express or implied warranties, including, but not limited to, the implied |
| RyoheiHagimoto | 0:0e0631af0305 | 33 | // warranties of merchantability and fitness for a particular purpose are disclaimed. |
| RyoheiHagimoto | 0:0e0631af0305 | 34 | // In no event shall the Intel Corporation or contributors be liable for any direct, |
| RyoheiHagimoto | 0:0e0631af0305 | 35 | // indirect, incidental, special, exemplary, or consequential damages |
| RyoheiHagimoto | 0:0e0631af0305 | 36 | // (including, but not limited to, procurement of substitute goods or services; |
| RyoheiHagimoto | 0:0e0631af0305 | 37 | // loss of use, data, or profits; or business interruption) however caused |
| RyoheiHagimoto | 0:0e0631af0305 | 38 | // and on any theory of liability, whether in contract, strict liability, |
| RyoheiHagimoto | 0:0e0631af0305 | 39 | // or tort (including negligence or otherwise) arising in any way out of |
| RyoheiHagimoto | 0:0e0631af0305 | 40 | // the use of this software, even if advised of the possibility of such damage. |
| RyoheiHagimoto | 0:0e0631af0305 | 41 | // |
| RyoheiHagimoto | 0:0e0631af0305 | 42 | //M*/ |
| RyoheiHagimoto | 0:0e0631af0305 | 43 | |
| RyoheiHagimoto | 0:0e0631af0305 | 44 | #ifndef OPENCV_OBJDETECT_HPP |
| RyoheiHagimoto | 0:0e0631af0305 | 45 | #define OPENCV_OBJDETECT_HPP |
| RyoheiHagimoto | 0:0e0631af0305 | 46 | |
| RyoheiHagimoto | 0:0e0631af0305 | 47 | #include "opencv2/core.hpp" |
| RyoheiHagimoto | 0:0e0631af0305 | 48 | |
| RyoheiHagimoto | 0:0e0631af0305 | 49 | /** |
| RyoheiHagimoto | 0:0e0631af0305 | 50 | @defgroup objdetect Object Detection |
| RyoheiHagimoto | 0:0e0631af0305 | 51 | |
| RyoheiHagimoto | 0:0e0631af0305 | 52 | Haar Feature-based Cascade Classifier for Object Detection |
| RyoheiHagimoto | 0:0e0631af0305 | 53 | ---------------------------------------------------------- |
| RyoheiHagimoto | 0:0e0631af0305 | 54 | |
| RyoheiHagimoto | 0:0e0631af0305 | 55 | The object detector described below has been initially proposed by Paul Viola @cite Viola01 and |
| RyoheiHagimoto | 0:0e0631af0305 | 56 | improved by Rainer Lienhart @cite Lienhart02 . |
| RyoheiHagimoto | 0:0e0631af0305 | 57 | |
| RyoheiHagimoto | 0:0e0631af0305 | 58 | First, a classifier (namely a *cascade of boosted classifiers working with haar-like features*) is |
| RyoheiHagimoto | 0:0e0631af0305 | 59 | trained with a few hundred sample views of a particular object (i.e., a face or a car), called |
| RyoheiHagimoto | 0:0e0631af0305 | 60 | positive examples, that are scaled to the same size (say, 20x20), and negative examples - arbitrary |
| RyoheiHagimoto | 0:0e0631af0305 | 61 | images of the same size. |
| RyoheiHagimoto | 0:0e0631af0305 | 62 | |
| RyoheiHagimoto | 0:0e0631af0305 | 63 | After a classifier is trained, it can be applied to a region of interest (of the same size as used |
| RyoheiHagimoto | 0:0e0631af0305 | 64 | during the training) in an input image. The classifier outputs a "1" if the region is likely to show |
| RyoheiHagimoto | 0:0e0631af0305 | 65 | the object (i.e., face/car), and "0" otherwise. To search for the object in the whole image one can |
| RyoheiHagimoto | 0:0e0631af0305 | 66 | move the search window across the image and check every location using the classifier. The |
| RyoheiHagimoto | 0:0e0631af0305 | 67 | classifier is designed so that it can be easily "resized" in order to be able to find the objects of |
| RyoheiHagimoto | 0:0e0631af0305 | 68 | interest at different sizes, which is more efficient than resizing the image itself. So, to find an |
| RyoheiHagimoto | 0:0e0631af0305 | 69 | object of an unknown size in the image the scan procedure should be done several times at different |
| RyoheiHagimoto | 0:0e0631af0305 | 70 | scales. |
| RyoheiHagimoto | 0:0e0631af0305 | 71 | |
| RyoheiHagimoto | 0:0e0631af0305 | 72 | The word "cascade" in the classifier name means that the resultant classifier consists of several |
| RyoheiHagimoto | 0:0e0631af0305 | 73 | simpler classifiers (*stages*) that are applied subsequently to a region of interest until at some |
| RyoheiHagimoto | 0:0e0631af0305 | 74 | stage the candidate is rejected or all the stages are passed. The word "boosted" means that the |
| RyoheiHagimoto | 0:0e0631af0305 | 75 | classifiers at every stage of the cascade are complex themselves and they are built out of basic |
| RyoheiHagimoto | 0:0e0631af0305 | 76 | classifiers using one of four different boosting techniques (weighted voting). Currently Discrete |
| RyoheiHagimoto | 0:0e0631af0305 | 77 | Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are supported. The basic classifiers are |
| RyoheiHagimoto | 0:0e0631af0305 | 78 | decision-tree classifiers with at least 2 leaves. Haar-like features are the input to the basic |
| RyoheiHagimoto | 0:0e0631af0305 | 79 | classifiers, and are calculated as described below. The current algorithm uses the following |
| RyoheiHagimoto | 0:0e0631af0305 | 80 | Haar-like features: |
| RyoheiHagimoto | 0:0e0631af0305 | 81 | |
| RyoheiHagimoto | 0:0e0631af0305 | 82 |  |
| RyoheiHagimoto | 0:0e0631af0305 | 83 | |
| RyoheiHagimoto | 0:0e0631af0305 | 84 | The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within |
| RyoheiHagimoto | 0:0e0631af0305 | 85 | the region of interest and the scale (this scale is not the same as the scale used at the detection |
| RyoheiHagimoto | 0:0e0631af0305 | 86 | stage, though these two scales are multiplied). For example, in the case of the third line feature |
| RyoheiHagimoto | 0:0e0631af0305 | 87 | (2c) the response is calculated as the difference between the sum of image pixels under the |
| RyoheiHagimoto | 0:0e0631af0305 | 88 | rectangle covering the whole feature (including the two white stripes and the black stripe in the |
| RyoheiHagimoto | 0:0e0631af0305 | 89 | middle) and the sum of the image pixels under the black stripe multiplied by 3 in order to |
| RyoheiHagimoto | 0:0e0631af0305 | 90 | compensate for the differences in the size of areas. The sums of pixel values over a rectangular |
| RyoheiHagimoto | 0:0e0631af0305 | 91 | regions are calculated rapidly using integral images (see below and the integral description). |
| RyoheiHagimoto | 0:0e0631af0305 | 92 | |
| RyoheiHagimoto | 0:0e0631af0305 | 93 | To see the object detector at work, have a look at the facedetect demo: |
| RyoheiHagimoto | 0:0e0631af0305 | 94 | <https://github.com/opencv/opencv/tree/master/samples/cpp/dbt_face_detection.cpp> |
| RyoheiHagimoto | 0:0e0631af0305 | 95 | |
| RyoheiHagimoto | 0:0e0631af0305 | 96 | The following reference is for the detection part only. There is a separate application called |
| RyoheiHagimoto | 0:0e0631af0305 | 97 | opencv_traincascade that can train a cascade of boosted classifiers from a set of samples. |
| RyoheiHagimoto | 0:0e0631af0305 | 98 | |
| RyoheiHagimoto | 0:0e0631af0305 | 99 | @note In the new C++ interface it is also possible to use LBP (local binary pattern) features in |
| RyoheiHagimoto | 0:0e0631af0305 | 100 | addition to Haar-like features. .. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection |
| RyoheiHagimoto | 0:0e0631af0305 | 101 | using a Boosted Cascade of Simple Features. IEEE CVPR, 2001. The paper is available online at |
| RyoheiHagimoto | 0:0e0631af0305 | 102 | <http://research.microsoft.com/en-us/um/people/viola/Pubs/Detect/violaJones_CVPR2001.pdf> |
| RyoheiHagimoto | 0:0e0631af0305 | 103 | |
| RyoheiHagimoto | 0:0e0631af0305 | 104 | @{ |
| RyoheiHagimoto | 0:0e0631af0305 | 105 | @defgroup objdetect_c C API |
| RyoheiHagimoto | 0:0e0631af0305 | 106 | @} |
| RyoheiHagimoto | 0:0e0631af0305 | 107 | */ |
| RyoheiHagimoto | 0:0e0631af0305 | 108 | |
| RyoheiHagimoto | 0:0e0631af0305 | 109 | typedef struct CvHaarClassifierCascade CvHaarClassifierCascade; |
| RyoheiHagimoto | 0:0e0631af0305 | 110 | |
| RyoheiHagimoto | 0:0e0631af0305 | 111 | namespace cv |
| RyoheiHagimoto | 0:0e0631af0305 | 112 | { |
| RyoheiHagimoto | 0:0e0631af0305 | 113 | |
| RyoheiHagimoto | 0:0e0631af0305 | 114 | //! @addtogroup objdetect |
| RyoheiHagimoto | 0:0e0631af0305 | 115 | //! @{ |
| RyoheiHagimoto | 0:0e0631af0305 | 116 | |
| RyoheiHagimoto | 0:0e0631af0305 | 117 | ///////////////////////////// Object Detection //////////////////////////// |
| RyoheiHagimoto | 0:0e0631af0305 | 118 | |
| RyoheiHagimoto | 0:0e0631af0305 | 119 | //! class for grouping object candidates, detected by Cascade Classifier, HOG etc. |
| RyoheiHagimoto | 0:0e0631af0305 | 120 | //! instance of the class is to be passed to cv::partition (see cxoperations.hpp) |
| RyoheiHagimoto | 0:0e0631af0305 | 121 | class CV_EXPORTS SimilarRects |
| RyoheiHagimoto | 0:0e0631af0305 | 122 | { |
| RyoheiHagimoto | 0:0e0631af0305 | 123 | public: |
| RyoheiHagimoto | 0:0e0631af0305 | 124 | SimilarRects(double _eps) : eps(_eps) {} |
| RyoheiHagimoto | 0:0e0631af0305 | 125 | inline bool operator()(const Rect& r1, const Rect& r2) const |
| RyoheiHagimoto | 0:0e0631af0305 | 126 | { |
| RyoheiHagimoto | 0:0e0631af0305 | 127 | double delta = eps * ((std::min)(r1.width, r2.width) + (std::min)(r1.height, r2.height)) * 0.5; |
| RyoheiHagimoto | 0:0e0631af0305 | 128 | return std::abs(r1.x - r2.x) <= delta && |
| RyoheiHagimoto | 0:0e0631af0305 | 129 | std::abs(r1.y - r2.y) <= delta && |
| RyoheiHagimoto | 0:0e0631af0305 | 130 | std::abs(r1.x + r1.width - r2.x - r2.width) <= delta && |
| RyoheiHagimoto | 0:0e0631af0305 | 131 | std::abs(r1.y + r1.height - r2.y - r2.height) <= delta; |
| RyoheiHagimoto | 0:0e0631af0305 | 132 | } |
| RyoheiHagimoto | 0:0e0631af0305 | 133 | double eps; |
| RyoheiHagimoto | 0:0e0631af0305 | 134 | }; |
| RyoheiHagimoto | 0:0e0631af0305 | 135 | |
| RyoheiHagimoto | 0:0e0631af0305 | 136 | /** @brief Groups the object candidate rectangles. |
| RyoheiHagimoto | 0:0e0631af0305 | 137 | |
| RyoheiHagimoto | 0:0e0631af0305 | 138 | @param rectList Input/output vector of rectangles. Output vector includes retained and grouped |
| RyoheiHagimoto | 0:0e0631af0305 | 139 | rectangles. (The Python list is not modified in place.) |
| RyoheiHagimoto | 0:0e0631af0305 | 140 | @param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a |
| RyoheiHagimoto | 0:0e0631af0305 | 141 | group of rectangles to retain it. |
| RyoheiHagimoto | 0:0e0631af0305 | 142 | @param eps Relative difference between sides of the rectangles to merge them into a group. |
| RyoheiHagimoto | 0:0e0631af0305 | 143 | |
| RyoheiHagimoto | 0:0e0631af0305 | 144 | The function is a wrapper for the generic function partition . It clusters all the input rectangles |
| RyoheiHagimoto | 0:0e0631af0305 | 145 | using the rectangle equivalence criteria that combines rectangles with similar sizes and similar |
| RyoheiHagimoto | 0:0e0631af0305 | 146 | locations. The similarity is defined by eps. When eps=0 , no clustering is done at all. If |
| RyoheiHagimoto | 0:0e0631af0305 | 147 | \f$\texttt{eps}\rightarrow +\inf\f$ , all the rectangles are put in one cluster. Then, the small |
| RyoheiHagimoto | 0:0e0631af0305 | 148 | clusters containing less than or equal to groupThreshold rectangles are rejected. In each other |
| RyoheiHagimoto | 0:0e0631af0305 | 149 | cluster, the average rectangle is computed and put into the output rectangle list. |
| RyoheiHagimoto | 0:0e0631af0305 | 150 | */ |
| RyoheiHagimoto | 0:0e0631af0305 | 151 | CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps = 0.2); |
| RyoheiHagimoto | 0:0e0631af0305 | 152 | /** @overload */ |
| RyoheiHagimoto | 0:0e0631af0305 | 153 | CV_EXPORTS_W void groupRectangles(CV_IN_OUT std::vector<Rect>& rectList, CV_OUT std::vector<int>& weights, |
| RyoheiHagimoto | 0:0e0631af0305 | 154 | int groupThreshold, double eps = 0.2); |
| RyoheiHagimoto | 0:0e0631af0305 | 155 | /** @overload */ |
| RyoheiHagimoto | 0:0e0631af0305 | 156 | CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, |
| RyoheiHagimoto | 0:0e0631af0305 | 157 | double eps, std::vector<int>* weights, std::vector<double>* levelWeights ); |
| RyoheiHagimoto | 0:0e0631af0305 | 158 | /** @overload */ |
| RyoheiHagimoto | 0:0e0631af0305 | 159 | CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels, |
| RyoheiHagimoto | 0:0e0631af0305 | 160 | std::vector<double>& levelWeights, int groupThreshold, double eps = 0.2); |
| RyoheiHagimoto | 0:0e0631af0305 | 161 | /** @overload */ |
| RyoheiHagimoto | 0:0e0631af0305 | 162 | CV_EXPORTS void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights, |
| RyoheiHagimoto | 0:0e0631af0305 | 163 | std::vector<double>& foundScales, |
| RyoheiHagimoto | 0:0e0631af0305 | 164 | double detectThreshold = 0.0, Size winDetSize = Size(64, 128)); |
| RyoheiHagimoto | 0:0e0631af0305 | 165 | |
| RyoheiHagimoto | 0:0e0631af0305 | 166 | template<> CV_EXPORTS void DefaultDeleter<CvHaarClassifierCascade>::operator ()(CvHaarClassifierCascade* obj) const; |
| RyoheiHagimoto | 0:0e0631af0305 | 167 | |
| RyoheiHagimoto | 0:0e0631af0305 | 168 | enum { CASCADE_DO_CANNY_PRUNING = 1, |
| RyoheiHagimoto | 0:0e0631af0305 | 169 | CASCADE_SCALE_IMAGE = 2, |
| RyoheiHagimoto | 0:0e0631af0305 | 170 | CASCADE_FIND_BIGGEST_OBJECT = 4, |
| RyoheiHagimoto | 0:0e0631af0305 | 171 | CASCADE_DO_ROUGH_SEARCH = 8 |
| RyoheiHagimoto | 0:0e0631af0305 | 172 | }; |
| RyoheiHagimoto | 0:0e0631af0305 | 173 | |
| RyoheiHagimoto | 0:0e0631af0305 | 174 | class CV_EXPORTS_W BaseCascadeClassifier : public Algorithm |
| RyoheiHagimoto | 0:0e0631af0305 | 175 | { |
| RyoheiHagimoto | 0:0e0631af0305 | 176 | public: |
| RyoheiHagimoto | 0:0e0631af0305 | 177 | virtual ~BaseCascadeClassifier(); |
| RyoheiHagimoto | 0:0e0631af0305 | 178 | virtual bool empty() const = 0; |
| RyoheiHagimoto | 0:0e0631af0305 | 179 | virtual bool load( const String& filename ) = 0; |
| RyoheiHagimoto | 0:0e0631af0305 | 180 | virtual void detectMultiScale( InputArray image, |
| RyoheiHagimoto | 0:0e0631af0305 | 181 | CV_OUT std::vector<Rect>& objects, |
| RyoheiHagimoto | 0:0e0631af0305 | 182 | double scaleFactor, |
| RyoheiHagimoto | 0:0e0631af0305 | 183 | int minNeighbors, int flags, |
| RyoheiHagimoto | 0:0e0631af0305 | 184 | Size minSize, Size maxSize ) = 0; |
| RyoheiHagimoto | 0:0e0631af0305 | 185 | |
| RyoheiHagimoto | 0:0e0631af0305 | 186 | virtual void detectMultiScale( InputArray image, |
| RyoheiHagimoto | 0:0e0631af0305 | 187 | CV_OUT std::vector<Rect>& objects, |
| RyoheiHagimoto | 0:0e0631af0305 | 188 | CV_OUT std::vector<int>& numDetections, |
| RyoheiHagimoto | 0:0e0631af0305 | 189 | double scaleFactor, |
| RyoheiHagimoto | 0:0e0631af0305 | 190 | int minNeighbors, int flags, |
| RyoheiHagimoto | 0:0e0631af0305 | 191 | Size minSize, Size maxSize ) = 0; |
| RyoheiHagimoto | 0:0e0631af0305 | 192 | |
| RyoheiHagimoto | 0:0e0631af0305 | 193 | virtual void detectMultiScale( InputArray image, |
| RyoheiHagimoto | 0:0e0631af0305 | 194 | CV_OUT std::vector<Rect>& objects, |
| RyoheiHagimoto | 0:0e0631af0305 | 195 | CV_OUT std::vector<int>& rejectLevels, |
| RyoheiHagimoto | 0:0e0631af0305 | 196 | CV_OUT std::vector<double>& levelWeights, |
| RyoheiHagimoto | 0:0e0631af0305 | 197 | double scaleFactor, |
| RyoheiHagimoto | 0:0e0631af0305 | 198 | int minNeighbors, int flags, |
| RyoheiHagimoto | 0:0e0631af0305 | 199 | Size minSize, Size maxSize, |
| RyoheiHagimoto | 0:0e0631af0305 | 200 | bool outputRejectLevels ) = 0; |
| RyoheiHagimoto | 0:0e0631af0305 | 201 | |
| RyoheiHagimoto | 0:0e0631af0305 | 202 | virtual bool isOldFormatCascade() const = 0; |
| RyoheiHagimoto | 0:0e0631af0305 | 203 | virtual Size getOriginalWindowSize() const = 0; |
| RyoheiHagimoto | 0:0e0631af0305 | 204 | virtual int getFeatureType() const = 0; |
| RyoheiHagimoto | 0:0e0631af0305 | 205 | virtual void* getOldCascade() = 0; |
| RyoheiHagimoto | 0:0e0631af0305 | 206 | |
| RyoheiHagimoto | 0:0e0631af0305 | 207 | class CV_EXPORTS MaskGenerator |
| RyoheiHagimoto | 0:0e0631af0305 | 208 | { |
| RyoheiHagimoto | 0:0e0631af0305 | 209 | public: |
| RyoheiHagimoto | 0:0e0631af0305 | 210 | virtual ~MaskGenerator() {} |
| RyoheiHagimoto | 0:0e0631af0305 | 211 | virtual Mat generateMask(const Mat& src)=0; |
| RyoheiHagimoto | 0:0e0631af0305 | 212 | virtual void initializeMask(const Mat& /*src*/) { } |
| RyoheiHagimoto | 0:0e0631af0305 | 213 | }; |
| RyoheiHagimoto | 0:0e0631af0305 | 214 | virtual void setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator) = 0; |
| RyoheiHagimoto | 0:0e0631af0305 | 215 | virtual Ptr<MaskGenerator> getMaskGenerator() = 0; |
| RyoheiHagimoto | 0:0e0631af0305 | 216 | }; |
| RyoheiHagimoto | 0:0e0631af0305 | 217 | |
| RyoheiHagimoto | 0:0e0631af0305 | 218 | /** @brief Cascade classifier class for object detection. |
| RyoheiHagimoto | 0:0e0631af0305 | 219 | */ |
| RyoheiHagimoto | 0:0e0631af0305 | 220 | class CV_EXPORTS_W CascadeClassifier |
| RyoheiHagimoto | 0:0e0631af0305 | 221 | { |
| RyoheiHagimoto | 0:0e0631af0305 | 222 | public: |
| RyoheiHagimoto | 0:0e0631af0305 | 223 | CV_WRAP CascadeClassifier(); |
| RyoheiHagimoto | 0:0e0631af0305 | 224 | /** @brief Loads a classifier from a file. |
| RyoheiHagimoto | 0:0e0631af0305 | 225 | |
| RyoheiHagimoto | 0:0e0631af0305 | 226 | @param filename Name of the file from which the classifier is loaded. |
| RyoheiHagimoto | 0:0e0631af0305 | 227 | */ |
| RyoheiHagimoto | 0:0e0631af0305 | 228 | CV_WRAP CascadeClassifier(const String& filename); |
| RyoheiHagimoto | 0:0e0631af0305 | 229 | ~CascadeClassifier(); |
| RyoheiHagimoto | 0:0e0631af0305 | 230 | /** @brief Checks whether the classifier has been loaded. |
| RyoheiHagimoto | 0:0e0631af0305 | 231 | */ |
| RyoheiHagimoto | 0:0e0631af0305 | 232 | CV_WRAP bool empty() const; |
| RyoheiHagimoto | 0:0e0631af0305 | 233 | /** @brief Loads a classifier from a file. |
| RyoheiHagimoto | 0:0e0631af0305 | 234 | |
| RyoheiHagimoto | 0:0e0631af0305 | 235 | @param filename Name of the file from which the classifier is loaded. The file may contain an old |
| RyoheiHagimoto | 0:0e0631af0305 | 236 | HAAR classifier trained by the haartraining application or a new cascade classifier trained by the |
| RyoheiHagimoto | 0:0e0631af0305 | 237 | traincascade application. |
| RyoheiHagimoto | 0:0e0631af0305 | 238 | */ |
| RyoheiHagimoto | 0:0e0631af0305 | 239 | CV_WRAP bool load( const String& filename ); |
| RyoheiHagimoto | 0:0e0631af0305 | 240 | /** @brief Reads a classifier from a FileStorage node. |
| RyoheiHagimoto | 0:0e0631af0305 | 241 | |
| RyoheiHagimoto | 0:0e0631af0305 | 242 | @note The file may contain a new cascade classifier (trained traincascade application) only. |
| RyoheiHagimoto | 0:0e0631af0305 | 243 | */ |
| RyoheiHagimoto | 0:0e0631af0305 | 244 | CV_WRAP bool read( const FileNode& node ); |
| RyoheiHagimoto | 0:0e0631af0305 | 245 | |
| RyoheiHagimoto | 0:0e0631af0305 | 246 | /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list |
| RyoheiHagimoto | 0:0e0631af0305 | 247 | of rectangles. |
| RyoheiHagimoto | 0:0e0631af0305 | 248 | |
| RyoheiHagimoto | 0:0e0631af0305 | 249 | @param image Matrix of the type CV_8U containing an image where objects are detected. |
| RyoheiHagimoto | 0:0e0631af0305 | 250 | @param objects Vector of rectangles where each rectangle contains the detected object, the |
| RyoheiHagimoto | 0:0e0631af0305 | 251 | rectangles may be partially outside the original image. |
| RyoheiHagimoto | 0:0e0631af0305 | 252 | @param scaleFactor Parameter specifying how much the image size is reduced at each image scale. |
| RyoheiHagimoto | 0:0e0631af0305 | 253 | @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have |
| RyoheiHagimoto | 0:0e0631af0305 | 254 | to retain it. |
| RyoheiHagimoto | 0:0e0631af0305 | 255 | @param flags Parameter with the same meaning for an old cascade as in the function |
| RyoheiHagimoto | 0:0e0631af0305 | 256 | cvHaarDetectObjects. It is not used for a new cascade. |
| RyoheiHagimoto | 0:0e0631af0305 | 257 | @param minSize Minimum possible object size. Objects smaller than that are ignored. |
| RyoheiHagimoto | 0:0e0631af0305 | 258 | @param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale. |
| RyoheiHagimoto | 0:0e0631af0305 | 259 | |
| RyoheiHagimoto | 0:0e0631af0305 | 260 | The function is parallelized with the TBB library. |
| RyoheiHagimoto | 0:0e0631af0305 | 261 | |
| RyoheiHagimoto | 0:0e0631af0305 | 262 | @note |
| RyoheiHagimoto | 0:0e0631af0305 | 263 | - (Python) A face detection example using cascade classifiers can be found at |
| RyoheiHagimoto | 0:0e0631af0305 | 264 | opencv_source_code/samples/python/facedetect.py |
| RyoheiHagimoto | 0:0e0631af0305 | 265 | */ |
| RyoheiHagimoto | 0:0e0631af0305 | 266 | CV_WRAP void detectMultiScale( InputArray image, |
| RyoheiHagimoto | 0:0e0631af0305 | 267 | CV_OUT std::vector<Rect>& objects, |
| RyoheiHagimoto | 0:0e0631af0305 | 268 | double scaleFactor = 1.1, |
| RyoheiHagimoto | 0:0e0631af0305 | 269 | int minNeighbors = 3, int flags = 0, |
| RyoheiHagimoto | 0:0e0631af0305 | 270 | Size minSize = Size(), |
| RyoheiHagimoto | 0:0e0631af0305 | 271 | Size maxSize = Size() ); |
| RyoheiHagimoto | 0:0e0631af0305 | 272 | |
| RyoheiHagimoto | 0:0e0631af0305 | 273 | /** @overload |
| RyoheiHagimoto | 0:0e0631af0305 | 274 | @param image Matrix of the type CV_8U containing an image where objects are detected. |
| RyoheiHagimoto | 0:0e0631af0305 | 275 | @param objects Vector of rectangles where each rectangle contains the detected object, the |
| RyoheiHagimoto | 0:0e0631af0305 | 276 | rectangles may be partially outside the original image. |
| RyoheiHagimoto | 0:0e0631af0305 | 277 | @param numDetections Vector of detection numbers for the corresponding objects. An object's number |
| RyoheiHagimoto | 0:0e0631af0305 | 278 | of detections is the number of neighboring positively classified rectangles that were joined |
| RyoheiHagimoto | 0:0e0631af0305 | 279 | together to form the object. |
| RyoheiHagimoto | 0:0e0631af0305 | 280 | @param scaleFactor Parameter specifying how much the image size is reduced at each image scale. |
| RyoheiHagimoto | 0:0e0631af0305 | 281 | @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have |
| RyoheiHagimoto | 0:0e0631af0305 | 282 | to retain it. |
| RyoheiHagimoto | 0:0e0631af0305 | 283 | @param flags Parameter with the same meaning for an old cascade as in the function |
| RyoheiHagimoto | 0:0e0631af0305 | 284 | cvHaarDetectObjects. It is not used for a new cascade. |
| RyoheiHagimoto | 0:0e0631af0305 | 285 | @param minSize Minimum possible object size. Objects smaller than that are ignored. |
| RyoheiHagimoto | 0:0e0631af0305 | 286 | @param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale. |
| RyoheiHagimoto | 0:0e0631af0305 | 287 | */ |
| RyoheiHagimoto | 0:0e0631af0305 | 288 | CV_WRAP_AS(detectMultiScale2) void detectMultiScale( InputArray image, |
| RyoheiHagimoto | 0:0e0631af0305 | 289 | CV_OUT std::vector<Rect>& objects, |
| RyoheiHagimoto | 0:0e0631af0305 | 290 | CV_OUT std::vector<int>& numDetections, |
| RyoheiHagimoto | 0:0e0631af0305 | 291 | double scaleFactor=1.1, |
| RyoheiHagimoto | 0:0e0631af0305 | 292 | int minNeighbors=3, int flags=0, |
| RyoheiHagimoto | 0:0e0631af0305 | 293 | Size minSize=Size(), |
| RyoheiHagimoto | 0:0e0631af0305 | 294 | Size maxSize=Size() ); |
| RyoheiHagimoto | 0:0e0631af0305 | 295 | |
| RyoheiHagimoto | 0:0e0631af0305 | 296 | /** @overload |
| RyoheiHagimoto | 0:0e0631af0305 | 297 | if `outputRejectLevels` is `true` returns `rejectLevels` and `levelWeights` |
| RyoheiHagimoto | 0:0e0631af0305 | 298 | */ |
| RyoheiHagimoto | 0:0e0631af0305 | 299 | CV_WRAP_AS(detectMultiScale3) void detectMultiScale( InputArray image, |
| RyoheiHagimoto | 0:0e0631af0305 | 300 | CV_OUT std::vector<Rect>& objects, |
| RyoheiHagimoto | 0:0e0631af0305 | 301 | CV_OUT std::vector<int>& rejectLevels, |
| RyoheiHagimoto | 0:0e0631af0305 | 302 | CV_OUT std::vector<double>& levelWeights, |
| RyoheiHagimoto | 0:0e0631af0305 | 303 | double scaleFactor = 1.1, |
| RyoheiHagimoto | 0:0e0631af0305 | 304 | int minNeighbors = 3, int flags = 0, |
| RyoheiHagimoto | 0:0e0631af0305 | 305 | Size minSize = Size(), |
| RyoheiHagimoto | 0:0e0631af0305 | 306 | Size maxSize = Size(), |
| RyoheiHagimoto | 0:0e0631af0305 | 307 | bool outputRejectLevels = false ); |
| RyoheiHagimoto | 0:0e0631af0305 | 308 | |
| RyoheiHagimoto | 0:0e0631af0305 | 309 | CV_WRAP bool isOldFormatCascade() const; |
| RyoheiHagimoto | 0:0e0631af0305 | 310 | CV_WRAP Size getOriginalWindowSize() const; |
| RyoheiHagimoto | 0:0e0631af0305 | 311 | CV_WRAP int getFeatureType() const; |
| RyoheiHagimoto | 0:0e0631af0305 | 312 | void* getOldCascade(); |
| RyoheiHagimoto | 0:0e0631af0305 | 313 | |
| RyoheiHagimoto | 0:0e0631af0305 | 314 | CV_WRAP static bool convert(const String& oldcascade, const String& newcascade); |
| RyoheiHagimoto | 0:0e0631af0305 | 315 | |
| RyoheiHagimoto | 0:0e0631af0305 | 316 | void setMaskGenerator(const Ptr<BaseCascadeClassifier::MaskGenerator>& maskGenerator); |
| RyoheiHagimoto | 0:0e0631af0305 | 317 | Ptr<BaseCascadeClassifier::MaskGenerator> getMaskGenerator(); |
| RyoheiHagimoto | 0:0e0631af0305 | 318 | |
| RyoheiHagimoto | 0:0e0631af0305 | 319 | Ptr<BaseCascadeClassifier> cc; |
| RyoheiHagimoto | 0:0e0631af0305 | 320 | }; |
| RyoheiHagimoto | 0:0e0631af0305 | 321 | |
| RyoheiHagimoto | 0:0e0631af0305 | 322 | CV_EXPORTS Ptr<BaseCascadeClassifier::MaskGenerator> createFaceDetectionMaskGenerator(); |
| RyoheiHagimoto | 0:0e0631af0305 | 323 | |
| RyoheiHagimoto | 0:0e0631af0305 | 324 | //////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector ////////////// |
| RyoheiHagimoto | 0:0e0631af0305 | 325 | |
| RyoheiHagimoto | 0:0e0631af0305 | 326 | //! struct for detection region of interest (ROI) |
| RyoheiHagimoto | 0:0e0631af0305 | 327 | struct DetectionROI |
| RyoheiHagimoto | 0:0e0631af0305 | 328 | { |
| RyoheiHagimoto | 0:0e0631af0305 | 329 | //! scale(size) of the bounding box |
| RyoheiHagimoto | 0:0e0631af0305 | 330 | double scale; |
| RyoheiHagimoto | 0:0e0631af0305 | 331 | //! set of requrested locations to be evaluated |
| RyoheiHagimoto | 0:0e0631af0305 | 332 | std::vector<cv::Point> locations; |
| RyoheiHagimoto | 0:0e0631af0305 | 333 | //! vector that will contain confidence values for each location |
| RyoheiHagimoto | 0:0e0631af0305 | 334 | std::vector<double> confidences; |
| RyoheiHagimoto | 0:0e0631af0305 | 335 | }; |
| RyoheiHagimoto | 0:0e0631af0305 | 336 | |
| RyoheiHagimoto | 0:0e0631af0305 | 337 | struct CV_EXPORTS_W HOGDescriptor |
| RyoheiHagimoto | 0:0e0631af0305 | 338 | { |
| RyoheiHagimoto | 0:0e0631af0305 | 339 | public: |
| RyoheiHagimoto | 0:0e0631af0305 | 340 | enum { L2Hys = 0 |
| RyoheiHagimoto | 0:0e0631af0305 | 341 | }; |
| RyoheiHagimoto | 0:0e0631af0305 | 342 | enum { DEFAULT_NLEVELS = 64 |
| RyoheiHagimoto | 0:0e0631af0305 | 343 | }; |
| RyoheiHagimoto | 0:0e0631af0305 | 344 | |
| RyoheiHagimoto | 0:0e0631af0305 | 345 | CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8), |
| RyoheiHagimoto | 0:0e0631af0305 | 346 | cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1), |
| RyoheiHagimoto | 0:0e0631af0305 | 347 | histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true), |
| RyoheiHagimoto | 0:0e0631af0305 | 348 | free_coef(-1.f), nlevels(HOGDescriptor::DEFAULT_NLEVELS), signedGradient(false) |
| RyoheiHagimoto | 0:0e0631af0305 | 349 | {} |
| RyoheiHagimoto | 0:0e0631af0305 | 350 | |
| RyoheiHagimoto | 0:0e0631af0305 | 351 | CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, |
| RyoheiHagimoto | 0:0e0631af0305 | 352 | Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1, |
| RyoheiHagimoto | 0:0e0631af0305 | 353 | int _histogramNormType=HOGDescriptor::L2Hys, |
| RyoheiHagimoto | 0:0e0631af0305 | 354 | double _L2HysThreshold=0.2, bool _gammaCorrection=false, |
| RyoheiHagimoto | 0:0e0631af0305 | 355 | int _nlevels=HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient=false) |
| RyoheiHagimoto | 0:0e0631af0305 | 356 | : winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize), |
| RyoheiHagimoto | 0:0e0631af0305 | 357 | nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma), |
| RyoheiHagimoto | 0:0e0631af0305 | 358 | histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold), |
| RyoheiHagimoto | 0:0e0631af0305 | 359 | gammaCorrection(_gammaCorrection), free_coef(-1.f), nlevels(_nlevels), signedGradient(_signedGradient) |
| RyoheiHagimoto | 0:0e0631af0305 | 360 | {} |
| RyoheiHagimoto | 0:0e0631af0305 | 361 | |
| RyoheiHagimoto | 0:0e0631af0305 | 362 | CV_WRAP HOGDescriptor(const String& filename) |
| RyoheiHagimoto | 0:0e0631af0305 | 363 | { |
| RyoheiHagimoto | 0:0e0631af0305 | 364 | load(filename); |
| RyoheiHagimoto | 0:0e0631af0305 | 365 | } |
| RyoheiHagimoto | 0:0e0631af0305 | 366 | |
| RyoheiHagimoto | 0:0e0631af0305 | 367 | HOGDescriptor(const HOGDescriptor& d) |
| RyoheiHagimoto | 0:0e0631af0305 | 368 | { |
| RyoheiHagimoto | 0:0e0631af0305 | 369 | d.copyTo(*this); |
| RyoheiHagimoto | 0:0e0631af0305 | 370 | } |
| RyoheiHagimoto | 0:0e0631af0305 | 371 | |
| RyoheiHagimoto | 0:0e0631af0305 | 372 | virtual ~HOGDescriptor() {} |
| RyoheiHagimoto | 0:0e0631af0305 | 373 | |
| RyoheiHagimoto | 0:0e0631af0305 | 374 | CV_WRAP size_t getDescriptorSize() const; |
| RyoheiHagimoto | 0:0e0631af0305 | 375 | CV_WRAP bool checkDetectorSize() const; |
| RyoheiHagimoto | 0:0e0631af0305 | 376 | CV_WRAP double getWinSigma() const; |
| RyoheiHagimoto | 0:0e0631af0305 | 377 | |
| RyoheiHagimoto | 0:0e0631af0305 | 378 | CV_WRAP virtual void setSVMDetector(InputArray _svmdetector); |
| RyoheiHagimoto | 0:0e0631af0305 | 379 | |
| RyoheiHagimoto | 0:0e0631af0305 | 380 | virtual bool read(FileNode& fn); |
| RyoheiHagimoto | 0:0e0631af0305 | 381 | virtual void write(FileStorage& fs, const String& objname) const; |
| RyoheiHagimoto | 0:0e0631af0305 | 382 | |
| RyoheiHagimoto | 0:0e0631af0305 | 383 | CV_WRAP virtual bool load(const String& filename, const String& objname = String()); |
| RyoheiHagimoto | 0:0e0631af0305 | 384 | CV_WRAP virtual void save(const String& filename, const String& objname = String()) const; |
| RyoheiHagimoto | 0:0e0631af0305 | 385 | virtual void copyTo(HOGDescriptor& c) const; |
| RyoheiHagimoto | 0:0e0631af0305 | 386 | |
| RyoheiHagimoto | 0:0e0631af0305 | 387 | CV_WRAP virtual void compute(InputArray img, |
| RyoheiHagimoto | 0:0e0631af0305 | 388 | CV_OUT std::vector<float>& descriptors, |
| RyoheiHagimoto | 0:0e0631af0305 | 389 | Size winStride = Size(), Size padding = Size(), |
| RyoheiHagimoto | 0:0e0631af0305 | 390 | const std::vector<Point>& locations = std::vector<Point>()) const; |
| RyoheiHagimoto | 0:0e0631af0305 | 391 | |
| RyoheiHagimoto | 0:0e0631af0305 | 392 | //! with found weights output |
| RyoheiHagimoto | 0:0e0631af0305 | 393 | CV_WRAP virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations, |
| RyoheiHagimoto | 0:0e0631af0305 | 394 | CV_OUT std::vector<double>& weights, |
| RyoheiHagimoto | 0:0e0631af0305 | 395 | double hitThreshold = 0, Size winStride = Size(), |
| RyoheiHagimoto | 0:0e0631af0305 | 396 | Size padding = Size(), |
| RyoheiHagimoto | 0:0e0631af0305 | 397 | const std::vector<Point>& searchLocations = std::vector<Point>()) const; |
| RyoheiHagimoto | 0:0e0631af0305 | 398 | //! without found weights output |
| RyoheiHagimoto | 0:0e0631af0305 | 399 | virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations, |
| RyoheiHagimoto | 0:0e0631af0305 | 400 | double hitThreshold = 0, Size winStride = Size(), |
| RyoheiHagimoto | 0:0e0631af0305 | 401 | Size padding = Size(), |
| RyoheiHagimoto | 0:0e0631af0305 | 402 | const std::vector<Point>& searchLocations=std::vector<Point>()) const; |
| RyoheiHagimoto | 0:0e0631af0305 | 403 | |
| RyoheiHagimoto | 0:0e0631af0305 | 404 | //! with result weights output |
| RyoheiHagimoto | 0:0e0631af0305 | 405 | CV_WRAP virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations, |
| RyoheiHagimoto | 0:0e0631af0305 | 406 | CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0, |
| RyoheiHagimoto | 0:0e0631af0305 | 407 | Size winStride = Size(), Size padding = Size(), double scale = 1.05, |
| RyoheiHagimoto | 0:0e0631af0305 | 408 | double finalThreshold = 2.0,bool useMeanshiftGrouping = false) const; |
| RyoheiHagimoto | 0:0e0631af0305 | 409 | //! without found weights output |
| RyoheiHagimoto | 0:0e0631af0305 | 410 | virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations, |
| RyoheiHagimoto | 0:0e0631af0305 | 411 | double hitThreshold = 0, Size winStride = Size(), |
| RyoheiHagimoto | 0:0e0631af0305 | 412 | Size padding = Size(), double scale = 1.05, |
| RyoheiHagimoto | 0:0e0631af0305 | 413 | double finalThreshold = 2.0, bool useMeanshiftGrouping = false) const; |
| RyoheiHagimoto | 0:0e0631af0305 | 414 | |
| RyoheiHagimoto | 0:0e0631af0305 | 415 | CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs, |
| RyoheiHagimoto | 0:0e0631af0305 | 416 | Size paddingTL = Size(), Size paddingBR = Size()) const; |
| RyoheiHagimoto | 0:0e0631af0305 | 417 | |
| RyoheiHagimoto | 0:0e0631af0305 | 418 | CV_WRAP static std::vector<float> getDefaultPeopleDetector(); |
| RyoheiHagimoto | 0:0e0631af0305 | 419 | CV_WRAP static std::vector<float> getDaimlerPeopleDetector(); |
| RyoheiHagimoto | 0:0e0631af0305 | 420 | |
| RyoheiHagimoto | 0:0e0631af0305 | 421 | CV_PROP Size winSize; |
| RyoheiHagimoto | 0:0e0631af0305 | 422 | CV_PROP Size blockSize; |
| RyoheiHagimoto | 0:0e0631af0305 | 423 | CV_PROP Size blockStride; |
| RyoheiHagimoto | 0:0e0631af0305 | 424 | CV_PROP Size cellSize; |
| RyoheiHagimoto | 0:0e0631af0305 | 425 | CV_PROP int nbins; |
| RyoheiHagimoto | 0:0e0631af0305 | 426 | CV_PROP int derivAperture; |
| RyoheiHagimoto | 0:0e0631af0305 | 427 | CV_PROP double winSigma; |
| RyoheiHagimoto | 0:0e0631af0305 | 428 | CV_PROP int histogramNormType; |
| RyoheiHagimoto | 0:0e0631af0305 | 429 | CV_PROP double L2HysThreshold; |
| RyoheiHagimoto | 0:0e0631af0305 | 430 | CV_PROP bool gammaCorrection; |
| RyoheiHagimoto | 0:0e0631af0305 | 431 | CV_PROP std::vector<float> svmDetector; |
| RyoheiHagimoto | 0:0e0631af0305 | 432 | UMat oclSvmDetector; |
| RyoheiHagimoto | 0:0e0631af0305 | 433 | float free_coef; |
| RyoheiHagimoto | 0:0e0631af0305 | 434 | CV_PROP int nlevels; |
| RyoheiHagimoto | 0:0e0631af0305 | 435 | CV_PROP bool signedGradient; |
| RyoheiHagimoto | 0:0e0631af0305 | 436 | |
| RyoheiHagimoto | 0:0e0631af0305 | 437 | |
| RyoheiHagimoto | 0:0e0631af0305 | 438 | //! evaluate specified ROI and return confidence value for each location |
| RyoheiHagimoto | 0:0e0631af0305 | 439 | virtual void detectROI(const cv::Mat& img, const std::vector<cv::Point> &locations, |
| RyoheiHagimoto | 0:0e0631af0305 | 440 | CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences, |
| RyoheiHagimoto | 0:0e0631af0305 | 441 | double hitThreshold = 0, cv::Size winStride = Size(), |
| RyoheiHagimoto | 0:0e0631af0305 | 442 | cv::Size padding = Size()) const; |
| RyoheiHagimoto | 0:0e0631af0305 | 443 | |
| RyoheiHagimoto | 0:0e0631af0305 | 444 | //! evaluate specified ROI and return confidence value for each location in multiple scales |
| RyoheiHagimoto | 0:0e0631af0305 | 445 | virtual void detectMultiScaleROI(const cv::Mat& img, |
| RyoheiHagimoto | 0:0e0631af0305 | 446 | CV_OUT std::vector<cv::Rect>& foundLocations, |
| RyoheiHagimoto | 0:0e0631af0305 | 447 | std::vector<DetectionROI>& locations, |
| RyoheiHagimoto | 0:0e0631af0305 | 448 | double hitThreshold = 0, |
| RyoheiHagimoto | 0:0e0631af0305 | 449 | int groupThreshold = 0) const; |
| RyoheiHagimoto | 0:0e0631af0305 | 450 | |
| RyoheiHagimoto | 0:0e0631af0305 | 451 | //! read/parse Dalal's alt model file |
| RyoheiHagimoto | 0:0e0631af0305 | 452 | void readALTModel(String modelfile); |
| RyoheiHagimoto | 0:0e0631af0305 | 453 | void groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const; |
| RyoheiHagimoto | 0:0e0631af0305 | 454 | }; |
| RyoheiHagimoto | 0:0e0631af0305 | 455 | |
| RyoheiHagimoto | 0:0e0631af0305 | 456 | //! @} objdetect |
| RyoheiHagimoto | 0:0e0631af0305 | 457 | |
| RyoheiHagimoto | 0:0e0631af0305 | 458 | } |
| RyoheiHagimoto | 0:0e0631af0305 | 459 | |
| RyoheiHagimoto | 0:0e0631af0305 | 460 | #include "opencv2/objdetect/detection_based_tracker.hpp" |
| RyoheiHagimoto | 0:0e0631af0305 | 461 | |
| RyoheiHagimoto | 0:0e0631af0305 | 462 | #ifndef DISABLE_OPENCV_24_COMPATIBILITY |
| RyoheiHagimoto | 0:0e0631af0305 | 463 | #include "opencv2/objdetect/objdetect_c.h" |
| RyoheiHagimoto | 0:0e0631af0305 | 464 | #endif |
| RyoheiHagimoto | 0:0e0631af0305 | 465 | |
| RyoheiHagimoto | 0:0e0631af0305 | 466 | #endif |