Fork of mbed-dsp. CMSIS-DSP library of supporting NEON

Dependents:   mbed-os-example-cmsis_dsp_neon

Fork of mbed-dsp by mbed official

Information

Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.

CMSIS-DSP of supporting NEON

What is this ?

A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.

Library Creation environment

CMSIS-DSP library of supporting NEON was created by the following environment.

  • Compiler
    ARMCC Version 5.03
  • Compile option switch[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • Compile option switch[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


Effects of NEON support

In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.


NEON対応CMSIS-DSP

概要

NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。

ライブラリ作成環境

NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。

  • コンパイラ
    ARMCC Version 5.03
  • コンパイルオプションスイッチ[C Compiler]
   -DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm 
   --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp 
   --vectorize --asm
  • コンパイルオプションスイッチ[Assembler]
   --cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access 
   --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp


NEON対応による効果について

CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。


cmsis_dsp/ControllerFunctions/arm_pid_init_q15.c

Committer:
emilmont
Date:
2013-05-30
Revision:
2:da51fb522205
Parent:
1:fdd22bb7aa52
Child:
3:7a284390b0ce

File content as of revision 2:da51fb522205:

/* ----------------------------------------------------------------------    
* Copyright (C) 2010 ARM Limited. All rights reserved.    
*    
* $Date:        15. February 2012  
* $Revision: 	V1.1.0  
*    
* Project: 	    CMSIS DSP Library    
* Title:	    arm_pid_init_q15.c    
*    
* Description:	Q15 PID Control initialization function    
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Version 1.1.0 2012/02/15 
*    Updated with more optimizations, bug fixes and minor API changes.  
*   
* Version 1.0.10 2011/7/15  
*    Big Endian support added and Merged M0 and M3/M4 Source code.   
*    
* Version 1.0.3 2010/11/29   
*    Re-organized the CMSIS folders and updated documentation.    
*     
* Version 1.0.2 2010/11/11    
*    Documentation updated.     
*    
* Version 1.0.1 2010/10/05     
*    Production release and review comments incorporated.    
*    
* Version 1.0.0 2010/09/20     
*    Production release and review comments incorporated.    
* -------------------------------------------------------------------- */

#include "arm_math.h"

 /**    
 * @addtogroup PID    
 * @{    
 */

/**    
 * @details    
 * @param[in,out] *S points to an instance of the Q15 PID structure.    
 * @param[in]     resetStateFlag  flag to reset the state. 0 = no change in state 1 = reset the state.    
 * @return none.    
 * \par Description:   
 * \par    
 * The <code>resetStateFlag</code> specifies whether to set state to zero or not. \n   
 * The function computes the structure fields: <code>A0</code>, <code>A1</code> <code>A2</code>    
 * using the proportional gain( \c Kp), integral gain( \c Ki) and derivative gain( \c Kd)    
 * also sets the state variables to all zeros.    
 */

void arm_pid_init_q15(
  arm_pid_instance_q15 * S,
  int32_t resetStateFlag)
{

#ifndef ARM_MATH_CM0

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  /* Derived coefficient A0 */
  S->A0 = __QADD16(__QADD16(S->Kp, S->Ki), S->Kd);

  /* Derived coefficients and pack into A1 */

#ifndef  ARM_MATH_BIG_ENDIAN

  S->A1 = __PKHBT(-__QADD16(__QADD16(S->Kd, S->Kd), S->Kp), S->Kd, 16);

#else

  S->A1 = __PKHBT(S->Kd, -__QADD16(__QADD16(S->Kd, S->Kd), S->Kp), 16);

#endif /*      #ifndef  ARM_MATH_BIG_ENDIAN    */

  /* Check whether state needs reset or not */
  if(resetStateFlag)
  {
    /* Clear the state buffer.  The size will be always 3 samples */
    memset(S->state, 0, 3u * sizeof(q15_t));
  }

#else

  /* Run the below code for Cortex-M0 */

  q31_t temp;                                    /*to store the sum */

  /* Derived coefficient A0 */
  temp = S->Kp + S->Ki + S->Kd;
  S->A0 = (q15_t) __SSAT(temp, 16);

  /* Derived coefficients and pack into A1 */
  temp = -(S->Kd + S->Kd + S->Kp);
  S->A1 = (q15_t) __SSAT(temp, 16);
  S->A2 = S->Kd;



  /* Check whether state needs reset or not */
  if(resetStateFlag)
  {
    /* Clear the state buffer.  The size will be always 3 samples */
    memset(S->state, 0, 3u * sizeof(q15_t));
  }

#endif /* #ifndef ARM_MATH_CM0 */

}

/**    
 * @} end of PID group    
 */