Fork of mbed-dsp. CMSIS-DSP library of supporting NEON
Dependents: mbed-os-example-cmsis_dsp_neon
Fork of mbed-dsp by
Information
Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.
CMSIS-DSP of supporting NEON
What is this ?
A library for CMSIS-DSP of supporting NEON.
We supported the NEON to CMSIS-DSP Ver1.4.3(CMSIS V4.1) that ARM supplied, has achieved the processing speed improvement.
If you use the mbed-dsp library, you can use to replace this library.
CMSIS-DSP of supporting NEON is provied as a library.
Library Creation environment
CMSIS-DSP library of supporting NEON was created by the following environment.
- Compiler
ARMCC Version 5.03 - Compile option switch[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- Compile option switch[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
Effects of NEON support
In the data which passes to each function, large size will be expected more effective than small size.
Also if the data is a multiple of 16, effect will be expected in every function in the CMSIS-DSP.
NEON対応CMSIS-DSP
概要
NEON対応したCMSIS-DSPのライブラリです。
ARM社提供のCMSIS-DSP Ver1.4.3(CMSIS V4.1)をターゲットにNEON対応を行ない、処理速度向上を実現しております。
mbed-dspライブラリを使用している場合は、本ライブラリに置き換えて使用することができます。
NEON対応したCMSIS-DSPはライブラリで提供します。
ライブラリ作成環境
NEON対応CMSIS-DSPライブラリは、以下の環境で作成しています。
- コンパイラ
ARMCC Version 5.03 - コンパイルオプションスイッチ[C Compiler]
-DARM_MATH_MATRIX_CHECK -DARM_MATH_ROUNDING -O3 -Otime --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp --vectorize --asm
- コンパイルオプションスイッチ[Assembler]
--cpreproc --cpu=Cortex-A9 --littleend --arm --apcs=/interwork --no_unaligned_access --fpu=vfpv3_fp16 --fpmode=fast --apcs=/hardfp
NEON対応による効果について
CMSIS-DSP内の各関数へ渡すデータは、小さいサイズよりも大きいサイズの方が効果が見込めます。
また、16の倍数のデータであれば、CMSIS-DSP内のどの関数でも効果が見込めます。
cmsis_dsp/TransformFunctions/arm_rfft_f32.c
- Committer:
- mbed_official
- Date:
- 2014-06-23
- Revision:
- 4:9cee975aadce
- Parent:
- 3:7a284390b0ce
File content as of revision 4:9cee975aadce:
/* ---------------------------------------------------------------------- * Copyright (C) 2010-2013 ARM Limited. All rights reserved. * * $Date: 17. January 2013 * $Revision: V1.4.1 * * Project: CMSIS DSP Library * Title: arm_rfft_f32.c * * Description: RFFT & RIFFT Floating point process function * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ #include "arm_math.h" extern void arm_radix4_butterfly_f32( float32_t * pSrc, uint16_t fftLen, float32_t * pCoef, uint16_t twidCoefModifier); extern void arm_radix4_butterfly_inverse_f32( float32_t * pSrc, uint16_t fftLen, float32_t * pCoef, uint16_t twidCoefModifier, float32_t onebyfftLen); extern void arm_bitreversal_f32( float32_t * pSrc, uint16_t fftSize, uint16_t bitRevFactor, uint16_t * pBitRevTab); /** * @ingroup groupTransforms */ /*-------------------------------------------------------------------- * Internal functions prototypes *--------------------------------------------------------------------*/ void arm_split_rfft_f32( float32_t * pSrc, uint32_t fftLen, float32_t * pATable, float32_t * pBTable, float32_t * pDst, uint32_t modifier); void arm_split_rifft_f32( float32_t * pSrc, uint32_t fftLen, float32_t * pATable, float32_t * pBTable, float32_t * pDst, uint32_t modifier); /** * @addtogroup RealFFT * @{ */ /** * @brief Processing function for the floating-point RFFT/RIFFT. * @deprecated Do not use this function. It has been superceded by \ref arm_rfft_fast_f32 and will be removed * in the future. * @param[in] *S points to an instance of the floating-point RFFT/RIFFT structure. * @param[in] *pSrc points to the input buffer. * @param[out] *pDst points to the output buffer. * @return none. */ void arm_rfft_f32( const arm_rfft_instance_f32 * S, float32_t * pSrc, float32_t * pDst) { const arm_cfft_radix4_instance_f32 *S_CFFT = S->pCfft; /* Calculation of Real IFFT of input */ if(S->ifftFlagR == 1u) { /* Real IFFT core process */ arm_split_rifft_f32(pSrc, S->fftLenBy2, S->pTwiddleAReal, S->pTwiddleBReal, pDst, S->twidCoefRModifier); /* Complex radix-4 IFFT process */ arm_radix4_butterfly_inverse_f32(pDst, S_CFFT->fftLen, S_CFFT->pTwiddle, S_CFFT->twidCoefModifier, S_CFFT->onebyfftLen); /* Bit reversal process */ if(S->bitReverseFlagR == 1u) { arm_bitreversal_f32(pDst, S_CFFT->fftLen, S_CFFT->bitRevFactor, S_CFFT->pBitRevTable); } } else { /* Calculation of RFFT of input */ /* Complex radix-4 FFT process */ arm_radix4_butterfly_f32(pSrc, S_CFFT->fftLen, S_CFFT->pTwiddle, S_CFFT->twidCoefModifier); /* Bit reversal process */ if(S->bitReverseFlagR == 1u) { arm_bitreversal_f32(pSrc, S_CFFT->fftLen, S_CFFT->bitRevFactor, S_CFFT->pBitRevTable); } /* Real FFT core process */ arm_split_rfft_f32(pSrc, S->fftLenBy2, S->pTwiddleAReal, S->pTwiddleBReal, pDst, S->twidCoefRModifier); } } /** * @} end of RealFFT group */ /** * @brief Core Real FFT process * @param[in] *pSrc points to the input buffer. * @param[in] fftLen length of FFT. * @param[in] *pATable points to the twiddle Coef A buffer. * @param[in] *pBTable points to the twiddle Coef B buffer. * @param[out] *pDst points to the output buffer. * @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. * @return none. */ void arm_split_rfft_f32( float32_t * pSrc, uint32_t fftLen, float32_t * pATable, float32_t * pBTable, float32_t * pDst, uint32_t modifier) { uint32_t i; /* Loop Counter */ float32_t outR, outI; /* Temporary variables for output */ float32_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */ float32_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */ float32_t *pDst1 = &pDst[2], *pDst2 = &pDst[(4u * fftLen) - 1u]; /* temp pointers for output buffer */ float32_t *pSrc1 = &pSrc[2], *pSrc2 = &pSrc[(2u * fftLen) - 1u]; /* temp pointers for input buffer */ /* Init coefficient pointers */ pCoefA = &pATable[modifier * 2u]; pCoefB = &pBTable[modifier * 2u]; i = fftLen - 1u; while(i > 0u) { /* outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] + pSrc[2 * n - 2 * i] * pBTable[2 * i] + pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); */ /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] + pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */ /* read pATable[2 * i] */ CoefA1 = *pCoefA++; /* pATable[2 * i + 1] */ CoefA2 = *pCoefA; /* pSrc[2 * i] * pATable[2 * i] */ outR = *pSrc1 * CoefA1; /* pSrc[2 * i] * CoefA2 */ outI = *pSrc1++ * CoefA2; /* (pSrc[2 * i + 1] + pSrc[2 * fftLen - 2 * i + 1]) * CoefA2 */ outR -= (*pSrc1 + *pSrc2) * CoefA2; /* pSrc[2 * i + 1] * CoefA1 */ outI += *pSrc1++ * CoefA1; CoefB1 = *pCoefB; /* pSrc[2 * fftLen - 2 * i + 1] * CoefB1 */ outI -= *pSrc2-- * CoefB1; /* pSrc[2 * fftLen - 2 * i] * CoefA2 */ outI -= *pSrc2 * CoefA2; /* pSrc[2 * fftLen - 2 * i] * CoefB1 */ outR += *pSrc2-- * CoefB1; /* write output */ *pDst1++ = outR; *pDst1++ = outI; /* write complex conjugate output */ *pDst2-- = -outI; *pDst2-- = outR; /* update coefficient pointer */ pCoefB = pCoefB + (modifier * 2u); pCoefA = pCoefA + ((modifier * 2u) - 1u); i--; } pDst[2u * fftLen] = pSrc[0] - pSrc[1]; pDst[(2u * fftLen) + 1u] = 0.0f; pDst[0] = pSrc[0] + pSrc[1]; pDst[1] = 0.0f; } /** * @brief Core Real IFFT process * @param[in] *pSrc points to the input buffer. * @param[in] fftLen length of FFT. * @param[in] *pATable points to the twiddle Coef A buffer. * @param[in] *pBTable points to the twiddle Coef B buffer. * @param[out] *pDst points to the output buffer. * @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. * @return none. */ void arm_split_rifft_f32( float32_t * pSrc, uint32_t fftLen, float32_t * pATable, float32_t * pBTable, float32_t * pDst, uint32_t modifier) { float32_t outR, outI; /* Temporary variables for output */ float32_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */ float32_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */ float32_t *pSrc1 = &pSrc[0], *pSrc2 = &pSrc[(2u * fftLen) + 1u]; pCoefA = &pATable[0]; pCoefB = &pBTable[0]; while(fftLen > 0u) { /* outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] + pIn[2 * n - 2 * i] * pBTable[2 * i] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] - pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */ CoefA1 = *pCoefA++; CoefA2 = *pCoefA; /* outR = (pSrc[2 * i] * CoefA1 */ outR = *pSrc1 * CoefA1; /* - pSrc[2 * i] * CoefA2 */ outI = -(*pSrc1++) * CoefA2; /* (pSrc[2 * i + 1] + pSrc[2 * fftLen - 2 * i + 1]) * CoefA2 */ outR += (*pSrc1 + *pSrc2) * CoefA2; /* pSrc[2 * i + 1] * CoefA1 */ outI += (*pSrc1++) * CoefA1; CoefB1 = *pCoefB; /* - pSrc[2 * fftLen - 2 * i + 1] * CoefB1 */ outI -= *pSrc2-- * CoefB1; /* pSrc[2 * fftLen - 2 * i] * CoefB1 */ outR += *pSrc2 * CoefB1; /* pSrc[2 * fftLen - 2 * i] * CoefA2 */ outI += *pSrc2-- * CoefA2; /* write output */ *pDst++ = outR; *pDst++ = outI; /* update coefficient pointer */ pCoefB = pCoefB + (modifier * 2u); pCoefA = pCoefA + ((modifier * 2u) - 1u); /* Decrement loop count */ fftLen--; } }