SDG+USBHost(Mouse) Sample

Dependencies:   Sound_Generator USBHost_custom

Fork of SDG_Mouse_Sample by GR-PEACH_producer_meeting

Information

Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.

What is this?

This program is a demonstration that sounds the sound by mouse operation by using USBHost(Mouse) and Sound Generator.

Settings

Close JP3 of GR-PEACH.
/media/uploads/RyoheiHagimoto/sdg-mouse.jpg

Operation

operationeffect
Right clickSounds
Left clickReset to base tone (C)
Moves the mouse to the rightLower the sound
Moves the mouse to the leftHigher the sound
Center cursorAdjust the sensitivity.
Reset the reference value in the click.

Others

The default setting of serial communication (baud rate etc.) in mbed is shown the following link.
Please refer to the link and change the settings of your PC terminal software.
The default value of baud rate in mbed is 9600, and this application uses baud rate 9600.
https://developer.mbed.org/teams/Renesas/wiki/GR-PEACH-Getting-Started#install-the-usb-serial-communication


概要

このプログラムは、USBHost(Mouse) + Sound Generatorで、マウス操作による擬似笛デモです。

設定

GR-PEACHのJP3をショートする必要があります。
/media/uploads/RyoheiHagimoto/sdg-mouse.jpg

操作方法

操作内容
右クリック音出力開始
左クリック基準音(ド)にリセット
マウス右移動高音になります
マウス左移動低音になります
センターカーソル音高低の変化量調整(クリックで基準値にリセット)

Others

mbedのシリアル通信(ボーレート等)のデフォルト設定は以下のリンクに示しています。
リンクを参考に、お使いのPCターミナルソフトの設定を変更して下さい。
mbedでのボーレートのデフォルト値は9600で、このサンプルではボーレート9600を使います。
https://developer.mbed.org/teams/Renesas/wiki/GR-PEACH-Getting-Started#install-the-usb-serial-communication

USBHost/USBHost.cpp

Committer:
mbed_official
Date:
2013-03-06
Revision:
0:a554658735bf
Child:
4:b320d68e98e7

File content as of revision 0:a554658735bf:

/* Copyright (c) 2010-2012 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/


#include "USBHost.h"
#include "USBHostHub.h"

USBHost * USBHost::instHost = NULL;

#define DEVICE_CONNECTED_EVENT      (1 << 0)
#define DEVICE_DISCONNECTED_EVENT   (1 << 1)
#define TD_PROCESSED_EVENT          (1 << 2)

#define MAX_TRY_ENUMERATE_HUB       3

#define MIN(a, b) ((a > b) ? b : a)

DigitalOut l4(LED4);

/**
* How interrupts are processed:
*    - new device connected:
*       a message is queued
*/
void USBHost::usb_process() {
    
    bool controlListState;
    bool bulkListState;
    bool interruptListState;
    USBEndpoint * ep;
    uint8_t i, j, res, timeout_set_addr = 10;
    uint8_t buf[8];
    bool too_many_hub;
    int idx;

#if DEBUG_TRANSFER
    uint8_t * buf_transfer;
#endif
        
#if MAX_HUB_NB
    uint8_t k;
#endif
    
    while(1) {
        osEvent evt = queue_usb_event.get();
        
        if (evt.status == osEventMessage) {
            
            l4 = !l4;
            message_t * usb_msg = (message_t*)evt.value.p;
            
            switch (usb_msg->event_id) {
                
                // a new device has been connected
                case DEVICE_CONNECTED_EVENT:
                    too_many_hub = false;
                    buf[4] = 0;
                    
                    for (i = 0; i < MAX_DEVICE_CONNECTED; i++) {
                        if (!deviceInUse[i]) {
                            USB_DBG_EVENT("new device connected: %p\r\n", &devices[i]);
                            devices[i].init(usb_msg->hub, usb_msg->port, usb_msg->lowSpeed);
                            deviceReset[i] = false;
                            break;
                        }
                    }
                    
                    if (i == MAX_DEVICE_CONNECTED) {
                        USB_ERR("Too many device connected!!\r\n");
                        usb_mutex.unlock();
                        continue;
                    }
                    
                    if (!controlEndpointAllocated) {
                        control = newEndpoint(CONTROL_ENDPOINT, OUT, 0x08, 0x00);
                        addEndpoint(NULL, 0, (USBEndpoint*)control);
                        controlEndpointAllocated = true;
                    }
                    
#if MAX_HUB_NB
                    if (usb_msg->hub_parent)
                        devices[i].setHubParent((USBHostHub *)(usb_msg->hub_parent));
#endif
                    
                    resetDevice(&devices[i]);
                    
                    for (j = 0; j < timeout_set_addr; j++) {
                        // set size of control endpoint
                        devices[i].setSizeControlEndpoint(8);
                        
                        devices[i].activeAddress(false);
                        
                        // get first 8 bit of device descriptor
                        // and check if we deal with a hub
                        USB_DBG("usb_thread read device descriptor on dev: %p\r\n", &devices[i]);
                        res = getDeviceDescriptor(&devices[i], buf, 8);
                    
                        if (res != USB_TYPE_OK) {
                            USB_ERR("usb_thread could not read dev descr");
                            continue;
                        }
                    
                        // set size of control endpoint
                        devices[i].setSizeControlEndpoint(buf[7]);
                        
                        // second step: set an address to the device
                        res = setAddress(&devices[i], devices[i].getAddress());
                    
                        if (res != USB_TYPE_OK) {
                            USB_ERR("SET ADDR FAILED");
                            continue;
                        }
                        devices[i].activeAddress(true);
                        USB_DBG("Address of %p: %d", &devices[i], devices[i].getAddress());
                        
                        // try to read again the device descriptor to check if the device
                        // answers to its new address
                        res = getDeviceDescriptor(&devices[i], buf, 8);
                    
                        if (res == USB_TYPE_OK) {
                            break;
                        }
                        
                        wait_ms(100);
                    }
                    
                    USB_INFO("New device connected: %p [hub: %d - port: %d]", &devices[i], usb_msg->hub, usb_msg->port);
                    
#if MAX_HUB_NB
                    if (buf[4] == HUB_CLASS) {
                        for (k = 0; k < MAX_HUB_NB; k++) {
                            if (hub_in_use[k] == false) {
                                for (uint8_t j = 0; j < MAX_TRY_ENUMERATE_HUB; j++) {
                                    if (hubs[k].connect(&devices[i])) {
                                        devices[i].hub = &hubs[k];
                                        hub_in_use[k] = true;
                                        break;
                                    }
                                }
                                if (hub_in_use[k] == true)
                                    break;
                            }
                        }
                        
                        if (k == MAX_HUB_NB) {
                            USB_ERR("Too many hubs connected!!\r\n");
                            too_many_hub = true;
                        }
                    }
                    
                    if (usb_msg->hub_parent)
                        ((USBHostHub *)(usb_msg->hub_parent))->deviceConnected(&devices[i]);
#endif
                    
                    if ((i < MAX_DEVICE_CONNECTED) && !too_many_hub) {
                        deviceInUse[i] = true;
                    }
                    
                    break;
                    
                // a device has been disconnected
                case DEVICE_DISCONNECTED_EVENT:
                    
                    usb_mutex.lock();
                
                    controlListState = disableList(CONTROL_ENDPOINT);
                    bulkListState = disableList(BULK_ENDPOINT);
                    interruptListState = disableList(INTERRUPT_ENDPOINT);
                
                    idx = findDevice(usb_msg->hub, usb_msg->port, (USBHostHub *)(usb_msg->hub_parent));
                    if (idx != -1) {
                        freeDevice((USBDeviceConnected*)&devices[idx]);
                    }
                    
                    if (controlListState) enableList(CONTROL_ENDPOINT);
                    if (bulkListState) enableList(BULK_ENDPOINT);
                    if (interruptListState) enableList(INTERRUPT_ENDPOINT);
                    
                    usb_mutex.unlock();
                    
                    break;
                    
                // a td has been processed
                // call callback on the ed associated to the td
                // we are not in ISR -> users can use printf in their callback method
                case TD_PROCESSED_EVENT:
                    ep = (USBEndpoint *) ((HCTD *)usb_msg->td_addr)->ep;
                    ep->setState(usb_msg->td_state);
                    if (ep->getState() == USB_TYPE_IDLE) {
                        USB_DBG_EVENT("call callback on td %p [ep: %p state: %s - dev: %p - %s]", usb_msg->td_addr, ep, ep->getStateString(), ep->dev, ep->dev->getName());
#if DEBUG_TRANSFER
                        if (ep->getDir() == IN) {
                            buf_transfer = ep->getBufStart();
                            printf("READ SUCCESS [%d bytes transferred] on ep: [%p - addr: %02X]: ", ep->getLengthTransferred(), ep, ep->getAddress());
                            for (int i = 0; i < ep->getLengthTransferred(); i++)
                                printf("%02X ", buf_transfer[i]);
                            printf("\r\n\r\n");
                        }
#endif
                        ep->call();
                    } else {
                        idx = findDevice(ep->dev);
                        if (idx != -1) {
                            if (deviceInUse[idx])
                                USB_WARN("td %p processed but not in idle state: %s [dev: %p - %s]", usb_msg->td_addr, ep->getStateString(), ep->dev, ep->dev->getName());
                        }
                    }
                    break;
            }
            
            mpool_usb_event.free(usb_msg);
        }
    }
}

/* static */void USBHost::usb_process_static(void const * arg) {
    ((USBHost *)arg)->usb_process();
}

USBHost::USBHost() : usbThread(USBHost::usb_process_static, (void *)this, osPriorityNormal, USB_THREAD_STACK)
{
    headControlEndpoint = NULL;
    headBulkEndpoint = NULL;
    headInterruptEndpoint = NULL;
    tailControlEndpoint = NULL;
    tailBulkEndpoint = NULL;
    tailInterruptEndpoint = NULL;

    lenReportDescr = 0;

    controlEndpointAllocated = false;

    for (uint8_t i = 0; i < MAX_DEVICE_CONNECTED; i++) {
        deviceInUse[i] = false;
        devices[i].setAddress(i + 1);
        deviceReset[i] = false;
        deviceAttachedDriver[i] = false;
    }
    
#if MAX_HUB_NB
    for (uint8_t i = 0; i < MAX_HUB_NB; i++) {
        hubs[i].setHost(this);
        hub_in_use[i] = false;
    }
#endif
}


void USBHost::transferCompleted(volatile uint32_t addr)
{
    uint8_t state;

    if(addr == NULL)
        return;

    volatile HCTD* tdList = NULL;

    //First we must reverse the list order and dequeue each TD
    do {
        volatile HCTD* td = (volatile HCTD*)addr;
        addr = td->nextTD; //Dequeue from physical list
        td->nextTD = (uint32_t)tdList; //Enqueue into reversed list
        tdList = td;
    } while(addr);

    while(tdList != NULL) {
        volatile HCTD* td = tdList;
        tdList = (volatile HCTD*)td->nextTD; //Dequeue element now as it could be modified below
        if (td->ep != NULL) {
            USBEndpoint * ep = (USBEndpoint *)(td->ep);
            
            if (((HCTD *)td)->control >> 28) {
                state = ((HCTD *)td)->control >> 28;
            } else {
                if (td->currBufPtr)
                    ep->setLengthTransferred((uint32_t)td->currBufPtr - (uint32_t)ep->getBufStart());
                state = 16 /*USB_TYPE_IDLE*/;
            }
            
            ep->unqueueTransfer(td);
            
            if (ep->getType() != CONTROL_ENDPOINT) {
                // callback on the processed td will be called from the usb_thread (not in ISR)
                message_t * usb_msg = mpool_usb_event.alloc();
                usb_msg->event_id = TD_PROCESSED_EVENT;
                usb_msg->td_addr = (void *)td;
                usb_msg->td_state = state;
                queue_usb_event.put(usb_msg);
            } else {
                ep->setState(state);
            }
        }
    }
}

USBHost * USBHost::getHostInst()
{
    if (instHost == NULL) {
        instHost = new USBHost();
        instHost->init();
    }
    return instHost;
}


/*
 * Called when a device has been connected
 * Called in ISR!!!! (no printf)
 */
/* virtual */ void USBHost::deviceConnected(int hub, int port, bool lowSpeed, USBHostHub * hub_parent)
{
    // be sure that the new device connected is not already connected...
    int idx = findDevice(hub, port, hub_parent);
    if (idx != -1) {
        if (deviceInUse[idx])
            return;
    }
    
    message_t * usb_msg = mpool_usb_event.alloc();
    usb_msg->event_id = DEVICE_CONNECTED_EVENT;
    usb_msg->hub = hub;
    usb_msg->port = port;
    usb_msg->lowSpeed = lowSpeed;
    usb_msg->hub_parent = hub_parent;
    queue_usb_event.put(usb_msg);
}

/*
 * Called when a device has been disconnected
 * Called in ISR!!!! (no printf)
 */
/* virtual */ void USBHost::deviceDisconnected(int hub, int port, USBHostHub * hub_parent, volatile uint32_t addr)
{
    // be sure that the device disconnected is connected...
    int idx = findDevice(hub, port, hub_parent);
    if (idx != -1) {
        if (!deviceInUse[idx])
            return;
    } else {
        return;
    }
    
    message_t * usb_msg = mpool_usb_event.alloc();
    usb_msg->event_id = DEVICE_DISCONNECTED_EVENT;
    usb_msg->hub = hub;
    usb_msg->port = port;
    usb_msg->hub_parent = hub_parent;
    queue_usb_event.put(usb_msg);
}

void USBHost::freeDevice(USBDeviceConnected * dev)
{
    USBEndpoint * ep = NULL;
    HCED * ed = NULL;
    
#if MAX_HUB_NB
    if (dev->getClass() == HUB_CLASS) {
        if (dev->hub == NULL) {
            USB_ERR("HUB NULL!!!!!\r\n");
        } else {
            dev->hub->hubDisconnected();
            for (uint8_t i = 0; i < MAX_HUB_NB; i++) {
                if (dev->hub == &hubs[i]) {
                    hub_in_use[i] = false;
                    break;
                }
            }
        }
    }
    
    // notify hub parent that this device has been disconnected
    if (dev->getHubParent())
        dev->getHubParent()->deviceDisconnected(dev);
    
#endif
    
    int idx = findDevice(dev);
    if (idx != -1) {
        deviceInUse[idx] = false;
        deviceReset[idx] = false;
        deviceAttachedDriver[idx] = false;

        for (int j = 0; j < dev->getNbInterface(); j++) {
            USB_DBG("FREE INTF %d on dev: %p, %p, nb_endpot: %d, %s", j, (void *)dev->getInterface(j), dev, dev->getInterface(j)->nb_endpoint, dev->getName());
            for (int i = 0; i < dev->getInterface(j)->nb_endpoint; i++) {
                if ((ep = dev->getEndpoint(j, i)) != NULL) {
                    ed = (HCED *)ep->getHCED();
                    ed->control |= (1 << 13); //sKip bit
                    unqueueEndpoint(ep);

                    freeTD((volatile uint8_t*)ep->getTDList()[0]);
                    freeTD((volatile uint8_t*)ep->getTDList()[1]);

                    freeED((uint8_t *)ep->getHCED());
                }
                printList(BULK_ENDPOINT);
                printList(INTERRUPT_ENDPOINT);
            }
        }
        USB_INFO("Device disconnected [%p - %s - hub: %d - port: %d]", dev, dev->getName(), dev->getHub(), dev->getPort());
        dev->disconnect();
    }
}


void USBHost::unqueueEndpoint(USBEndpoint * ep)
{
    USBEndpoint * prec = NULL;
    USBEndpoint * current = NULL;

    for (int i = 0; i < 2; i++) {
        current = (i == 0) ? (USBEndpoint*)headBulkEndpoint : (USBEndpoint*)headInterruptEndpoint;
        prec = current;
        while (current != NULL) {
            if (current == ep) {
                if (current->nextEndpoint() != NULL) {
                    prec->queueEndpoint(current->nextEndpoint());
                    if (current == headBulkEndpoint) {
                        updateBulkHeadED((uint32_t)current->nextEndpoint()->getHCED());
                        headBulkEndpoint = current->nextEndpoint();
                    } else if (current == headInterruptEndpoint) {
                        updateInterruptHeadED((uint32_t)current->nextEndpoint()->getHCED());
                        headInterruptEndpoint = current->nextEndpoint();
                    }
                }
                // here we are dequeuing the queue of ed
                // we need to update the tail pointer
                else {
                    prec->queueEndpoint(NULL);
                    if (current == headBulkEndpoint) {
                        updateBulkHeadED(0);
                        headBulkEndpoint = current->nextEndpoint();
                    } else if (current == headInterruptEndpoint) {
                        updateInterruptHeadED(0);
                        headInterruptEndpoint = current->nextEndpoint();
                    }
                    
                    // modify tail
                    switch (current->getType()) {
                        case BULK_ENDPOINT:
                            tailBulkEndpoint = prec;
                            break;
                        case INTERRUPT_ENDPOINT:
                            tailInterruptEndpoint = prec;
                            break;
                    }
                }
                current->setState(USB_TYPE_FREE);
                return;
            }
            prec = current;
            current = current->nextEndpoint();
        }
    }
}


USBDeviceConnected * USBHost::getDevice(uint8_t index)
{
    if ((index >= MAX_DEVICE_CONNECTED) || (!deviceInUse[index]) || (deviceAttachedDriver[index])) {
        return NULL;
    }
    return (USBDeviceConnected*)&devices[index];
}

// create an USBEndpoint descriptor. the USBEndpoint is not linked
USBEndpoint * USBHost::newEndpoint(ENDPOINT_TYPE type, ENDPOINT_DIRECTION dir, uint32_t size, uint8_t addr)
{
    int i = 0;
    HCED * ed = (HCED *)getED();
    HCTD* td_list[2] = { (HCTD*)getTD(), (HCTD*)getTD() };

    memset((void *)td_list[0], 0x00, sizeof(HCTD));
    memset((void *)td_list[1], 0x00, sizeof(HCTD));

    // search a free USBEndpoint
    for (i = 0; i < MAX_ENDPOINT; i++) {
        if (endpoints[i].getState() == USB_TYPE_FREE) {
            endpoints[i].init(ed, type, dir, size, addr, td_list);
            USB_DBG("USBEndpoint created (%p): type: %d, dir: %d, size: %d, addr: %d", &endpoints[i], type, dir, size, addr);
            return &endpoints[i];
        }
    }
    USB_ERR("could not allocate more endpoints!!!!");
    return NULL;
}


USB_TYPE USBHost::resetDevice(USBDeviceConnected * dev)
{
    int index = findDevice(dev);
    if (index != -1) {
        USB_DBG("Resetting hub %d, port %d\n", dev->getHub(), dev->getPort());
        wait_ms(50);
        if (dev->getHub() == 0) {
            resetRootHub();
        }
#if MAX_HUB_NB
        else {
            dev->getHubParent()->portReset(dev->getPort());
        }
#endif
        wait_ms(100);
        deviceReset[index] = true;
        return USB_TYPE_OK;
    }
    if (deviceReset[index] && !deviceAttachedDriver[index])
        return USB_TYPE_OK;
    
    return USB_TYPE_ERROR;
}

// link the USBEndpoint to the linked list and attach an USBEndpoint to a device
bool USBHost::addEndpoint(USBDeviceConnected * dev, uint8_t intf_nb, USBEndpoint * ep)
{

    if (ep == NULL) {
        return false;
    }

    HCED * prevEd;

    // set device address in the USBEndpoint descriptor
    if (dev == NULL) {
        ep->setDeviceAddress(0);
    } else {
        ep->setDeviceAddress(dev->getAddress());
    }

    if ((dev != NULL) && dev->getSpeed()) {
        ep->setSpeed(dev->getSpeed());
    }

    // queue the new USBEndpoint on the ED list
    switch (ep->getType()) {

        case CONTROL_ENDPOINT:
            prevEd = ( HCED*) controlHeadED();
            if (!prevEd) {
                updateControlHeadED((uint32_t) ep->getHCED());
                USB_DBG("First control USBEndpoint: %08X", (uint32_t) ep->getHCED());
                headControlEndpoint = ep;
                tailControlEndpoint = ep;
                return true;
            }
            tailControlEndpoint->queueEndpoint(ep);
            tailControlEndpoint = ep;
            return true;

        case BULK_ENDPOINT:
            prevEd = ( HCED*) bulkHeadED();
            if (!prevEd) {
                updateBulkHeadED((uint32_t) ep->getHCED());
                USB_DBG("First bulk USBEndpoint: %08X\r\n", (uint32_t) ep->getHCED());
                headBulkEndpoint = ep;
                tailBulkEndpoint = ep;
                break;
            }
            USB_DBG("Queue BULK Ed %p after %p\r\n",ep->getHCED(), prevEd);
            tailBulkEndpoint->queueEndpoint(ep);
            tailBulkEndpoint = ep;
            break;

        case INTERRUPT_ENDPOINT:
            prevEd = ( HCED*) interruptHeadED();
            if (!prevEd) {
                updateInterruptHeadED((uint32_t) ep->getHCED());
                USB_DBG("First interrupt USBEndpoint: %08X\r\n", (uint32_t) ep->getHCED());
                headInterruptEndpoint = ep;
                tailInterruptEndpoint = ep;
                break;
            }
            USB_DBG("Queue INTERRUPT Ed %p after %p\r\n",ep->getHCED(), prevEd);
            tailInterruptEndpoint->queueEndpoint(ep);
            tailInterruptEndpoint = ep;
            break;
        default:
            return false;
    }
    
    ep->dev = dev;
    dev->addEndpoint(intf_nb, ep);

    return true;
}


int USBHost::findDevice(USBDeviceConnected * dev)
{
    for (int i = 0; i < MAX_DEVICE_CONNECTED; i++) {
        if (dev == &devices[i]) {
            return i;
        }
    }
    return -1;
}

int USBHost::findDevice(uint8_t hub, uint8_t port, USBHostHub * hub_parent)
{
    for (int i = 0; i < MAX_DEVICE_CONNECTED; i++) {
        if (devices[i].getHub() == hub && devices[i].getPort() == port) {
            if (hub_parent != NULL) {
                if (hub_parent == devices[i].getHubParent())
                    return i;
            } else {
                return i;
            }
        }
    }
    return -1;
}

void USBHost::printList(ENDPOINT_TYPE type)
{
#if DEBUG_EP_STATE
    HCED * hced;
    switch(type) {
        case CONTROL_ENDPOINT:
            hced = (HCED *)controlHeadED();
            break;
        case BULK_ENDPOINT:
            hced = (HCED *)bulkHeadED();
            break;
        case INTERRUPT_ENDPOINT:
            hced = (HCED *)interruptHeadED();
            break;
    }
    HCTD * hctd = NULL;
    const char * type_str = (type == BULK_ENDPOINT) ? "BULK" :
                            ((type == INTERRUPT_ENDPOINT) ? "INTERRUPT" :
                            ((type == CONTROL_ENDPOINT) ? "CONTROL" : "ISOCHRONOUS"));
    printf("State of %s:\r\n", type_str);
    while (hced != NULL) {
        uint8_t dir = ((hced->control & (3 << 11)) >> 11);
        printf("hced: %p [ADDR: %d, DIR: %s, EP_NB: 0x%X]\r\n", hced,
                                                   hced->control & 0x7f,
                                                   (dir == 1) ? "OUT" : ((dir == 0) ? "FROM_TD":"IN"),
                                                    (hced->control & (0xf << 7)) >> 7);
        hctd = (HCTD *)((uint32_t)(hced->headTD) & ~(0xf));
        while (hctd != (hced->tailTD)) {
            printf("\thctd: %p [DIR: %s]\r\n", hctd, ((hctd->control & (3 << 19)) >> 19) == 1 ? "OUT" : "IN");
            hctd = (HCTD *)((uint32_t)(hctd->nextTD));
        }
        printf("\thctd: %p\r\n", hctd);
        hced = (HCED *)((uint32_t)(hced->nextED));
    }
    printf("\r\n\r\n");
#endif
}


// add a transfer on the TD linked list
USB_TYPE USBHost::addTransfer(USBEndpoint * ed, uint8_t * buf, uint32_t len)
{

    // allocate a TD which will be freed in TDcompletion
    volatile HCTD * td = ed->getNextTD();
    if (td == NULL) {
        return USB_TYPE_ERROR;
    }

    uint32_t token = (ed->isSetup() ? TD_SETUP : ( (ed->getDir() == IN) ? TD_IN : TD_OUT ));

    uint32_t td_toggle;

    if (ed->getType() == CONTROL_ENDPOINT) {
        if (ed->isSetup()) {
            td_toggle = TD_TOGGLE_0;
        } else {
            td_toggle = TD_TOGGLE_1;
        }
    } else {
        td_toggle = 0;
    }

    td->control      = (TD_ROUNDING | token | TD_DELAY_INT(0) | td_toggle | TD_CC);
    td->currBufPtr   = buf;
    td->bufEnd       = (buf + (len - 1));

    ENDPOINT_TYPE type = ed->getType();

    disableList(type);
    ed->queueTransfer();
    printList(type);
    enableList(type);

    return USB_TYPE_PROCESSING;
}



USB_TYPE USBHost::getDeviceDescriptor(USBDeviceConnected * dev, uint8_t * buf, uint16_t max_len_buf, uint16_t * len_dev_descr)
{
    USB_TYPE t = controlRead(  dev,
                         USB_DEVICE_TO_HOST | USB_RECIPIENT_DEVICE,
                         GET_DESCRIPTOR,
                         (DEVICE_DESCRIPTOR << 8) | (0),
                         0, buf, MIN(DEVICE_DESCRIPTOR_LENGTH, max_len_buf));
    if (len_dev_descr)
        *len_dev_descr = MIN(DEVICE_DESCRIPTOR_LENGTH, max_len_buf);
    
    return t;
}

USB_TYPE USBHost::getConfigurationDescriptor(USBDeviceConnected * dev, uint8_t * buf, uint16_t max_len_buf, uint16_t * len_conf_descr)
{
    USB_TYPE res;
    uint16_t total_conf_descr_length = 0;

    // fourth step: get the beginning of the configuration descriptor to have the total length of the conf descr
    res = controlRead(  dev,
                        USB_DEVICE_TO_HOST | USB_RECIPIENT_DEVICE,
                        GET_DESCRIPTOR,
                        (CONFIGURATION_DESCRIPTOR << 8) | (0),
                        0, buf, CONFIGURATION_DESCRIPTOR_LENGTH);

    if (res != USB_TYPE_OK) {
        USB_ERR("GET CONF 1 DESCR FAILED");
        return res;
    }
    total_conf_descr_length = buf[2] | (buf[3] << 8);
    total_conf_descr_length = MIN(max_len_buf, total_conf_descr_length);
    
    if (len_conf_descr)
        *len_conf_descr = total_conf_descr_length;
    
    USB_DBG("TOTAL_LENGTH: %d \t NUM_INTERF: %d", total_conf_descr_length, buf[4]);

    return controlRead(  dev,
                         USB_DEVICE_TO_HOST | USB_RECIPIENT_DEVICE,
                         GET_DESCRIPTOR,
                         (CONFIGURATION_DESCRIPTOR << 8) | (0),
                         0, buf, total_conf_descr_length);
}


USB_TYPE USBHost::setAddress(USBDeviceConnected * dev, uint8_t address) {
    return controlWrite(    dev,
                            USB_HOST_TO_DEVICE | USB_RECIPIENT_DEVICE,
                            SET_ADDRESS,
                            address,
                            0, NULL, 0);
    
}

USB_TYPE USBHost::setConfiguration(USBDeviceConnected * dev, uint8_t conf)
{
    return controlWrite( dev,
                         USB_HOST_TO_DEVICE | USB_RECIPIENT_DEVICE,
                         SET_CONFIGURATION,
                         conf,
                         0, NULL, 0);
}


// enumerate a device with the control USBEndpoint
USB_TYPE USBHost::enumerate(USBDeviceConnected * dev, IUSBEnumerator* pEnumerator)
{
    uint16_t total_conf_descr_length = 0;
    USB_TYPE res;
    
    uint8_t index = findDevice(dev);

    if (dev->isEnumerated() && deviceAttachedDriver[index]) {
        return USB_TYPE_OK;
    }
    
    // third step: get the whole device descriptor to see vid, pid
    res = getDeviceDescriptor(dev, data, DEVICE_DESCRIPTOR_LENGTH);

    if ((res != USB_TYPE_OK) && (res != USB_TYPE_DEVICE_NOT_RESPONDING_ERROR)) {
        USB_DBG("GET DEV DESCR FAILED");
        return res;
    }
    
    dev->setClass(data[4]);
    dev->setSubClass(data[5]);
    dev->setProtocol(data[6]);
    dev->setVid(data[8] | (data[9] << 8));
    dev->setPid(data[10] | (data[11] << 8));
    USB_DBG("CLASS: %02X \t VID: %04X \t PID: %04X", data[4], data[8] | (data[9] << 8), data[10] | (data[11] << 8));

    pEnumerator->setVidPid( data[8] | (data[9] << 8), data[10] | (data[11] << 8) );

    res = getConfigurationDescriptor(dev, data, 400, &total_conf_descr_length);
    if (res != USB_TYPE_OK) {
        return res;
    }

#if DEBUG
    USB_DBG("CONFIGURATION DESCRIPTOR:\r\n");
    for (int i = 0; i < total_conf_descr_length; i++)
        printf("%02X ", data[i]);
    printf("\r\n\r\n");
#endif

    // Parse the configuration descriptor
    parseConfDescr(dev, data, total_conf_descr_length, pEnumerator);


    // sixth step: set configuration (only 1 supported)
    res = setConfiguration(dev, 1);

    if (res != USB_TYPE_OK) {
        USB_DBG("SET CONF FAILED");
        return res;
    }

    // Now the device is enumerated!
    dev->setEnumerated();
    USB_DBG("device enumerated!!!!");

    // Some devices may require this delay
    Thread::wait(100);

    return USB_TYPE_OK;
}

// this method fills the USBDeviceConnected object: class,.... . It also add endpoints found in the descriptor.
void USBHost::parseConfDescr(USBDeviceConnected * dev, uint8_t * conf_descr, uint32_t len, IUSBEnumerator* pEnumerator)
{
    uint32_t index = 0;
    uint32_t len_desc = 0;
    uint8_t id = 0;
    int nb_endpoints_used = 0;
    USBEndpoint * ep = NULL;
    uint8_t intf_nb = 0;
    bool parsing_intf = false;

    while (index < len) {
        len_desc = conf_descr[index];
        id = conf_descr[index+1];
        switch (id) {
            case CONFIGURATION_DESCRIPTOR:
                break;
            case INTERFACE_DESCRIPTOR:
                if(pEnumerator->parseInterface(intf_nb, conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7])) {
                    if (intf_nb++ <= MAX_INTF) {
                        dev->addInterface(intf_nb - 1, conf_descr[index + 5], conf_descr[index + 6], conf_descr[index + 7]);
                        nb_endpoints_used = 0;
                        USB_DBG("ADD INTF %d on device %p: class: %d, subclass: %d, proto: %d", intf_nb - 1, (void *)dev, conf_descr[index + 5],conf_descr[index + 6],conf_descr[index + 7]);
                    } else {
                        USB_DBG("Drop intf...");
                    }
                    parsing_intf = true;
                } else {
                    parsing_intf = false;
                }
                break;
            case ENDPOINT_DESCRIPTOR:
                if (parsing_intf && (intf_nb <= MAX_INTF) ) {
                    if (nb_endpoints_used < MAX_ENDPOINT_PER_INTERFACE) {
                        if( pEnumerator->useEndpoint(intf_nb - 1, (ENDPOINT_TYPE)(conf_descr[index + 3] & 0x03), (ENDPOINT_DIRECTION)((conf_descr[index + 2] >> 7) + 1)) ) {
                            // if the USBEndpoint is isochronous -> skip it (TODO: fix this)
                            if ((conf_descr[index + 3] & 0x03) != ISOCHRONOUS_ENDPOINT) {
                                ep = newEndpoint((ENDPOINT_TYPE)(conf_descr[index+3] & 0x03),
                                                 (ENDPOINT_DIRECTION)((conf_descr[index + 2] >> 7) + 1),
                                                 conf_descr[index + 4] | (conf_descr[index + 5] << 8),
                                                 conf_descr[index + 2] & 0x0f);
                                USB_DBG("ADD USBEndpoint %p, on interf %d on device %p", (void *)ep, intf_nb - 1, (void *)dev);
                                if (ep != NULL && dev != NULL) {
                                    addEndpoint(dev, intf_nb - 1, ep);
                                } else {
                                    USB_DBG("EP NULL");
                                }
                                nb_endpoints_used++;
                            } else {
                                USB_DBG("ISO USBEndpoint NOT SUPPORTED");
                            }
                        }
                    }
                }
                break;
            case HID_DESCRIPTOR:
                lenReportDescr = conf_descr[index + 7] | (conf_descr[index + 8] << 8);
                break;
            default:
                break;
        }
        index += len_desc;
    }
}


USB_TYPE USBHost::bulkWrite(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking)
{
    return generalTransfer(dev, ep, buf, len, blocking, BULK_ENDPOINT, true);
}

USB_TYPE USBHost::bulkRead(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking)
{
    return generalTransfer(dev, ep, buf, len, blocking, BULK_ENDPOINT, false);
}

USB_TYPE USBHost::interruptWrite(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking)
{
    return generalTransfer(dev, ep, buf, len, blocking, INTERRUPT_ENDPOINT, true);
}

USB_TYPE USBHost::interruptRead(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking)
{
    return generalTransfer(dev, ep, buf, len, blocking, INTERRUPT_ENDPOINT, false);
}

USB_TYPE USBHost::generalTransfer(USBDeviceConnected * dev, USBEndpoint * ep, uint8_t * buf, uint32_t len, bool blocking, ENDPOINT_TYPE type, bool write) {

#if DEBUG_TRANSFER
    const char * type_str = (type == BULK_ENDPOINT) ? "BULK" : ((type == INTERRUPT_ENDPOINT) ? "INTERRUPT" : "ISOCHRONOUS");
    USB_DBG_TRANSFER("----- %s %s [dev: %p - %s - hub: %d - port: %d - addr: %d]------", type_str, (write) ? "WRITE" : "READ", dev, dev->getName(), dev->getHub(), dev->getPort(), dev->getAddress());
#endif

    USB_TYPE res;
    ENDPOINT_DIRECTION dir = (write) ? OUT : IN;

    if (dev == NULL) {
        USB_ERR("dev NULL");
        return USB_TYPE_ERROR;
    }

    if (ep == NULL) {
        USB_ERR("ep NULL");
        return USB_TYPE_ERROR;
    }

    if (ep->getState() != USB_TYPE_IDLE) {
        USB_WARN("[ep: %p - dev: %p] NOT IDLE: %s", ep, ep->dev, ep->getStateString());
        return ep->getState();
    }

    if ((ep->getDir() != dir) || (ep->getType() != type)) {
        USB_ERR("[ep: %p - dev: %p] wrong dir or bad USBEndpoint type", ep, ep->dev);
        return USB_TYPE_ERROR;
    }

    if (dev->getAddress() != ep->getDeviceAddress()) {
        USB_ERR("[ep: %p - dev: %p] USBEndpoint addr and device addr don't match", ep, ep->dev);
        return USB_TYPE_ERROR;
    }
    


#if DEBUG_TRANSFER
    if (write) {
        USB_DBG_TRANSFER("%s WRITE buffer", type_str);
        for (int i = 0; i < ep->getLengthTransferred(); i++)
            printf("%02X ", buf[i]);
        printf("\r\n\r\n");
    }
#endif
    usb_mutex.lock();
    addTransfer(ep, buf, len);
    usb_mutex.unlock();

    if (blocking) {

        while((res = ep->getState()) == USB_TYPE_PROCESSING) {
            Thread::wait(1);
        }

        USB_DBG_TRANSFER("%s TRANSFER res: %s", type_str, ep->getStateString());

        if (res != USB_TYPE_IDLE) {
            return res;
        }
        
        return USB_TYPE_OK;
    }
    return USB_TYPE_PROCESSING;

}


USB_TYPE USBHost::controlRead(USBDeviceConnected * dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) {
    return controlTransfer(dev, requestType, request, value, index, buf, len, false);
}

USB_TYPE USBHost::controlWrite(USBDeviceConnected * dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len) {
    return controlTransfer(dev, requestType, request, value, index, buf, len, true);
}


USB_TYPE USBHost::controlTransfer(USBDeviceConnected * dev, uint8_t requestType, uint8_t request, uint32_t value, uint32_t index, uint8_t * buf, uint32_t len, bool write)
{
    USB_DBG_TRANSFER("----- CONTROL %s [dev: %p - %s - hub: %d - port: %d] ------", (write) ? "WRITE" : "READ", dev, dev->getName(), dev->getHub(), dev->getPort());

    int length_transfer = len;
    USB_TYPE res;
    uint32_t token;

    usb_mutex.lock();
    control->setSpeed(dev->getSpeed());
    control->setSize(dev->getSizeControlEndpoint());
    if (dev->isActiveAddress()) {
        control->setDeviceAddress(dev->getAddress());
    } else {
        control->setDeviceAddress(0);
    }
    
    USB_DBG_TRANSFER("Control transfer on device: %d\r\n", control->getDeviceAddress());
    fillControlBuf(requestType, request, value, index, len);

#if DEBUG_TRANSFER
    USB_DBG_TRANSFER("SETUP PACKET: ");
    for (int i = 0; i < 8; i++)
        printf("%01X ", setupPacket[i]);
    printf("\r\n");
#endif

    control->setNextToken(TD_SETUP);
    addTransfer(control, (uint8_t*)setupPacket, 8);

    while((res = control->getState()) == USB_TYPE_PROCESSING) {
        Thread::wait(1);
    }

    USB_DBG_TRANSFER("CONTROL setup stage %s", control->getStateString());

    if (res != USB_TYPE_IDLE) {
        usb_mutex.unlock();
        return res;
    }

    if (length_transfer) {
        token = (write) ? TD_OUT : TD_IN;
        control->setNextToken(token);
        addTransfer(control, (uint8_t *)buf, length_transfer);

        while((res = control->getState()) == USB_TYPE_PROCESSING) {
            Thread::wait(1);
        }

#if DEBUG_TRANSFER
        USB_DBG_TRANSFER("CONTROL %s stage %s", (write) ? "WRITE" : "READ", control->getStateString());
        if (write) {
            USB_DBG_TRANSFER("CONTROL WRITE buffer");
            for (int i = 0; i < control->getLengthTransferred(); i++)
                printf("%02X ", buf[i]);
            printf("\r\n\r\n");
        } else {
            USB_DBG_TRANSFER("CONTROL READ SUCCESS [%d bytes transferred]", control->getLengthTransferred());
            for (int i = 0; i < control->getLengthTransferred(); i++)
                printf("%02X ", buf[i]);
            printf("\r\n\r\n");
        }
#endif

        if (res != USB_TYPE_IDLE) {
            usb_mutex.unlock();
            return res;
        }
    }

    token = (write) ? TD_IN : TD_OUT;
    control->setNextToken(token);
    addTransfer(control, NULL, 0);

    while((res = control->getState()) == USB_TYPE_PROCESSING) {
        Thread::wait(1);
    }

    USB_DBG_TRANSFER("CONTROL ack stage %s", control->getStateString());
    usb_mutex.unlock();

    if (res != USB_TYPE_IDLE)
        return res;

    return USB_TYPE_OK;
}


void USBHost::fillControlBuf(uint8_t requestType, uint8_t request, uint16_t value, uint16_t index, int len)
{
#ifdef __BIG_ENDIAN
#error "Must implement BE to LE conv here"
#endif
    setupPacket[0] = requestType;
    setupPacket[1] = request;
    //We are in LE so it's fine
    *((uint16_t*)&setupPacket[2]) = value;
    *((uint16_t*)&setupPacket[4]) = index;
    *((uint16_t*)&setupPacket[6]) = (uint32_t) len;
}