SDG+USBHost(Mouse) Sample

Dependencies:   Sound_Generator USBHost_custom

Fork of SDG_Mouse_Sample by GR-PEACH_producer_meeting

Information

Japanese version is available in lower part of this page.
このページの後半に日本語版が用意されています.

What is this?

This program is a demonstration that sounds the sound by mouse operation by using USBHost(Mouse) and Sound Generator.

Settings

Close JP3 of GR-PEACH.
/media/uploads/RyoheiHagimoto/sdg-mouse.jpg

Operation

operationeffect
Right clickSounds
Left clickReset to base tone (C)
Moves the mouse to the rightLower the sound
Moves the mouse to the leftHigher the sound
Center cursorAdjust the sensitivity.
Reset the reference value in the click.

Others

The default setting of serial communication (baud rate etc.) in mbed is shown the following link.
Please refer to the link and change the settings of your PC terminal software.
The default value of baud rate in mbed is 9600, and this application uses baud rate 9600.
https://developer.mbed.org/teams/Renesas/wiki/GR-PEACH-Getting-Started#install-the-usb-serial-communication


概要

このプログラムは、USBHost(Mouse) + Sound Generatorで、マウス操作による擬似笛デモです。

設定

GR-PEACHのJP3をショートする必要があります。
/media/uploads/RyoheiHagimoto/sdg-mouse.jpg

操作方法

操作内容
右クリック音出力開始
左クリック基準音(ド)にリセット
マウス右移動高音になります
マウス左移動低音になります
センターカーソル音高低の変化量調整(クリックで基準値にリセット)

Others

mbedのシリアル通信(ボーレート等)のデフォルト設定は以下のリンクに示しています。
リンクを参考に、お使いのPCターミナルソフトの設定を変更して下さい。
mbedでのボーレートのデフォルト値は9600で、このサンプルではボーレート9600を使います。
https://developer.mbed.org/teams/Renesas/wiki/GR-PEACH-Getting-Started#install-the-usb-serial-communication

USBHost/USBHALHost_LPC17.cpp

Committer:
mbed_official
Date:
2015-01-19
Revision:
27:4206883f4cb7

File content as of revision 27:4206883f4cb7:

/* mbed USBHost Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#if defined(TARGET_LPC1768)

#include "mbed.h"
#include "USBHALHost.h"
#include "dbg.h"

// bits of the USB/OTG clock control register
#define HOST_CLK_EN     (1<<0)
#define DEV_CLK_EN      (1<<1)
#define PORTSEL_CLK_EN  (1<<3)
#define AHB_CLK_EN      (1<<4)

// bits of the USB/OTG clock status register
#define HOST_CLK_ON     (1<<0)
#define DEV_CLK_ON      (1<<1)
#define PORTSEL_CLK_ON  (1<<3)
#define AHB_CLK_ON      (1<<4)

// we need host clock, OTG/portsel clock and AHB clock
#define CLOCK_MASK (HOST_CLK_EN | PORTSEL_CLK_EN | AHB_CLK_EN)

#define HCCA_SIZE sizeof(HCCA)
#define ED_SIZE sizeof(HCED)
#define TD_SIZE sizeof(HCTD)

#define TOTAL_SIZE (HCCA_SIZE + (MAX_ENDPOINT*ED_SIZE) + (MAX_TD*TD_SIZE))

static volatile uint8_t usb_buf[TOTAL_SIZE] __attribute((section("AHBSRAM1"),aligned(256)));  //256 bytes aligned!

USBHALHost * USBHALHost::instHost;

USBHALHost::USBHALHost() {
    instHost = this;
    memInit();
    memset((void*)usb_hcca, 0, HCCA_SIZE);
    for (int i = 0; i < MAX_ENDPOINT; i++) {
        edBufAlloc[i] = false;
    }
    for (int i = 0; i < MAX_TD; i++) {
        tdBufAlloc[i] = false;
    }
}

void USBHALHost::init() {
    NVIC_DisableIRQ(USB_IRQn);

    //Cut power
    LPC_SC->PCONP &= ~(1UL<<31);
    wait_ms(100);

    // turn on power for USB
    LPC_SC->PCONP       |= (1UL<<31);

    // Enable USB host clock, port selection and AHB clock
    LPC_USB->USBClkCtrl |= CLOCK_MASK;

    // Wait for clocks to become available
    while ((LPC_USB->USBClkSt & CLOCK_MASK) != CLOCK_MASK);

    // it seems the bits[0:1] mean the following
    // 0: U1=device, U2=host
    // 1: U1=host, U2=host
    // 2: reserved
    // 3: U1=host, U2=device
    // NB: this register is only available if OTG clock (aka "port select") is enabled!!
    // since we don't care about port 2, set just bit 0 to 1 (U1=host)
    LPC_USB->OTGStCtrl |= 1;

    // now that we've configured the ports, we can turn off the portsel clock
    LPC_USB->USBClkCtrl &= ~PORTSEL_CLK_EN;

    // configure USB D+/D- pins
    // P0[29] = USB_D+, 01
    // P0[30] = USB_D-, 01
    LPC_PINCON->PINSEL1 &= ~((3<<26) | (3<<28));
    LPC_PINCON->PINSEL1 |=  ((1<<26) | (1<<28));

    LPC_USB->HcControl       = 0; // HARDWARE RESET
    LPC_USB->HcControlHeadED = 0; // Initialize Control list head to Zero
    LPC_USB->HcBulkHeadED    = 0; // Initialize Bulk list head to Zero

    // Wait 100 ms before apply reset
    wait_ms(100);

    // software reset
    LPC_USB->HcCommandStatus = OR_CMD_STATUS_HCR;

    // Write Fm Interval and Largest Data Packet Counter
    LPC_USB->HcFmInterval    = DEFAULT_FMINTERVAL;
    LPC_USB->HcPeriodicStart = FI * 90 / 100;

    // Put HC in operational state
    LPC_USB->HcControl  = (LPC_USB->HcControl & (~OR_CONTROL_HCFS)) | OR_CONTROL_HC_OPER;
    // Set Global Power
    LPC_USB->HcRhStatus = OR_RH_STATUS_LPSC;

    LPC_USB->HcHCCA = (uint32_t)(usb_hcca);

    // Clear Interrrupt Status
    LPC_USB->HcInterruptStatus |= LPC_USB->HcInterruptStatus;

    LPC_USB->HcInterruptEnable  = OR_INTR_ENABLE_MIE | OR_INTR_ENABLE_WDH | OR_INTR_ENABLE_RHSC;

    // Enable the USB Interrupt
    NVIC_SetVector(USB_IRQn, (uint32_t)(_usbisr));
    LPC_USB->HcRhPortStatus1 = OR_RH_PORT_CSC;
    LPC_USB->HcRhPortStatus1 = OR_RH_PORT_PRSC;

    NVIC_EnableIRQ(USB_IRQn);

    // Check for any connected devices
    if (LPC_USB->HcRhPortStatus1 & OR_RH_PORT_CCS) {
        //Device connected
        wait_ms(150);
        USB_DBG("Device connected (%08x)\n\r", LPC_USB->HcRhPortStatus1);
        deviceConnected(0, 1, LPC_USB->HcRhPortStatus1 & OR_RH_PORT_LSDA);
    }
}

uint32_t USBHALHost::controlHeadED() {
    return LPC_USB->HcControlHeadED;
}

uint32_t USBHALHost::bulkHeadED() {
    return LPC_USB->HcBulkHeadED;
}

uint32_t USBHALHost::interruptHeadED() {
    return usb_hcca->IntTable[0];
}

void USBHALHost::updateBulkHeadED(uint32_t addr) {
    LPC_USB->HcBulkHeadED = addr;
}


void USBHALHost::updateControlHeadED(uint32_t addr) {
    LPC_USB->HcControlHeadED = addr;
}

void USBHALHost::updateInterruptHeadED(uint32_t addr) {
    usb_hcca->IntTable[0] = addr;
}


void USBHALHost::enableList(ENDPOINT_TYPE type) {
    switch(type) {
        case CONTROL_ENDPOINT:
            LPC_USB->HcCommandStatus = OR_CMD_STATUS_CLF;
            LPC_USB->HcControl |= OR_CONTROL_CLE;
            break;
        case ISOCHRONOUS_ENDPOINT:
            break;
        case BULK_ENDPOINT:
            LPC_USB->HcCommandStatus = OR_CMD_STATUS_BLF;
            LPC_USB->HcControl |= OR_CONTROL_BLE;
            break;
        case INTERRUPT_ENDPOINT:
            LPC_USB->HcControl |= OR_CONTROL_PLE;
            break;
    }
}


bool USBHALHost::disableList(ENDPOINT_TYPE type) {
    switch(type) {
        case CONTROL_ENDPOINT:
            if(LPC_USB->HcControl & OR_CONTROL_CLE) {
                LPC_USB->HcControl &= ~OR_CONTROL_CLE;
                return true;
            }
            return false;
        case ISOCHRONOUS_ENDPOINT:
            return false;
        case BULK_ENDPOINT:
            if(LPC_USB->HcControl & OR_CONTROL_BLE){
                LPC_USB->HcControl &= ~OR_CONTROL_BLE;
                return true;
            }
            return false;
        case INTERRUPT_ENDPOINT:
            if(LPC_USB->HcControl & OR_CONTROL_PLE) {
                LPC_USB->HcControl &= ~OR_CONTROL_PLE;
                return true;
            }
            return false;
    }
    return false;
}


void USBHALHost::memInit() {
    usb_hcca = (volatile HCCA *)usb_buf;
    usb_edBuf = usb_buf + HCCA_SIZE;
    usb_tdBuf = usb_buf + HCCA_SIZE + (MAX_ENDPOINT*ED_SIZE);
}

volatile uint8_t * USBHALHost::getED() {
    for (int i = 0; i < MAX_ENDPOINT; i++) {
        if ( !edBufAlloc[i] ) {
            edBufAlloc[i] = true;
            return (volatile uint8_t *)(usb_edBuf + i*ED_SIZE);
        }
    }
    perror("Could not allocate ED\r\n");
    return NULL; //Could not alloc ED
}

volatile uint8_t * USBHALHost::getTD() {
    int i;
    for (i = 0; i < MAX_TD; i++) {
        if ( !tdBufAlloc[i] ) {
            tdBufAlloc[i] = true;
            return (volatile uint8_t *)(usb_tdBuf + i*TD_SIZE);
        }
    }
    perror("Could not allocate TD\r\n");
    return NULL; //Could not alloc TD
}


void USBHALHost::freeED(volatile uint8_t * ed) {
    int i;
    i = (ed - usb_edBuf) / ED_SIZE;
    edBufAlloc[i] = false;
}

void USBHALHost::freeTD(volatile uint8_t * td) {
    int i;
    i = (td - usb_tdBuf) / TD_SIZE;
    tdBufAlloc[i] = false;
}


void USBHALHost::resetRootHub() {
    // Initiate port reset
    LPC_USB->HcRhPortStatus1 = OR_RH_PORT_PRS;

    while (LPC_USB->HcRhPortStatus1 & OR_RH_PORT_PRS);

    // ...and clear port reset signal
    LPC_USB->HcRhPortStatus1 = OR_RH_PORT_PRSC;
}


void USBHALHost::_usbisr(void) {
    if (instHost) {
        instHost->UsbIrqhandler();
    }
}

void USBHALHost::UsbIrqhandler() {
    if( LPC_USB->HcInterruptStatus & LPC_USB->HcInterruptEnable ) //Is there something to actually process?
    {

        uint32_t int_status = LPC_USB->HcInterruptStatus & LPC_USB->HcInterruptEnable;

        // Root hub status change interrupt
        if (int_status & OR_INTR_STATUS_RHSC) {
            if (LPC_USB->HcRhPortStatus1 & OR_RH_PORT_CSC) {
                if (LPC_USB->HcRhStatus & OR_RH_STATUS_DRWE) {
                    // When DRWE is on, Connect Status Change
                    // means a remote wakeup event.
                } else {

                    //Root device connected
                    if (LPC_USB->HcRhPortStatus1 & OR_RH_PORT_CCS) {

                        // wait 150ms to avoid bounce
                        wait_ms(150);

                        //Hub 0 (root hub), Port 1 (count starts at 1), Low or High speed
                        deviceConnected(0, 1, LPC_USB->HcRhPortStatus1 & OR_RH_PORT_LSDA);
                    }

                    //Root device disconnected
                    else {

                        if (!(int_status & OR_INTR_STATUS_WDH)) {
                            usb_hcca->DoneHead = 0;
                        }

                        // wait 200ms to avoid bounce
                        wait_ms(200);

                        deviceDisconnected(0, 1, NULL, usb_hcca->DoneHead & 0xFFFFFFFE);

                        if (int_status & OR_INTR_STATUS_WDH) {
                            usb_hcca->DoneHead = 0;
                            LPC_USB->HcInterruptStatus = OR_INTR_STATUS_WDH;
                        }
                    }
                }
                LPC_USB->HcRhPortStatus1 = OR_RH_PORT_CSC;
            }
            if (LPC_USB->HcRhPortStatus1 & OR_RH_PORT_PRSC) {
                LPC_USB->HcRhPortStatus1 = OR_RH_PORT_PRSC;
            }
            LPC_USB->HcInterruptStatus = OR_INTR_STATUS_RHSC;
        }

        // Writeback Done Head interrupt
        if (int_status & OR_INTR_STATUS_WDH) {
            transferCompleted(usb_hcca->DoneHead & 0xFFFFFFFE);
            LPC_USB->HcInterruptStatus = OR_INTR_STATUS_WDH;
        }
    }
}
#endif